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Abstract. Consider the equation

(*)
1

2
∆u− V u = 0 in Rd,

for d ≥ 3. For certain classes of potentials V , we use probabilistic tools

to study the bounded solutions and the positive solutions for (*). A

primary motivation is to offer probabilistic intuition for the results.

1. Introduction and Statement of Results

In this paper we use probabilistic tools to study the bounded solutions

and the positive solutions for Schrödinger operators with certain classes

of potentials in Rd. We restrict to d ≥ 3 because the questions we ask

have trivial answers for d = 1, 2. A primary motivation here is to offer

probabilistic intuition for the results.

We consider classical solutions to the equation

(1.1)
1
2
∆u− V u = 0 in Rd,

where V is Hölder continuous. As usual, we let V + = V ∨ 0 and V − =

−(V ∧0), so that V = V +−V −. To avoid trivialities, we assume that V 6≡ 0.

Let X(t) be a d-dimensional Brownian motion, When the Brownian motion

starts from x ∈ Rd, we denote probabilities by Px and the corresponding

expectations by Ex.
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Recall that the Green’s function for 1
2∆ in Rd, d ≥ 3, is given by G(x, y) =

2
(d−2)ωd

|y − x|2−d, where ωd is the surface measure of the unit sphere in Rd.

As is well known [3], for any nonnegative function φ, one has

(1.2)

Ex

∫ ∞

0
φ(X(t))dt =

∫
Rd

G(x, y)φ(y)dy =
2

(d− 2)ωd

∫
Rd

φ(y)
|y − x|d−2

dy.

The following assumption will always be made on the negative part V −

of the potential V :

Assumption 1.

sup
x∈Rd

Ex

∫ ∞

0
V −(X(t))dt =

2
(d− 2)ωd

sup
x∈Rd

∫
Rd

V −(y)
|y − x|d−2

dy < 1.

By Khasminskii’s lemma [13, Lemma B.1.2], Assumption 1 guarantees

that

(1.3) sup
x∈Rd

Ex exp(
∫ ∞

0
V −(X(t))dt) <∞.

Remark. Actually it is (1.3) that we will need throughout the paper, not

Assumption 1. However, it seems more appropriate to state the results with

a purely analytic condition.

The condition (1.3) is more than sufficient to guarantee that the operator
1
2∆ − V is subcritical; that is, it possesses a positive Green’s function. In

particular then the cone CV ≡ {u : 1
2∆u − V u = 0 and u > 0 in Rd} of

positive solutions for the operator 1
2∆ − V in Rd is non-empty (and non-

trivial since positive constants are not solutions) [12]. In order not to disrupt

the exposition, we defer an explanation of this until the end of this section.

The Liouville property is said to hold for the potential V if the only bounded

solution of (1.1) is u ≡ 0.

Consider now the positive part of the potential V . One has simultane-

ously for all x either Px(
∫∞
0 V +(X(t))dt = ∞) = 0 or 1, since the event

{
∫∞
0 V +(X(t))dt = ∞} belongs to the tail σ-algebra of Brownian motion,

and this σ-algebra is trivial. Note that by (1.2) and Assumption 1, we have
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a fortiori that Px(
∫∞
0 V −(X(t))dt = ∞) = 0. Our first result gives among

other things a probabilistic characterization of the Liouville property.

Theorem 1. Let V be Hölder continuous and let V − satisfy Assumption 1.

Let X(t) be a d-dimensional Brownian motion. Then the Liouville property

holds (that is, there are no bounded solutions to (1.1)) if and only if∫ ∞

0
V +(X(t))dt = ∞, a.s..

In the case that the Liouville property fails, let

u0(x) = Ex exp(−
∫ ∞

0
V (X(t))dt).

Then u0 is a bounded, positive solution to (1.1). Every bounded solution to

(1.1) is a multiple of u0. In particular, there are no bounded, sign-changing

solutions.

Remark 1. In the case that the potential V is nonnegative, the condition∫∞
0 V (X(t))dt = ∞ can easily be shown to be equivalent to the strong

stability on L1(Rd) of the semigroup Tt corresponding to the operator 1
2∆−

V ; that is, to the condition limt→∞ ||Ttf ||1 = 0, for all f ∈ L1(Rd). This

connection is developed probabilistically in [2].

