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Abstract

In this paper we study mutual absolute continuity, finiteness of relative entropy and
the possibility of their equivalence for probability measures on C([0,∞);Rd) induced
by diffusion processes. We also determine explicit events which distinguish between
two mutually singular measures in certain one-dimensional cases.

1. Introduction and Statement of Results
Consider the diffusion operator,

La,b =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj

+
d∑

i=1

bi(x)
∂

∂xi

defined on Rd, where a(x) = {aij(x)}d
i,j=1 is locally Hölder continuous and pos-

itive definite, on Rd and {bi}d
i=1 is locally Hölder continuous on Rd. We will
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assume that the martingale problem for La,b is well-posed—that is, that the dif-

fusion process corresponding to La,b does not explode. The unique solution to the

martingale problem for La,b will be denoted by {P a,b
x }x∈Rd , where x denotes the

value of the corresponding diffusion process at time 0. Of course, P a,b
x is a prob-

ability measure on C([0,∞),Rd), the space of continuous trajectories X = X(t)

from [0,∞) to Rd with the topology of uniform convergence on bounded time in-

tervals, and it is supported on paths satisfying X(0) = x. Denote the restriction

of P a,b
x to C([0, t],Rd) by P a,b

x;t . It follows from the Girsanov formula that P a,b
x;t

and P a,b̂
x;t are mutually absolutely continuous and that

dP a,b̂
x;t

dP a,b
x;t

(X(·)) = exp(

∫ t

0

a−1(b̂− b)(X(s))dX̄(s)− 1

2

∫ t

0

〈b̂− b, a−1(b̂− b)〉(X(s))ds),

where X̄(t) = X(t)− ∫ t

0
b(X(s))ds.

Given two probability measures ν and µ, recall that the relative entropy

H(ν; µ) of ν with respect to µ is defined by H(ν; µ) =
∫

dν
dµ

log dν
dµ

dµ ≤ ∞, if

ν is absolutely continuous with respect to µ, and is defined to be ∞ otherwise.

A straightforward calculation reveals that

H(P a,b̂
x;t ; P

a,b
x;t ) =

1

2
Ea,b̂

x

∫ t

0

〈b̂− b, a−1(b̂− b)〉(X(s))ds.

It follows from this that if one restricts to the class of bounded drifts, then the

relative entropy is always finite. Thus, for bounded drifts, mutual absolute con-

tinuity and finiteness of the relative entropies are equivalent when the measures

are restricted to C([0, t],Rd).

There has been a lot of work concerning questions of absolute continuity for

various types of stochastic processes on finite time intervals; see for example [5]

and [6]. However, in the case of an infinite time horizon, it seems that very little

work has been done. In this paper, we study mutual absolute continuity, finite-

ness of the relative entropy and the possibility of their equivalence for probability

measures P a,b
x and P a,b̂

x on C([0,∞),Rd). If one observes a diffusion process X(t),

0 ≤ t < ∞, and wants to test the hypothesis that the process corresponds to P a,b̂
x

against the hypothesis that it corresponds to P a,b
x , then observing one realization

of the process on the infinite time interval will almost surely allow for the iden-

tification of the process if and only if the two measures are mutually singular.

For certain pairs of mutually singular measures corresponding to one dimensional

diffusions, we will determine explicit events which distinguish between the mea-

sures. The particular interest in entropy in this context comes from Stein’s lemma

applied to the Neyman-Pearson hypothesis testing. Let Ft = σ(X(s), 0 ≤ s ≤ t)
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and let At ∈ Ft be an acceptable region for the hypothesis P a,b̂
x when observing

the process up to time t. Let the probabilities of error be αt = P a,b̂
x (Ac

t) and

βt = P a,b
x (At). For ε ∈ (0, 1

2
), let βε

t ≡ infAt∈Ft,αt<ε βt. Then Stein’s lemma [1]

states that limε→0 limt→∞ 1
t
log βε

t = −H(P a,b̂
x , P a,b

x ).

As usual, µ⊥ν will denote that µ and ν are mutually singular, µ ¿ ν will

denote that µ is absolutely continuous with respect to ν, and µ ∼ ν will denote

that µ and ν are mutually absolutely continuous. We begin with the following

basic criteria.

Theorem 1.

i. P a,b
x ⊥P a,b̂

x if and only if

∫ ∞

0

〈b̂− b, a−1(b̂− b)〉(X(s))ds = ∞ a.s. [P a,b
x ] or a.s. [P a,b̂

x ];

ii. P b̂
x ¿ P b

x if and only if

∫ ∞

0

〈b̂− b, a−1(b̂− b)〉(X(s))ds < ∞ a.s. [P a,b̂
x ];

iii.

H(P a,b̂
x ; P a,b

x ) =
1

2
Ea,b̂

x

∫ ∞

0

〈b̂− b, a−1(b̂− b)〉(X(s))ds. (1.1)

We note three useful corollaries of Theorem 1 whose proofs will be given in

section 2.

Corollary 1. If P a,b̂
x ¿ P a,b

x (P a,b̂
x ⊥P a,b

x ) for some x ∈ Rd, then the same holds

true for all x ∈ Rd.

Corollary 2. If the invariant σ-fields for the diffusion processes corresponding

to La,b and La,b̂ are trivial, then either P a,b̂
x ∼ P a,b

x or P a,b
x ⊥P a,b̂

x .

Corollary 3. Assume that the diffusion process corresponding to either La,b or

La,b̂ is recurrent. Then P a,b
x ⊥P a,b̂

x .

Remark. Although Corollary 3 might seem “obvious”, we note that even in the

positive recurrent case, for dimension d ≥ 2 the result does not follow immediately

from ergodic considerations because there are infinitely many drifts corresponding

to each invariant probablity measure [8].

In light of Corollary 3, in the sequel we will work only with transient diffusion

processes. The transient diffusion process corresponding to La,b possesses a posi-

tive Green’s functions, which will be denoted by Ga,b(x, y). Recall that Ga,b(x, y)
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satisfies Ea,b
x

∫∞
0

f(X(s))ds =
∫
Rd Ga,b(x, y)f(y)dy, for f ≥ 0, and the expression

above is finite for all compactly supported f . Thus, it follows from (1.1) that

H(P a,b̂
x , P a,b

x ) =
1

2

∫

Rd

〈b̂− b, a−1(b̂− b)〉(y)Ga,b̂(x, y)dy. (1.2)

Whereas (1.2) gives a reasonably simple analytic formula for the relative en-

tropy, in general there is no known analytic formula for the absolutely continu-

ity/singularity dichotomy; that is, there is no analytic formula which is equiv-

alent to condition (i) or (ii) of Theorem 1. (The exception to this, is in the

one-dimensional case, as will be seen in Theorem 4 below.) Recalling that on

finite time intervals, mutual absolute continuity and finiteness of the relative

entropies were equivalent for the class of bounded drifts, we ask whether one

can specify a nice class of diffusions for which mutual absolute continuity and

finiteness of the relative entropies are equivalent? For such a class of diffusions,

(1.2) would then give an analytic characterization of mutual absolute continu-

ity. Before continuing, we note an example from a completely different context

where such a phenomenom occurs. Let {Pn}∞n=1 and {Qn}∞n=1 be independent se-

quences of Bernoulli measures on {0, 1}, and let P = Π∞
n=1Pn and Q = Π∞

n=1Qn.