Remark 2. In light of Theorem 1 and (1.2), it follows that
∫
Rd

V +(x)
|x|d−2 dx = ∞

is a necessary condition for the Liouville property to hold. In the case that

V ≥ 0, an alternative purely analytic proof of this necessary condition for

the Liouville property can be found in [6]. See also [7] which treats the

Liouville problem from a potential theoretic point of view in the case that

the potential is an appropriate nonnegative measure and the space Rd is

replaced by a Riemannian manifold. Yehuda Pinchover has pointed out

to me that Lemma 3.3 and Proposition 3.4 in [11] can be used to give a

completely analytic proof that the Liouville property fails if V − satisfies

Assumption 1 and V + satisfies
∫
Rd

V +(x)
|x|d−2 dx <∞.
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In certain cases, the condition
∫
Rd

V +(x)
|x|d−2 dx = ∞ is not only necessary

but also sufficient in order that
∫∞
0 V +(X(t))dt = ∞ a.s., or equivalently

by Theorem 1, in order that the Liouville property hold. In particular, this

is true in the case that V + is radially symmetric.

Proposition 1. Let φ ≥ 0 be radially symmetric. One has

(1.4)
∫ ∞

0
φ(X(t))dt = ∞ a.s. if and only if

∫
Rd

φ(x)
|x|d−2

dx = ∞.

Thus, if V − satisfies Assumption 1, then by Theorem 1, the Liouville prop-

erty holds if and only if
∫
Rd

V +(x)
|x|d−2 dx = ∞.

Remark. In the case that V is nonnegative and radially symmetric, Brezis,

Chipot and Xie [4] have recently given an elementary analytic proof that

the Liouville property holds if and only if
∫
Rd

V (x)
|x|d−2dx = ∞. Alternative

proofs of (1.4) can be found in [2, Corollary 3.11] and [1, Theorem 3.7] in

the context of strong stability in L1(Rd) of the semigroup corresponding to

the operator 1
2∆− V .

Another case besides the radial one where the condition
∫
Rd

V +(x)
|x|d−2 dx = ∞

is necessary and sufficient in order that
∫∞
0 V +(X(t))dt = ∞ a.s. is the case

that V + decays at least quadratically. Indeed, the following result follows

from [3].

Theorem BA-P. i. Assume that 0 ≤ φ(x) ≤ C
(1+|x|)2 , for some C > 0.

Then
∫∞
0 φ(X(t))dt <∞ a.s. if and only if

∫
Rd

φ(x)
|x|d−2dx <∞.

ii. Let ψ be any positive, nondecreasing function on [0,∞) satisfying

limr→∞ ψ(r) = ∞. Then there exists a function φ satisfying 0 � φ(x) ≤
ψ(|x|)

(1+|x|)2 for which
∫∞
0 φ(X(t))dt <∞ a.s. but

∫
Rd

φ(x)
|x|d−2dx = ∞.

In order not to disrupt the exposition, we wait until the end of this section

to explain how Theorem BA-P follows from [3].

Theorem BA-P-i and Theorem 1 give the following immediate corollary.
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Corollary 1. If V − satisfies Assumption 1 and V +(x) ≤ C
(1+|x|)2 , for some

C > 0, then the Liouville property holds if and only if
∫
Rd

V +(x)
|x|d−2 dx = ∞.

Remark 1. Theorem 1 and Theorem BA-P-ii show that the quadratic de-

cay condition on V + is sharp with regard to
∫
Rd

V +(x)
|x|d−2 dx < ∞ being the

necessary and sufficient condition for the Liouville condition to hold.

Remark 2. It follows immediately from Theorem 1 and Theorem BA-P that a

sufficient condition for the Liouville property to hold is that∫
Rd(V +(x) ∧ 1

(1+|x|)2 )dx = ∞.

It is known that if the potential V decays at least quadratically, then the

cone CV of positive solutions for 1
2∆ − V is one-dimensional [12, Chapter

8.3]. Thus, if V decays at least quadratically and V − satisfies Assumption

1, then by Corollary 1 the unique positive solution (up to positive multiples)

will be bounded if and only if
∫
Rd

V +(x)
|x|d−2 dx <∞.