If one restricts to the class of measures for which there exists an ε > 0 such

that ε ≤ Pn(0), Qn(0) ≤ 1 − ε, for all n, then mutual absolute continuity of P

and Q is equivalent to the finiteness of the relative entropies—the condition is∑∞
n=1(Pn(0)−Qn(0))2 < ∞. Without this restriction, the finiteness of the above

sum still characterizes finite relative entropy, but it is possible to have mutual

absolute continuity even if this sum is infinite (see [3, exercises 4.3.7 and 4.3.9]).

Returning to our context, we will see that such an equivalence indeed holds for

the class of Fuchsian diffusions, which we now define.

Definition 1. The operator La,b = 1
2

∑d
i,j=1 aij(x) ∂2

∂xi∂xj
+

∑d
i=1 bi(x) ∂

∂xi
on Rd is

called Fuchsian if there exist constants K1, K2 > 0 such that

i.K1|v|2 ≤
∑d

i,j=1 aij(x)vivj ≤ K2|v|2, for x ∈ Rd;

ii. |b(x)| ≤ K2

1+|x| for x ∈ Rd.

We will prove the following theorem.

Theorem 2. Assume the La,b and La,b̂ are Fuchsian. Then either

i. P a,b
x ⊥P a,b̂

x

or

ii. P a,b
x ∼ P a,b̂

x and supx∈Rd H(P a,b
x ; P a,b̂

x ) < ∞, supx∈Rd H(P a,b̂
x ; P a,b

x ) < ∞.

Remark. The total variation norm dTV for probability measures µ and ν on

(Ω,A) is defined by dTV (µ, ν) = supA∈A |µ(A) − ν(A)|. The relative entropy
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provides an upper bound on the total variation norm through the inequality

dTV (µ, ν) ≤ (2 min(H(µ; ν), H(ν; µ))
1
2 [2, exercise 6.2.17] Thus for example, if

H(P a,b+b1
x , P a,b

x ) < ∞, then it follows from (1.1) and the above inequality that

dTV (P a,b
x , P a,b+εb1

x ) ≤ ε(2H(P a,b+b1
x ; P a,b

x ))
1
2 . In particular, P a,b+εb1

x converges in

total variation norm to P a,b
x as ε → 0, which allows one to conclude that P a,b+εb1

x -

probabilities of events involving the entire infinite time interval of a path con-

verge to the corresponding P a,b
x -probability. Without the finite relative entropy,

one only knows that P a,b+εb1
x converges weakly to P a,b

x , which doesn’t give any

information for events that depend on the entire infinite time interval. From

Theorem 2 it follows that if P a,b
x and P a,b+b1

x are mutually absolutely continuous

measures coming from Fuchsian diffusions, then as ε → 0, P a,b+εb1
x converges in

the total variation norm to P a,b
x .

Using Theorem 1, we can give a very simple criterion for the mutual absolute

continuity or the mutual singularity of Wiener measure and the measure in-

duced by another Fuchsian diffusion. The Green’s function for Brownian motion

(L = 1
2
∆) is given by G(x, y) = cd|y−x|2−d, for d ≥ 3, where cd is an appropriate

positive constant. Thus, the following corollary is an immediate consequence of

Theorem 1, Corollary 1 and (1.2).

Corollary 4. Let Wx (= P I,0
x ) denote d-dimensional Wiener measure on paths

starting from x ∈ Rd, d ≥ 3, and let b satisfy |b(x)| ≤ K
1+|x| , for some K > 0.

i. If
∫
Rd

|b(y)|
|y|d−2 dy < ∞, then P I,b

x ∼ Wx and

supx∈Rd H(Wx; P
I,b
x ), supx∈Rd H(P I,b

x ;Wx) < ∞;

ii. If
∫
Rd

|b(y)|
|y|d−2 dy = ∞, then P I,b

x ⊥ Wx.

We now show that the Fuchsian condition in Theorem 2 and Corollary 4 is

sharp by showing that for any prescribed growth rate that is larger than Fuchsian,

one can find a drift b growing no faster than this prescribed rate and for which

the above dichotomy does not hold for Wx and P I,b
x .

Theorem 3. Let ρ be a positive, nondecreasing function on [0,∞) satisfying

limt→∞ ρ(t) = ∞. Then there exists a drift vector b such that

i. supx∈Rd
|x||b(x)|

ρ(x)
< ∞;

ii. Wx ¿ P I,b
x ;

and

iii. H(Wx; P
I,b
x ) = ∞.

In the one-dimensional case, we can give an explict analytic criterion for abso-

lute continuity. We will assume without loss of generality that limt→∞ X(t) = ∞, a.s. [P a,b
x ].
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Indeed, the measure in the general case is just a convex combination of the mea-

sures obtained by conditioning on {limt→∞ X(t) = ∞} and on {limt→∞ X(t) = −∞}.
Each of these conditioned diffusions corresponds to an h-transformed operator of

the same form as the original one and thus belongs to the class of diffusions under

study. Under the above assumption, the invariant σ-field is always trivial, so by

Corollary 2 it follows that the mutual absolute continuity/singularity dichotomy

is in effect.

Theorem 4. Let d = 1 and assume that {limt→∞ X(t) = ∞} a.s. [P a,b
x ] and a.s. [P a,b̂

x ].

i. If
∫ ∞

0

dz exp(−2

∫ z

0

b

a
(u)du)

∫ z

0

dy
(b̂− b)2

a2
(y) exp(2

∫ y

0

b

a
(u)du) < ∞,

then P a,b
x ∼ P a,b̂

x ;

ii. If
∫ ∞

0

dz exp(−2

∫ z

0

b

a
(u)du)

∫ z

0

dy
(b̂− b)2

a2
(y) exp(2

∫ y

0

b

a
(u)du) = ∞,

then P a,b
x ⊥P a,b̂

x .

Furthermore,

H(P a,b
x ; P a,b̂

x ) =

∫ ∞

x

dz exp(−2

∫ z

0

b

a
(u)du)

∫ z

−∞
dy

(b̂− b)2

a2
(y) exp(2

∫ y

0

b

a
(u)du).

(1.3)

Remark 1. It can be shown that the Green’s function for La,b is given by

Ga,b(x, y) = 2
a(y)

∫∞
x∧y

dz exp(−2
∫ z

y
b
a
(u)du). Changing the order of integration

in (1.3) shows that that (1.3) agrees with (1.2). Note also that since the condi-

tions P a,b
x ∼ P a,b̂

x and P a,b
x ⊥P a,b̂

x are symetric with respect to the two measures,

it follows that the convergence or divergence of the integral in (i) and (ii) is not

affected by interchanging the roles of b and b̂.

Remark 2. Since the lower limit in the inside integral is 0 in parts (i) and (ii)

of Theorem 4 while it is −∞ in (1.3), it is possible to have P a,b
x ∼ P a,b̂

x but

H(P a,b̂
x ; P a,b

x ) = ∞; see example 2 below.

Here are two examples to illustrate Theorem 4.

Example 1. Let b and b̂ be continuous functions vanishing identically on (−∞, 0]

and satisfying for x ≥ 2:

b(x) =
k − 1

2xl
, where l ∈ [−1, 1) and k > 1, or l = 1 and k > 2;

b̂(x) = b(x) +
c

xη logβ x
, where c, β ∈ R and η > −1.
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Then

P 1,b
x ∼ P 1,b̂

x if and only if η >
1 + l

2
or η =

1 + l

2
and β >

1

2
.

Otherwise P 1,b
x ⊥P 1,b̂

x .

Proof. The dichotomy follows from Theorem 4. It suffices to prove the claim for

η = 1+l
2

as the other cases follow easily from Theorem 1 by comparison. We claim

that for some C > 0, the integrand in parts (i) and (ii) of Theorem 4 satisfies

exp(−2

∫ z

0

b

a
(u)du)

∫ z

0

dy
(b̂− b)2

a2
(y) exp(2

∫ y

0

b

a
(u)du) ∼ C

z log2β z
, as z →∞.

(1.4)

From this it follows that (i) holds if β > 1
2

and (ii) holds if β ≤ 1
2
. To show

(1.4), one writes z log2β z exp(−2
∫ z

0
b
a
(u)du)

∫ z

0
dy (b̂−b)2

a2 (y) exp(2
∫ y

0
b
a
(u)du) in

the form∫ z
0 dy

(b̂−b)2

a2 (y) exp(2
∫ y
0

b
a
(u)du)

z−1 log−2β z exp(−2
∫ z
0

b
a
(u)du)

and applies L’Hôpital’s rule. The calculation is left to

the reader.

Example 2.

(a) Let b ≡ 1 and let b̂ be a continuous function satisfying b(x) = 1, for x ≥ 1,

and b(x) = 0, for x ≤ 0. Since the condition (b̂ − b)(X(t)) = 0, for suffi-

ciently large t, holds a.s. [P 1,b
x ] and a.s. [P 1,b̂

x ], it follows from Theorem 1

that P 1,b
x ∼ P 1,b̂

x . Using (1.3) one can shows easily that H(P 1,b
x ; P 1,b̂

x ) < ∞,

but that H(P 1,b̂
x ; P 1,b

x ) = ∞. Alternatively, note from (1.1) that the equal-

ity H(P 1,b̂
x ; P 1,b

x ) = ∞ follows from the fact that given two distinct points

x, y ∈ R, the expected hitting time of y by a Brownian motion starting from

x is infinite.

(b) Now let

b(x) =





cos x, x < 0

1, x ≥ 0

and let b̂ be as in part (a). By reasoning similar to part (a), one can show

that P 1,b
x ∼ P 1,̂b

x and that H(P 1,b
x ; P 1,̂b

x ) = H(P 1,̂b
x ; P 1,b

x ) = ∞.

In the case that P a,b
x ⊥P a,b̂

x , how does one find an event that distinguishes

between the two measures in the sense that P a,b
x (A) = 1 and P a,b̂

x (A) = 0? Here

is a construction that leads to a distinguishing event in the general d-dimensional

case. For the sake of simplicity, assume that a, b and b̂ are bounded. The Radon-

Nikodym derivative
dP a,b̂

x;t

dP a,b
x;t

is a nonnegative P a,b
x -martingale with expectation equal

7



to 1. Thus, by the martingale convergence theorem and Fatou’s lemma,
dP a,b̂

x;t

dP a,b
x;t

converges a.s. [P a,b
x ]. Let A = {limt→∞

dP a,b̂
x;t

dP a,b
x;t

= ∞}. Of course, P a,b
x (A) = 0;

however from the Lebesgue decomposition theorem one finds that P a,b̂
x (A) = 1 if

P a,b̂
x ⊥ P a,b

x ([3, Theorem 4.3.3]). Although the event A distinguishes between the

two measures, it is not very illuminating—the event doesn’t allow for any intuitive

understanding about the supports of the two measures because it involves the long

time behavior of a term with a stochastic integral which is difficult to analyze.

Returning to the one dimensional case with the assumption that limt→∞ X(t) = ∞
a.s., we will find “illuminating” distinguishing sets for three increasingly-difficult-

to-distinguish cases. We begin with the following simple case.

Proposition 1. Let a > 0 be bounded and continuous, and for γ > 0 and

l ∈ (−1, 1), let bl,γ be continuous, vanish identically on (−∞, 0] and satisfy

bl,γ(x) =





γ
xl , l 6= 0

γ, l = 0
for x > 1. Then

lim
t→∞

X1+l(t)

t
= (1 + l)γ, a.s. [P

a,bl,γ
x ].

Thus, letting Al,γ = {limt→∞
X1+l(t)

t
= (1 + l)γ}, it follows that

P
a,bl,γ
x (Al1,γ1) =





1, if l = l1 and γ = γ1;

0, otherwise.

Proposition 1 does not cover the case l = 1, which is much more delicate.

Thus, consider now the case a = 1 and b(x) = k−1
2x

, for x > 0, with k > 2. As

is well-known, the measure P
1, k−1

2x
x , with x > 0, corresponds to a transient Bessel

process on (0,∞) which never reaches 0. In particular, if k is integral, then the

process is the absolute value of a k-dimensional Brownian motion. The law of the

iterated logarithm states that lim supt→∞
|X(t)|

(2t log log t)
1
2

= 1 a.s. [Wx] (= [P I,0
x ]).

This result continues to hold when k > 2 is nonintegral. Since the growth rate is

the same for all values of k, a simple result in the spirit of Proposition 2 is not

possible for Bessel processes.

Proposition 2. For ρ > 0, let Aρ
n be the event that after hitting ((n + 1)!)ρ for

the first time, a path downcrosses the interval [(n!)ρ, ((n + 1)!)ρ] before hitting

((n + 2)!)ρ. Then for k > 2,

P
1, k−1

2x
x (Aρ

n i.o.) =





0, if ρ > 1
k−2

1, if ρ ≤ 1
k−2

.
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Remark. Proposition 2 shows that one can distinguish between different Bessel

processes by keeping track of the amount of backtracking they do. A different

result related to the problem of finding distinguishing events for Bessel processes

can be found in [9, exercise X-3.20]: If X(t) is a d-dimensional Brownian motion,

then limt→∞ 1
log t

∫ t

1
|X(s)|−2ds = 1

d−2
, a.s..