We now give another “smallness” condition on the potential V which

guarantees that the cone CV is one-dimensional. Theorem 1 showed that if

V − satisfies Assumption 1 and
∫∞
0 V +(X(s))ds <∞ a.s., then there exists

a unique bounded, positive solution to (1.1) up to positive multiples. And

we noted that a sufficient condition for this integral to be finite is that∫
Rd

V +(x)
|x|d−2 dx <∞. Using a mixture of probabilistic and analytic techniques,

we will show that if this last integral condition on V + is strengthened a bit,

and if we assume as always that the negative part of the potential satisfies

Assumption 1, then all positive solutions must bounded, from which it then

follows that the cone CV of positive solutions is one-dimensional.

Assumption 2.

(1.5) sup
x∈Rd

∫
Rd

V +(y)
|y − x|d−2

dy <∞.

Theorem 2. Let V + satisfy Assumption 2 and let V − satisfy Assumption

1. Then the cone CV of positive solutions to (1.1) is one-dimensional. It is

generated by the bounded function u0 appearing in Theorem 1.
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Remark. In the literature, a potential V satisfying Assumption 2 with V +

replaced by |V | is called anH-bounded perturbation of 1
2∆. (Actually, in the

present context, the definition of an H-bounded perturbation is equivalent

to the definition of a G-bounded perturbation.) For more on these kinds

of perturbations, see for example [11, section 2]. The result in Theorem 2

doesn’t seem to be in the literature. However, Yehuda Pinchover has pointed

out to me that a purely analytic proof can be made by combining a number

of results of his in [11] and [10]. We are inclined to believe that the condition∫
Rd

V +(y)
|y−x|d−2dy <∞, for all x (which is of course equivalent to the condition∫

Rd
V +(y)
|y|d−2 dy < ∞, since V is locally bounded), is insufficient to guarantee

that the cone CV is one-dimensional. Note that by Theorem 1, it follows

that if V + satisfies
∫
Rd

V +(y)
|y|d−2 dy < ∞ and V − satisfies Assumption 1, then

the cone CV will be one-dimensional if and only if there are no unbounded,

positive solutions to (1.1).

In the case that V + is radially symmetric, Theorem 2 does hold with

Assumption 2 replaced by the condition
∫
Rd

V +(x)
|x|d−2 dx <∞, which by Propo-

sition 1, is the necessary and sufficient condition for the Liouville property

to hold. As the proof below will show, the reason for this is that in the

radial case, the supremum in (1.5) occurs when x = 0.

Corollary 2. Let V + be radially symmetric and let V − satisfy Assumption

1. If
∫
Rd

V +(x)
|x|d−2 dx < ∞, then the cone CV of positive solutions to (1.1) is

one-dimensional and contains only bounded, functions; namely the positive

multiples of the bounded function u0 appearing in Theorem 1. If V − is also

radially symmetric, then this function u0 is radially symmetric.

Remark. In the case that V is radially symmetric and
∫
Rd

V (x)
|x|d−2dx = ∞,

the cone CV of positive solutions is not necessarily one-dimensional, nor are

all solutions necessarily radially symmetric. For example, if V ≡ 1, then

for each v ∈ Rd satisfying |v| =
√

2, the function exp(v · x) is a solution

to (1.1). On the other hand, the condition
∫
Rd

V (x)
|x|d−2dx = ∞ does not



POSITIVE/BOUNDED SOLUTIONS TO THE SCHRÖDINGER OPERATOR 7

rule out quadratic decay, and under such a decay rate the cone CV is one-

dimensional, as noted above. For a detailed analysis of the structure of the

positive solutions in the radial case, see [9].

Proof of Corollary 2. Let τr = inf{t ≥ 0 : |X(t)| = r}. Then by the strong

Markov property and the radial symmetry of V +, we have for x ∈ Rd,

(1.6)
E0

∫ ∞

0
V +(X(t))dt = E0

(∫ τ|x|

0
V +(X(t))dt+

∫ ∞

τ|x|

V +(X(t))dt

)

≥ Ex

∫ ∞

0
V +(X(t))dt,

which in conjunction with (1.2) shows that

sup
x∈Rd

∫
Rd

V +(y)
|y − x|d−2

dy =
∫
Rd

V +(y)
|y|d−2

dy.

�

We now give some of the proof of Theorem 2 in order to emphasize the

probabilistic intuition for condition (1.5). The missing details will be com-

pleted in section 3. By Theorem 1 and (1.2), in order to prove the theorem

it is enough to show that there are no unbounded, positive solutions.

Assume to the contrary that u is an unbounded, positive solution. By the

Feynman-Kac formula and Assumption 1, u satisfies

(1.7) u(x) = Ex exp
(
−
∫ τn

0
V (X(s))ds

)
u(X(τn)),

for |x| ≤ n, where τn = inf{t ≥ 0 : |X(t)| = n}. Choose ε > 0 such that

Assumption 1 still holds with V − replaced by (1 + ε)V −. Then as in (1.3),

Khasminskii’s lemma guarantees the existence of an Mε such that

(1.8) sup
x∈Rd

Ex exp((1 + ε)
∫ ∞

0
V −(X(t))dt) ≤Mε.
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Conditioning and using Hölder’s inequality, we have from (1.7)

(1.9)
u(x) =

ExEx

(
exp(

∫ τn

0
V −(X(s))ds) exp(−

∫ τn

0
V +(X(s))ds)

∣∣X(τn)
)
u(X(τn)) ≤

Ex

(
Ex

(
exp((1 + ε)

∫ τn

0
V −(X(s))ds)

∣∣X(τn)
)) 1

1+ε

(
Ex

(
exp(−1 + ε

ε

∫ τn

0
V +(X(s))ds)

∣∣X(τn)
)) ε

1+ε

u(X(τn))

≤M
1

1+ε
ε Exu(X(τn)).

Let wn(x) = Exu(X(τn)), for x ∈ B̄n. Then wn is harmonic in Bn and

by (1.9),

(1.10) u(x) ≤M
1

1+ε
ε wn(x).

By a standard compactness argument and the Harnack inequality, either

{wn} has a convergent subsequence which converges to a limiting positive

harmonic function in all of Rd, or else limn→∞wn(x) = ∞, for all x ∈ Rd.

In light of (1.10) and the assumed unboundedness of u, the first possibil-

ity would lead to an unbounded, positive harmonic function in all of Rd.

But this is impossible because the only positive harmonic functions are the

constants. Thus, we conclude that

(1.11) lim
n→∞

Exu(X(τn)) = ∞, for all x.

Using conditional expectation, we have from (1.7) that

(1.12)

u(0) = E0 exp
(
−
∫ τn

0
V (X(s))ds

)
u(X(τn)) =∫

∂Bn

E0

(
exp(−

∫ τn

0
V (X(s))ds) | X(τn) = y

)
u(y)σ(dy), for all n,
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where σ(dy) is normalized surface measure on ∂Bn. From (1.11) with x = 0,

we have

(1.13) lim
n→∞

∫
∂Bn

u(y)σ(dy) = ∞.

If we knew that for some M

(1.14) lim
n→∞

inf
y∈∂Bn

P0(
∫ τn

0
V +(X(s))ds ≤M | X(τn) = y) > 0,

then it would follow from (1.13) that

lim
n→∞

∫
∂Bn

E0

(
exp(−

∫ τn

0
V (X(s))ds) | X(τn) = y

)
u(y)σ(dy) = ∞,

which would contradict (1.12).

Now a sufficient condition to guarantee (1.14) is that the collection of

distributions

{
∫ τn

0
V +(X(s))ds under P0(· | X(τn) = y) : y ∈ ∂Bn, n = 1, 2, · · · }

be tight. And a sufficient condition for this tightness is the uniform bound-

edness of the expectations:

(1.15) sup
n

sup
y∈∂Bn

E0(
∫ τn

0
V +(X(s))ds | X(τn) = y) <∞.

Now we can write down an explicit analytic expression for the expectation

in (1.15), using the Green’s function and the Poisson kernel. In section

3 we complete the proof of Theorem 2 by showing that condition (1.5) is

sufficient for (1.15) to hold. Note that condition (1.5) has a probabilistic

interpretation in the spirit of (1.15) since

sup
x∈Rd

Ex

∫ ∞

0
V +(X(s))ds = sup

x∈Rd

∫
Rd

V +(y)
|y − x|d−2

dy.

We now return to the probabilistic condition on V + which was shown in

Theorem 1 to be equivalent to the Liouville condition:
∫∞
0 V +(X(t))dt = ∞.