The above two propositions allowed us to find distinguishing sets for two

mutually singular measures in certain cases when the two drifts b, b̂ are such that

b − b̂ and b are on the same order as x → ∞. If the order of b − b̂ is smaller

than that of b, the task of distinguishing between the two measures becomes

more delicate. We now consider such a case—namely, Example 1 above when

l = η = 1, c > 0 and β ∈ (0, 1
2
]. This last requirement guarantees that the

processes are mutually singular. We have

b and b̂ are continuous, vanish identically on x ≤ 0, and satisfy

b(x) =
k − 1

2x
, for x ≥ 2, where k ≥ 1; (1.5)

b̂(x) =
k − 1

2x
+

c

x logb x
, for x ≥ 2, where k > 1, c > 1 and β ∈ (0,

1

2
].

One can check that the method of Proposition 2 fails here: for each value of

ρ, either both processes almost surely perform infinitely many downcrossings or

both processes almost surely perform only finitely many downcrossings.

Instead of just checking whether or not an infinite number of downcrossings

are performed, we will count the number of downcrossings. Let N
(ρ)
n denote

the number of downcrossings a path makes of the interval [(n!)ρ, ((n + 1)!)ρ]

after hitting ((n + 1)!)ρ for the first time and before hitting ((n + 2)!)ρ. Let

n
(ρ)
0 (x) = min{n ≥ 1 : ((n + 1)!)ρ ≥ x}. It is easy to show that under P 1,b

x and

under P 1,b̂
x , the random variables {N (ρ)

n }∞
n=n

(ρ)
0 (x)

are independent and distributed

according to geometric distributions: P 1,b
x (N

(ρ)
n = j) = (p

(ρ)
n (b))j(1− p

(ρ)
n (b)) and

P 1,b̂
x (N

(ρ)
n = j) = (p

(ρ)
n (b̂))j(1− p

(ρ)
n (b̂)), for j = 0, 1, ..., where

p(ρ)
n (B) =

∫ ((n+2)!)ρ

((n+1)!)ρ exp(−2
∫ y

0
B(s)ds)dy

∫ ((n+2)!)ρ

(n!)ρ exp(−2
∫ y

0
B(s)ds)dy

. (1.6)

(A proof of these facts will be given in the proof of Proposition 3.)

Proposition 3. Consider the measures P 1,b
x and P 1,b̂

x , where b and b̂ are given

by (1.5), with

β ∈ (0,
1

3
].
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For ρ > 0, let N
(ρ)
n denote the number of downcrossings of the interval [(n!)ρ, ((n+

1)!)ρ] made by a path after it hits ((n + 1)!)ρ for the first time and before it hits

((n + 2)!)ρ, and let p
(ρ)
n (b) and p

(ρ)
n (b̂) be as in (1.6). Then p

(ρ)
n (b̂) < p

(ρ)
n (b), so

0 < p
(ρ)
n (b̂)

p
(ρ)
n (b)

< 1. Fix

ρ =
1− 2β

k − 2

and let n0(x) = min{n ≥ 1 : ((n + 1)!)
1−2β
k−2 ≥ x}. Then

∞∏

n=n0(x)

(
1− p

(ρ)
n (b̂)

1− p
(ρ)
n (b)

)(
p

(ρ)
n (b̂)

p
(ρ)
n (b)

)N
(ρ)
n

=





0, a.s. [P 1,b
x ]

∞ a.s. [P 1,b̂
x ].

(1.7)

Remark 1. Unfortunately, this method works only for β ∈ (0, 1
3
] and not for the

entire interval (0, 1
2
] where P 1.b

x and P 1,b̂
x are mutually singular.

Remark 2. The intuition behind (1.7) is as follows. Since p
(ρ)
n (b̂)

p
(ρ)
n (b)

∈ (0, 1), it

follows that the smaller the {N (ρ)
n } are, the larger the expression on the left hand

side of (1.7) is. Note that since b̂ is larger than b, the {N (ρ)
n } tend to be larger

under P 1,b̂
x than under P 1,b

x .

We prove Theorem 1 and Corollaries 1-3 in section 2, Theorems 2 and 3 in

section 3, Theorem 4 in section 4, and Propositions 1-3 in section 5.

2. Proofs of Theorem 1 and Corollaries 1-3
We will need two lemmas for the proof of Theorem 1.

Lemma 1. Let (M,Y) be a measurable space and {Yn}n≥0 a filtration, satisfying

σ(
⋃

n≥0 Yn) = Y. Let P and Q be probability measures on (M,Y) such that

Q|Yn ¿ P |Yn for all n ∈ N. Then

1. Q ¿ P iff lim supn→∞
dQ|Yn

dP |Yn
< ∞, a.s. [Q];

2. Q ⊥ P iff lim supn→∞
dQ|Yn

dP |Yn
= ∞, a.s. [Q] iff limn→∞

dQ|Yn

dP |Yn
= 0, a.s. [P ];

3. If Q ¿ P ,

H(Q; P ) = lim
n→∞

H(Q|Yn ; P |Yn).

Proof. The Lebesgue decomposition of Q with respect to P is given by Q = Qc +

Q⊥ , where Qc ¿ P and Q⊥ ⊥ P . This decomposition is unique. Since

Q|Yn ¿ P |Yn for all n ∈ N, then (see, for example, [3, Theorem 4.3.3])

Qc(A) =

∫

A

lim
n→∞

dQ|Yn

dP |Yn

dP ; (2.1)

Q⊥(A) = Q({lim sup
n→∞

dQ|Yn

dP |Yn

= ∞}
⋂

A), A ∈ Y . (2.2)
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Therefore 1 and 2 follow immediately from (2.1) and (2.2).

For the last assertion, note that it is easy to see that

Zn = EP [
dQ

dP
|Yn] =

dQ|Yn

dP |Yn

, a.s. [P ].

Clearly, {Zn} is a P -uniformly integrable martingale. Since {Yn} generate Y ,

limn→∞ Zn = dQ
dP

, a.s. [P ]. The function x log x is bounded from below. There-

fore, by Fatou’s lemma

lim inf
t→∞

H(Q|Yn ; P |Yn) = lim inf
n→∞

EP Zn log Zn ≥ EP dQ

dP
log

dQ

dP
= H(Q; P ).

However, Jensen’s inequality for conditional expectation implies

EP [
dQ

dP
log

dQ

dP
|Yn] ≥ Zn log Zn, a.s. [P |Yn ],

therefore H(Q; P ) ≥ H(Q|Yn ; P |Yn), completing the proof.

Lemma 2 (Exercise IV-3.26 [9]). Let M(t) be a continuous local-martingale

with respect to (Ω,Ft). 〈M〉(t) is the quadratic variation process associated with

M(t), and 〈M〉(∞) = limt→∞〈M〉(t). If

E(M)(t) = exp

(
M(t)− 1

2
〈M〉(t)

)
,

then

{ lim
t→∞

E(M)(t) = 0} = {〈M〉(∞) = ∞}, a.s.

Proof. Since E(M)(t) is a non-negative continuous local martingale, it follows

immediately from Fatou’s lemma for conditional expectation that in fact E(M)(t)

is a supermartingale. Hence it converges almost surely. As

E(M) = E(
M

2
)2 exp(−1

4
〈M〉),

{〈M〉(∞) = ∞} ⊆ { lim
t→∞

E(M)(t) = 0}, a.s.

The reverse inclusion is achieved similarly from the identity

E(−M) = E(M)−1 exp(〈M〉).

Proof of Theorem 1. Fix x ∈ Rd. Let Bn = {y ∈ Rd : |y| < n} and let

τn = inf{t ≥ 0 : X(t) 6∈ Bn}. We will denote by P a,b
x;τn

(P a,b̂
x;τn

) the restriction

of P a,b
x (P a,b̂

x ) to Fτn . Let

M(t) =

t∫

0

〈a−1(̂b− b)(X(s)), dX(s)〉 −
∫ t

0

〈a−1(̂b− b), b〉(X(s))ds. (2.3)
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From [7, Theorem 1.5.1], for fixed n, M(τn ∧ t) is a P a,b
x -martingale, and

〈M〉(t) =

t∫

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

is the associated quadratic variation process.

By the Girsanov transformation, P a,b
x;τn∧n ∼ P a,b̂

x;τn∧n, and

dP a,b̂
x;τn∧n

dP a,b
x;τn∧n

=

(
dP a,b

x;τn∧n

dP a,b̂
x;τn∧n

)−1

=
1

E(−M)(τn ∧ n)
, a.s. [P a,b̂

x ],

which implies

{lim sup
n→∞

dP a,b̂
x;τn∧n

dP a,b
x;τn∧n

= ∞} = { lim
n→∞

E(−M)(τn ∧ n) = 0}, a.s. [P a,b̂
x ].

According to Lemma 2, this condition is equivalent to the statement

{lim sup
n→∞

dP a,b̂
x;τn∧n

dP a,b
x;τn∧n

= ∞} = {〈M〉(∞) = ∞}, a.s. [P a,b̂
x ].

Using this along with Lemma 1 proves parts (i) and (ii) of the theorem.

For part (iii), similarly to (2.3) we let

M̂(t) =

∫ t

0

〈a−1(̂b− b)(X(s)), dX(s)〉 −
∫ t

0

〈a−1(̂b− b), b̂〉(X(s))ds.

Then M̂(τn ∧ n) is a P a,b̂
x -martingale, and it follows that

H(P a,b̂
x;τn∧n; P a,b

x;τn∧n) = Ea,b̂
x log

dP a,b̂
x;τn∧n

dP a,b
x;τn∧n

= Ea,b̂
x

(
M̂(τn ∧ n) +

1

2

∫ τn∧n

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)

=
1

2
Ea,b̂

x

∫ τn∧n

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds.

Letting n →∞, it follows from the monotone convergence theorem and Lemma

1 that (1.1) holds.

Proof of Corollary 1. Let x, y ∈ Rd, let D ⊂ Rd be a bounded domain containing

x andy and with smooth a boundary, a let τD = inf{t ≥ 0 : X(t) 6∈ D}. As is well
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know, both Px(X(τD) ∈ ·) and Py(X(τD) ∈ ·) are mutually absolutely continuous

with respect to Lebesgue measure on ∂D. Thus, since

∫ τD

0

〈b̂− b, a−1(b̂− b)〉(X(s))ds < ∞ a.s. [P a,b
x ] and a.s. [P a,b̂

x ],

it follows from the strong Markov property and Theorem 1-i that

P a,b
x ⊥P a,b̂

x ⇔ P a,b
y ⊥P a,b̂

y ⇔
∫ τD

0

〈b̂−b, a−1(b̂−b)〉(X(s))ds = ∞ a.s. [P a,b
z ] or a.s. [P a,b̂

x ],

for almost all z ∈ ∂D. Similarly, it follows that

P a,b̂
x ¿ P a,b

x ⇔ P a,b̂
y ¿ P a,b

y ⇔
∫ τD

0

〈b̂− b, a−1(b̂− b)〉(X(s))ds < ∞ a.s. [P a,b̂
z ],

for almost all z ∈ ∂D.

Proof of Corollary 2. The event

∫ ∞

0

〈b̂− b, a−1(b̂− b)〉(X(s))ds = ∞

is invariant. Thus, if the invariant σ-field is trivial for both P a,b
x and P a,b̂

x , then

then either the above event or its complement occurs a.s. [P a,b
x ] and a.s. [P a,b̂

x ].

The dichotomy in the corollary now follows from Theorem 1-i and ii.

Proof of Corollary 3. Let x0 ∈ Rd and r > 0 be such that

〈̂b− b, a−1(̂b− b)〉 > ε > 0 on Br(x0). Define stopping times as follows:

σ1 = inf{t ≥ 0 : X(t) ∈ Br/2(x0)}
τn = inf{t ≥ 0 : X(σn + t) 6∈ Br(x0)}
σn = σ1 ◦Θτn ,

where Θtω(·) = ω(t + ·) is the standard shift operator. The Hölder continuity

conditions imposed on the coefficients a and b imply the existence of a unique

solution to 



(L−ε)u = 0 in Br(x0),

u = 1 on ∂Br(x0).

By the Feynman-Kac formula and the bounded convergence theorem,

u(x) = Ea,b
x exp(−ετ1)

> Ea.b
x exp

(
−

∫ τ1

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)
, x ∈ Br/2(x0).
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By the strong maximum principle, [7, Theorem 3.2.6],

sup
x∈ ∂Br/2(x0)

u(x) = 1− δ, for some δ ∈ (0, 1).

Let

v(x) = Ea,b
x exp

(
−

∫ ∞

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)
, x ∈ D.

We will show that v = 0. From this it will follow that∫∞
0
〈̂b− b, a−1(̂b− b)〉(X(s))ds = ∞ a.s. [P a,b

x ], and then by Theorem 1-i, we have

P a,b
x ⊥ P a,b̂

x .

For N ∈ N, successive applications of the strong Markov property show that

v(x) ≤ Ea,b
x

N∏
n=1

exp

(
−

∫ τn

σn

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)

= Ea,b
x

N∏
n=1

Ea,b
X(σn) exp

(
−

∫ τ1

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)

≤ (1− δ)N →
N→∞

0.