It is probably not possible to find a concrete analytic condition on V + which

characterizes in general whether or not
∫∞
0 V +(X(t))dt = ∞. (For an ab-

stract, potential theoretic condition which characterizes this, see [2].) A
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more tractable task is to identify interesting classes of nonnegative poten-

tials V , besides those nonnegative potentials which are radially symmetric or

which decay at least quadratically, for which the condition
∫
Rd

V (x)
|x|d−2dx = ∞

characterizes the Liouville property. The case in which V is supported in

a countable collection of disjoint balls with appropriate side conditions will

be treated elsewhere in work with a student, by adapting the method used

recently in [5], where an interesting related question was investigated. Let

B(c, r) denote the open ball of radius r centered at c ∈ Rd. Consider a

countable collection of disjoint, closed balls {B̄(cn, rn)}∞n=1 in Rd, d ≥ 3.

The problem considered in [5] is to characterize those collections of balls for

which the probability of never hitting ∪∞n=1B̄(cn, rn) is positive; or equiv-

alently, to characterize those collections of balls for which there exists a

nonconstant, bounded harmonic function u in Rd − ∪∞n=1B̄(cn, rn) satisfy-

ing u = 1 on ∪∞n=1∂B(cn, rn). This problem can be posed as a “singular”

Liouville-type problem as follows. Let A = ∪∞n=1B̄(cn, rn) and let V = 0 on

Rd −A and V = ∞ on A. In an appropriate sense, the function u = 1Rd−A

solves 1
2∆u − V u = 0. We call this solution the trivial one, and say that

the Liouville property holds if there are no nontrivial, bounded solutions.

Then the Liouville property holds if and only if the probability of avoiding

∪∞n=1B̄(cn, rn) forever is zero. In [5] it was shown that if all the balls are

ε separated and if supn≥1 r
d−2
n |cn|2 < ∞, then a necessary and sufficient

condition for there to be a positive probability of avoiding ∪∞n=1B̄(cn, rn)

forever is that
∑∞

n=1(
rn
|cn|)

d−2 < ∞. Without any conditions on the balls,

the finiteness of the above sum is sufficient for the balls to be avoidable.

The authors also show that the condition supn≥1 r
d−2
n |cn|2 < ∞ is sharp

with regard to the convergence of the above sum being the necessary and

sufficient condition. We point out that it is possible to have a situation

where the balls are unavoidable, but the total time spent in them is almost

surely finite. Indeed, if rn is say, bounded, and
∑∞

n=1
rd
n

|cn|d−2 < ∞, then

E0

∫∞
0 1∪∞n=1B̄(cn,rn)(X(t))dt = 1

(d−2)ωd

∑∞
n=1

∫
B(cn,rn)

1
|x|d−2dx < ∞. Thus,
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for example, choosing rn and cn such that rd−2
n |cn|2 = 1 and |cn| = n

1
d , then∑∞

n=1(
rn
|cn|)

d−2 = ∞ but
∑∞

n=1
rd
n

|cn|d−2 <∞.

We now return to explain how Theorem BA-P follows from [3].

Proof of Theorem BA-P. From [3, Theorems 1 and 2 and Corollary 4], it fol-

lows that if φ satisfies the bounds in part (i), then the Px-almost sure infinite-

ness/finiteness of
∫∞
0 φ(X(t)dt is equivalent to the infiniteness/finiteness of

Ex
∫∞
0 φ(X(t)dt. Part (i) now follows from (1.2). (In Corollary 4 in [3],

there is a typographical error. The term b(y) there should actually be b2(y).

The term b2 which is supposed to appear in the integral there plays the role

of φ in (1.2). Also, in the proof of Theorem 2 in [3], the limit appearing

in the displayed formula between (3.3) and (3.4) should be outside of the

expectation, and the statement in (3.4) should be in probability rather than

almost surely. Then (3.7) there will hold for a sequence of times converging

to infinity rather than for a continuum of times.)

It was also shown in [3] that for each function ψ as in part (ii) of the

present theorem, it is possible to construct a function φ which satisfies the

growth condition in part (ii) and is such that
∫∞
0 φ(X(t))dt <∞ a.s. [Px],

but Ex
∫∞
0 φ(X(t))dt = ∞. (See Theorem 3 in [3], in conjunction with

Theorems 1 and 2 and Corollary 4 there. The role of φ here is played by

|b̂|2 in the proof of Theorem 3 in [3].) Thus, part (ii) now also follows from

(1.2). �

We end this section with the explanation for the claim that the condition

(1.3) is more than sufficient to guarantee that 1
2∆− V is a subcritical oper-

ator. In fact, it is enough to assume that Ex exp(
∫∞
0 V −(X(t))dt) <∞, for

all x (or equivalently, for some x). By standard Schauder estimates, u(x) ≡

Ex exp(
∫∞
0 V −(X(t))dt) is a positive solution for the operator 1

2∆ + V −.

Since u ≥ 1, it follows that û ≡ u − 1
2 is a positive super-solution for

1
2∆− V , but not a solution; that is, 1

2∆u− V u � 0. But this is a sufficient

condition for the subcriticality of 1
2∆− V [12, Theorem 4.3.9].
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We prove Theorem 1 and Proposition1 in section 2 and complete the proof

of Theorem 2 in section 3.

2. Proofs of Theorem 1 and Proposition 1

Proof of Theorem 1. First assume that
∫∞
0 V +(X(t))dt = ∞ a.s.. Let u be

a bounded solution to (1.1). By the Feynman-Kac formula and Assumption

1, we have

(2.1) u(x) = Exu(X(t)) exp(−
∫ t

0
V (X(s))ds), for all t > 0.

Now let t→∞. By Assumption 1, the dominated convergence theorem can

be applied to give u ≡ 0.

Conversely, assume that
∫∞
0 V +(X(t))dt <∞ a.s.. By Assumption 1, the

function u0 defined in the statement of part (i) of the theorem is bounded.

By standard Schauder estimates and the Feynman-Kac formula, the function

u0 will be a solution to (1.1).

It remains to show that every bounded solution is a multiple of u0. Let

u be any bounded solution. Let x ∈ Rd. By the Feynman-Kac formula

and Assumption 1, u(X(t)) exp(−
∫ t
0 V (X(s))ds) is a Px-martingale. Since

this martingale is positive, it converges almost surely [Px], and since it is

dominated by M exp(
∫∞
0 V −(X(t))dt), where M = supx∈Rd |u(x)|, it fol-

lows from Assumption 1 and the dominated convergence theorem that the

convergence is also in L1. By Assumption 1 and by the assumption on V +

in part (i) of the theorem, it follows that
∫ t
0 V (X(s))ds converges almost

surely [Px] to a finite limit. Thus, we conclude that U ≡ limt→∞ u(X(t))

exists almost surely Px and that

(2.2) u(x) = ExU exp(−
∫ ∞

0
V (X(t))dt).

Since U is measurable with respect to the tail σ-algebra of the Brownian

motion, and since this σ-algebra is trivial, it follows that U ≡ cx a.s. [Px],

for some constant cx. The limit cx is in fact independent of x. Indeed, let
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x1, x2 ∈ Rd and let R > |x1|, |x2|. By the strong Markov property and the

fact that U is a tail event, it follows that

(2.3) Pxi(U ∈ ·) = ExiPX(τR)(U ∈ ·).

As is well-known, the harmonic measure on ∂BR ≡ {|x| = R} is mutually

absolutely continuous with respect to Lebesgue measure; that is, the distri-

bution of X(τR) under Pxi is mutually absolutely continuous with Lebesgue

measure. Since limt→∞ u(X(t)) = cxi a.s. [Pxi ], it follows from (2.3) and the

above-mentioned absolute continuity that cy = cxi for Lebesgue-almost all

y ∈ ∂BR. Since this is true for i = 1, 2, we conclude that cx1 = cx2 . Calling

the common value of this constant c, it follows from (2.2) that u = cu0. �

Proof of Proposition 1. The theorem will follow from (1.2) if we show that

the condition
∫∞
0 V +(X(t))dt <∞ a.s. guarantees that Ex

∫∞
0 V +(X(t))dt <

∞. Assume that
∫∞
0 V (X(t))dt < ∞ a.s.. By Theorem 1, u0(x) ≡

Ex exp(−
∫∞
0 V (X(t))dt) is a bounded solution to (1.1). By the strong

Markov property and the radial symmetry of V +, the distribution of∫∞
0 V +(X(t))dt under Px is the same as the distribution of

∫∞
τ|x|

V +(X(t))dt

under P0. Thus, this distribution is stochastically decreasing in |x|. From

this and the stochastic representation of u0 above, it follows that u0 is

bounded from 0. From the fact that 1
2∆u0 = V u0, it follows that u0(X(t))−∫ t

0 (V u0)(X(s))ds is a local martingale. Thus,

(2.4) Exu0(X(τn)) = u0(0) + Ex

∫ τn

0
(V u0)(X(s))ds.