3. Proofs of Theorems 2 and 3

Proof of Theorem 2. By [7, Theorem 8.3.1], the cone

{u ∈ C2(Rd) : La,b u = 0 in Rd and u > 0}

is one dimensional. It follows from [7, Theorems 8.3.1 and 9.1.2], that the invari-

ant σ-field, I, is trivial with respect to P a,b
x and P a,̂b

x . The event

{
∫ ∞

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds < ∞} ∈ I.

Thus, in light of Theorem 1, either P a,b
x ∼ P a,̂b

x or P a,b
x ⊥ P a,̂b

x . To prove the the-

orem, we will assume that P a,b
x ∼ P a,̂b

x and show that supx∈Rd H(P a,b
x ; P a,̂b

x ) < ∞.

The same type of argument also gives supx∈Rd H(P a,̂b
x ; P a,b

x ) < ∞.

Since P a,b
x ∼ P a,̂b

x , by Theorem 1 we have

∫ ∞

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds < ∞ a.s. [P a,b
x ], x ∈ Rd. (3.1)
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Let Bn = {y ∈ Rd : |y| < n} and let τn = inf{t ≥ 0 : X(t) 6∈ Bn}. The

locally Hölder continuity of the coefficients ensures that there exits a sequence of

functions {un}n∈N ⊂ C2,γ(Bn) which satisfy




(
La,b−〈̂b− b, a−1(̂b− b)〉

)
un = 0 in Bn

un = 1 on ∂Bn

In particular, the Feynman-Kac formula shows that

un(x) = Ea,b
x un(X(t ∧ τn)) exp

(
−

∫ t∧τn

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)
,

and from bounded convergence we then obtain

un(x) = Ea,b
x exp

(
−

∫ τn

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)
.

Consequently, let

u(x) = lim
n→∞

un(x) = Ea,b
x exp

(
−

∫ ∞

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)
. (3.2)

Fix m ∈ N. The global Schauder estimates ([4, Theorem 6.6]) yield

‖un‖2,γ;Bm ≤ c(‖un‖0;Bm + 1) ≤ 2c, n ≥ m

where c = c(d, γ,K1, K3(Bm)) > 0, K1 is as in Definition 1 and

K3(Bm) =
d∑

i,j=1

‖aij‖0,γ;Bm +
d∑

i=1

‖bi‖0,γ;Bm + ‖〈̂b− b, a−1(̂b− b)〉‖0,γ;Bm < ∞.

Hence, {un}n≥m and the sequences of the partial derivatives up to the second

order are bounded in the ‖ · ‖0;Bm-norm and equicontinuous on Bm. By the

Arzela-Ascoli theorem, we can extract a subsequence, converging to u in the

‖ · ‖2;Bm-norm. Hence, u ∈ C2(Rd), and (L− 〈̂b− b, a−1(̂b− b)〉)u = 0. By (3.1),

0 < u ≤ 1. From the Feynman-Kac formula, u(X(t)) exp
(
− ∫ t

0
〈̂b− b, a−1(̂b− b)〉(X(s))ds

)

is a bounded P a,b
x -martingale. Therefore, in light of (3.1) and the martingale con-

vergence theorem, limt→∞ u(X(t)) exists, a.s. [P a,b
x ]. Furthermore,

u(x) = Ea,b
x u(X(t)) exp

(
−

∫ t

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)
. (3.3)

From the bounded convergence theorem, (3.2) and (3.3) we see that

u(x) = Ea,b
x exp

(
−

∫ ∞

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)
=

Ea,b
x lim

t→∞
u(X(t)) exp

(
−

∫ ∞

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds

)
.
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With (3.1) again, we conclude that

lim
t→∞

u(X(t)) = 1, a.s. [P a,b
x ]. (3.4)

Since u is bounded, u(X(t))−∫ t

0
(〈̂b−b, a−1(̂b−b)〉u)(X(s))ds is a P a,b

x -martingale.

Therefore,

u(x) = 1− Ea,b
x

∫ ∞

0

(〈̂b− b, a−1(̂b− b)〉u)(X(s))ds. (3.5)

We intend to show now that u is bounded from below by a positive constant.

For this, we apply the technique used in [7, Theorem 8.3.1]. For R > 0, let

LR
a,b =

1

2

d∑
i,j=1

aij(Rx)
∂

∂xi∂xj

+
d∑

i=1

Rbi(Rx)
∂

∂xi

−R2(〈̂b− b, a−1(̂b− b)〉(Rx)).

Let uR(x) = u(Rx) and D′ = {x ∈ Rd : 1 < |x| < 2}. It is easy to see that




LR
a,b uR = 0 in Rd, and

uR > 0 in Rd.

Since La,b is Fuchsian, the coefficients of LR
a,b are uniformly bounded in R and

the diffusion matrix of LR
a,b is uniformly elliptic in Rd, uniformly in R. Thus,

by Harnack’s inequality there exists c = c(K2/K1, d, D′) > 0, independent of R,

such that for all R > 0, x, y ∈ D′, uR(x) ≥ cuR(y). This is equivalent to

u(x) ≥ cu(y), R < |x|, |y| < 2R (3.6)

Since u is positive and continuous in Rd, in order to prove that infx∈Rd u(x) > 0,

we have to show that lim inf |x|→∞ u(x) > 0. By (3.4), we can fix ω0 ∈ Ω such

that

lim
t→∞

u(X(t, ω0)) = 1. (3.7)

Let {yn} ⊂ Rd satisfy |yn| ↑ ∞. The continuity of the paths implies the existence

of a sequence {tn} ⊂ [0,∞) such that |X(tn, ω0)| = yn. By (3.7), there exists

N ∈ N, such that for n ≥ N , u(X(tn)) > 1/2. By (3.6), u(yn) ≥ c/2, so

infn≥N u(yn) ≥ c/2. Since {yn} is arbitrary, lim inf |x|→∞ u(x) > 0. Letting

ε = infx∈Rd u(x) > 0, we obtain from (3.5)

Ea,b
x

∫ ∞

0

〈̂b− b, a−1(̂b− b)〉(X(s))ds ≤ 1

ε
Ea,b

x

∫ ∞

0

〈̂b− b, a−1(̂b− b)〉u(X(s))ds

=
1− u(x)

ε

Therefore, by Theorem 1, supx∈Rd H(P a,b
x ; P a,̂b

x ) < 1
ε
.
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Proof of Theorem 3. We will assume, without loss of generality that x = 0. We

first construct the candidate for the drift coefficient b̂. Let e1 = (1, 0, . . . , 0) ∈ Rd.

Set x1 = e1, and define inductively





Rn = 3−n|xn|
xn+1 ∈ {te1 : t > 4|xn|, ρ(t/2) > 2d(n+1)}, n ∈ N.

(3.8)

The balls {BRn(xn)}n∈N are disjoint, because

|xn+1| − |xn| > 3

4
|xn+1| = 3n+2Rn+1

4
>

9

8
(Rn+1 + Rn).