By Assumption 1 and the boundedness of u0, Ex
∫ τn
0 (V −u0)(X(s))ds is

bounded independent of n. Thus, letting n → ∞ in (2.4), and using the

boundedness from 0 of u0, we conclude that Ex
∫∞
0 V +(X(t))dt <∞. �

3. Completion of the Proof of Theorem 2

We began the proof in the first section of the paper. To complete the

proof, it remains to show that if (1.5) holds, then so does (1.15).
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Let Pn(x, y), denote the Poisson kernel for 1
2∆ in the ball Bn = {x ∈ Rd :

|x| < n}. That is, for each y ∈ ∂Bn, Pn(·, y) is harmonic in Bn, satisfies

limx→z P
n(x, y) = 0, for y 6= z ∈ ∂Bn and limx→y P

n(x, y) = ∞. One has

[8]

(3.1) Pn(x, y) =
1
nωd

n2 − |x|2

|y − x|d
.

Let Gn(x, z) denote the Green’s function for the Brownian motion killed

upon exiting Bn. (That is, Gn is the Green’s function for 1
2∆ in Bn with

the Dirichlet boundary condition.) One has [8]

(3.2) G(n)(x, z) =
2

(d− 2)ωd

(
|z − x|2−d − (

|z|
n

)2−d| n
2

|z|2
z − x|2−d

)
.

Brownian motion in Bn, conditioned to exit at y ∈ ∂Bn, is generated by

an h-transform of the original generator, with h(x) = Pn(x, y) [12, chapter

7, section 2]. Let Gn,y(x, z) denote the Green’s function for the Brownian

motion killed upon exiting Bn and conditioned to exit at y ∈ ∂Bn. Then

[12, chapter 4, sections 1 and 2]

(3.3) Gn,y(x, z) =
Gn(x, z)Pn(z, y)

Pn(x, y)
.

Using the above formulas along with (1.5), we can prove (1.15). Note that

in the case x = 0, (3.2) simplifies to Gn(0, z) = 2
(d−2)ωd

(|z|2−d − n2−d) =
2

(d−2)ωd

nd−2−|z|d−2

|z|d−2nd−2 . Letting C = 2
(d−2)ωd

, we have

(3.4)

E0(
∫ τn

0
V +(X(s))ds | X(τn) = y) =

∫
Bn

Gn,y(0, z)V +(z)dz

=
∫
Bn

Gn(0, z)
Pn(z, y)
Pn(0, y)

V +(z)dz = C

∫
Bn

nd−2 − |z|d−2

|z|d−2nd−2

n2 − |z|2

|z − y|d
|y|d

n2
V +(z)dz

= C

∫
Bn

nd−2 − |z|d−2

|z|d−2

n2 − |z|2

|z − y|d
V +(z)dz

= C

∫
Bn

2

(nd−2 − |z|d−2)
n2 − |z|2

|z − y|d
V +(z)
|z|d−2

dz

+ C

∫
Bn−Bn

2

nd−2 − |z|d−2

|z|d−2

n2 − |z|2

|z − y|2
V +(z)

|z − y|d−2
dz.
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For |z| < n
2 , it is clear that (nd−2 − |z|d−2) n2−|z|2

|z−y|d is bounded indepen-

dent of y ∈ ∂Bn and n, and by (1.5), we have of course
∫
Bn

V +(z)
|z|d−2 dz ≤∫

Rd
V +(z)
|z|d−2 dz < ∞. Thus, the integral over Bn

2
on the right hand side of

(3.4) is bounded independent of y ∈ ∂Bn and n.

Now consider the integral over Bn − Bn
2
. Using the fact that nd−2 −

|z|d−2 ≤ c1(n − |z|)nd−3, for some c1 > 0, and that |z − y| ≥ n − |z|, it

follows that for n
2 ≤ |z| < n,

(3.5)
nd−2 − |z|d−2

|z|d−2

n2 − |z|2

|z − y|2
≤ c2

(n− |z|)nd−3

nd−2

(n− |z|)n
(n− |z|)2

= c2,

for some c2 > 0. Using this with (1.5) now shows that the integral over

Bn − Bn
2

on the right hand side of (3.4) is also bounded independent of

y ∈ ∂Bn and n. This completes the proof of the theorem. �
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