Define

b̂(x) =





ρ(|xn|−Rn)x
|x|2 x ∈ BRn/2(xn) for some n ∈ N,

0 x 6∈ ⋃
n∈NBRn(xn).

Whenever x ∈ BRn/2(xn), by definition we have |x||̂b(x)| ≤ ρ(|xn| −Rn); thus

sup
x∈Rd

|x||̂b(x)|
ρ(|x|) ≤ 1. (3.9)

The monotonicity of ρ allows the extension of b̂ to a smooth function on Rd,

supported on
⋃

n∈NBRn(xn), while (3.9) remains true.

We now prove that W0 ¿ P I,̂b
0 and H(W0; P

I,̂b
0 ) = ∞. Below, C is a positive

constant which may vary from line to line. Recall that G(x, y) = C|y − x|2−d.

Since

un(x) =

(
Rn

|x− xn|
)d−2

satisfies





1
2
4un = 0 in Rd\{xn},

un > 0 in Rd\{xn},
un = 1 on ∂BRn(xn) and lim|x|→∞ un(x) = 0

we have

W0({X(·) hits BRn(xn)}) = un(0) =

(
Rn

|xn|
)d−2

.

Thus ∞∑
n=1

W0({X(·) hits BRn(xn)}) =
∞∑

n=1

3−(d−2)n < ∞,
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which, according to the Borel-Cantelli lemma, implies that the process [W0]-a.s.

hits only finitely many balls. Therefore, since b̂ is locally bounded and the process

is transient, we have

∫ ∞

0

|̂b|2(X(s))ds < ∞, a.s. [W0].

Hence by Theorem 1 W0 ¿ P I,̂b
0 .

In order to estimate the relative entropy we shall use the representation

(1.2). Recalling the definition of b̂, and recalling that the Green’s function for

d-dimensional Brownian motion is given by C|y − x|2−d, we have

H(W0; P
I,̂b
0 ) = C

∫

Rd

|̂b(y)|2|y|2−ddy

≥ C

∞∑
n=1

|̂b|2(xn + Rn/2)

∫

BRn/2(xn)

|y|2−ddy ≡ (∗)

Let ωd denote the volume of the unit ball in Rd. Since |y|2−d is harmonic in

BRn(xn), the mean value property implies

(∗) = Cωd

∞∑
n=1

|̂b|2(|xn|+ Rn/2)|xn|2−dRd
n

= Cωd

∞∑
n=1

ρ2(|xn| −Rn)

( |xn|
|xn|+ Rn/2

)2 (
Rn

|xn|
)d

≥ Cωd

∞∑
n=1

ρ2(|xn|/2)

(
Rn

xn

)d

≥ Cωd

∞∑
n=1

(4/3)dn = ∞,

where the last two lines follow from (3.8).

4. Proof of Theorem 4
We begin with some preliminaries. For x1 < x2, let

σx1,x2 = inf {t ≥ 0 : X(t) = x1 or X(t) = x2} ,

and

σx = inf{t ≥ 0 : X(t) = x}.
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Recall ([7, Theorem 5.1.1]) that the assumption limt→∞ X(t) = ∞, a.s. [P a,b
x ],

has an analytic equivalent. Namely, limt→∞ X(t) = ∞, a.s. [P a,b
x ] if and only if





∫ 0

−∞ exp
(−2

∫ y

0
b/a(s)ds

)
dy = ∞, and

∫∞
0

exp
(−2

∫ y

0
b/a(s)ds

)
dy < ∞.

(4.1)

Let

vz1,z2(x) =

∫ x

z1
exp

(−2
∫ y

0
b/a(s)ds

)
dy∫ z2

z1
exp

(−2
∫ y

0
b/a(s)ds

)
dy

. (4.2)

Then 



La,b vz1,z2 = 0 in (z1, z2),

vz1,z2 > 0 in (z1, z2),

vz1,z2(z1) = 0, vz1,z2(z2) = 1.

As a result,

P a,b
x (σz1 > σz2) = Ea,b

x vz1,z2(X(σz1,z2)) = vz1,z2(x). (4.3)

Since we assume no explosion, limz2→∞ σz2 = ∞, a.s. [P a,b
x ], which implies that

P a,b
x ({σz1 = ∞}) = lim

z2→∞
vz1,z2(x) > 0, (4.4)

by (4.1). Similarly, limz1→−∞ P a,b
x ({σz1 = ∞}) = 1, so with ε > 0 given,

∃r ∈ (−∞, x), such that P a,b
x ({σr = ∞}) > 1− ε. (4.5)

Proof of Theorem 4. We begin by showing that if

∫ ∞

0

exp(−2

∫ y

0

b/a(s)ds)




y∫

0

(̂b− b)2/a2(z) exp(2

∫ z

0

b/a(s)ds)dz


 dy = ∞,

(4.6)

then P a,̂b
x ⊥ P a,b

x .

Fix y0 ∈ R and let

u(x) = 2

x∫

0

exp(−2

∫ y

0

b/a(s)ds)




y∫

0

(̂b− b)2/a2(z) exp(2

∫ z

0

b/a(s)ds)dz


 dy.

(4.7)

Note that u satisfies La,b u = (̂b−b)2

a
in R. Fix x ∈ R, let ε > 0 be arbitrarily

chosen and pick r satisfying (4.5). By choosing 0 properly, we may assume that

inf
z∈[r,∞)

u(z) > 0. (4.8)
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Now, 



(
La,b− (̂b−b)2

au

)
u = 0 in (z,∞);

u > 0 in (z,∞).

Let w ∈ (x,∞) be arbitrary. From the Feynman-Kac formula and the bounded

convergence theorem we obtain

u(x) = Ea,b
x u(X(σr,w)) exp

(
−

∫ σr,w

0

(̂b− b)2

au
(X(s))ds

)

= u(r)Ea,b
x 1{σr<σw} exp

(
−

∫ σr

0

(̂b− b)2

au
(X(s))ds

)

+u(w)Ea,b
x 1{σr>σw} exp

(
−

∫ σw

0

(̂b− b)2

au
(X(s))ds

)
.

Dividing by u(w) gives

u(x)

u(w)
=

u(r)

u(w)
Ea,b

x 1{σr<σw} exp

(
−

∫ σr

0

(̂b− b)2

au
(X(s))ds

)

+ Ea,b
x 1{σr>σw} exp

(
−

∫ σw

0

(̂b− b)2

au
(X(s))ds

)
. (4.9)

By (4.6) and (4.1) we have limw→∞ u(w) = ∞. Thus, letting w → ∞ in (4.9)

gives

0 = Ea,b
x 1{σr=∞} exp

(
−

∫ ∞

0

(̂b− b)2

au
(X(s))ds

)
.

And by (4.8), in fact

0 = Ea,b
x 1{σr=∞} exp

(
−

∫ ∞

0

(̂b− b)2

a
(X(s))ds

)
.

The choice of r then implies that

P a,b
x ({

∫ ∞

0

(̂b− b)2/a(X(s))ds = ∞}) > 1− ε.

As ε is arbitrary,
∫∞
0

(̂b− b)2/a(X(s))ds = ∞, a.s. [P a,b
x ], and P a,̂b

x ⊥ P a,b
x follows

from Theorem 1-ii.

We now show that if
∫ ∞

0

exp(−2

∫ y

0

b/a(s)ds)

(∫ y

0

(̂b− b)2/a2(z) exp(2

∫ z

0

b/a(s)ds)dz

)
dy < ∞,

(4.10)
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then P a,b
x ¿ P a,̂b

x and P a,̂b
x ¿ P a,b

x . Let u(x) be as in (4.7) with y0 = 0. It then

follows from (4.10) that

M ≡ lim
x→∞

u(x) < ∞.

Fix any x ∈ R and pick r satisfying (4.5). Then

u(x) = Ea,b
x u(X(σr,w ∧ t))− Ea,b

x

∫ σr,w∧t

0

(̂b− b)2/a(X(s))ds.

Letting t → ∞ and applying the bounded and monotone convergence theorems

on the first and the second terms of the right-hand side, respectively, give

u(x) = Ea,b
x u(X(σr,w))− Ea,b

x

∫ σr,w

0

(̂b− b)2/a(X(s))ds

= u(r)P a,b
x ({σr < σw}) + u(w)P a,b

x ({σw < σr})
−Ea,b

x

∫ σr,w

0

(̂b− b)2/a(X(s))ds.

Now Letting w →∞, the monotone convergence theorem yields

u(x) = u(r)P a,b
x ({σr < ∞}) + MP a,b

x ({σr = ∞})− Ea,b
x

∫ σr

0

(̂b− b)2/a(X(s))ds.

(4.11)

Therefore

0 ≤ Ea,b
x 1{σr=∞}

∫ ∞

0

(̂b− b)2/a(X(s))ds

≤ Ea,b
x

∫ σr

0

(̂b− b)2/a(X(s))ds

≤ M ∨ u(r)− u(x) < ∞.

Consequently,

P a,b
x ({

∫ ∞

0

(̂b− b)2/a(X(s))ds < ∞}) ≥ P a,b
x ({σr = ∞}) > 1− ε.

As ε is arbitrary, we conclude from Theorem 1-i that P a,b
x ¿ P a,̂b

x .

Now let

û(x) =

x∫

0

exp


−2

y∫

0

b̂

a
(s)ds







y∫

0

(̂b− b)2

a2
(z) exp


2

z∫

0

b̂

a
(s)ds


 dz


 dy.

Since P a,b
x ¿ P a,̂b

x , it follows that limx→∞ û(x) < ∞, since otherwise we would

conclude from the first part of the proof that P a,b
x ⊥ P a,̂b

x . Therefore, we can

repeat the above argument with u replaced by û and the roles of P a,b
x and P a,̂b

x

switched, to obtain P a,̂b
x ¿ P a,b

x .
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We now turn to the proof of (1.3). Assume that P a,b
x ∼ P a,̂b

x . Rearranging

terms in (4.11), we have

Ea,b
x

∫ σr

0

(̂b− b)2/a(X(s))ds = u(r)P a,b
x ({σr < ∞}) + MP a,b

x ({σr = ∞})− u(x).

(4.12)

Therefore,

H(P a,b
x ; P a,̂b

x ) < ∞ if and only if lim
r→−∞

u(r)P a,b
x ({σr < ∞}) < ∞.

Note that the existence of the limit on the right-hand side above as an extended

real number is a consequence of (4.12). By Theorem 1 and (4.12)

H(P a,b
x ; P a,̂b

x ) =
1

2

(
lim

r→−∞
u(r)P a,b

x ({σr < ∞}) + M − u(x)

)
. (4.13)

From (4.2) and (4.4), we have

P a,b
x ({σr < ∞}) = 1− P a,b

x ({σr = ∞})
= 1− lim

z2→∞
vr,z2(x)

=

∫∞
x

exp
(−2

∫ y

0
b/a(s)ds

)
dy∫∞

r
exp

(−2
∫ y

0
b/a(s)ds

)
dy

.

Note that according to (4.1) both integrals above are finite. To simplify the

notation we let A(y) = 2
∫ y

0
b/a(u)du. Let

lim
r→−∞

u(r)P a,b
x ({σr < ∞}) ≡ (∗).

Then

(∗) = lim
r→−∞

2
∫ r

0
exp(−A(y))

(∫ y

0
(̂b− b)2/a2(z) exp(A(z))dz

)
dy

∫∞
x

exp(−A(y))dy
∫∞

r
exp(−A(y))dy

= 2

∫ ∞

x

exp(−A(y))dy

∫ 0

−∞
(̂b− b)2/a2(z) exp(A(z))dz, (4.14)

where we have applied l’Hôpital’s rule to obtain the second equality. Now

M − u(x) = 2

∫ ∞

x

exp(−A(y))

(∫ y

0

(̂b− b)2/a2(z) exp(A(z))dz

)
dy. (4.15)

Plugging (4.14) and (4.15) in (4.13) gives

H(P a,b
x ; P a,̂b

x ) =

∫ ∞

x

exp(−A(y))

(∫ y

−∞
(̂b− b)2/a2(z) exp(A(z))dz

)
dy.
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5. Proofs of Propositions 1,2 and 3

Proof of Proposition 1. Fix x > 0. As will become clear in the course of the

proof, we can assume a(x) = 1, without loss of generality. We define the random

process

g(t) = γ

∫ t

0

X(s)−lds.

Since {P a,b
x }x>0 solves the martingale problem for La,b on (0,∞), there exists

an {Ft}t≥0 measurable Brownian motion B(t) = B(t, ω), t ≥ 0, ω ∈ Ω and

B(0) = x, a.s. [P a,b
x ], such that

X(t) = B(t) + g(t), a.s. [P a,b
x ]. (5.1)

We will show that the drift is the dominant factor; that is, asymptotically, the

presence of the random contribution in (5.1) can be neglected. The unique solu-

tion of

y(t) = γ

∫ t

0

y(s)−lds, t ≥ 0

is

y(t) = (Ct)1/(1+l), C = (1 + l)γ.

Since y(·) is strictly increasing, it has an inverse t(y) = y(1+l)/C. We will denote

X(t(y)), g(t(y)) and B(t(y)) by X(y), g(y) and B(y), respectively. With this

change of variables, we have

g(y) =

∫ y

0

X−l(z)zldz, and

X(y) = B(y) + g(y), a.s. [P a,b
x ]. (5.2)

These imply

g′(y) = (g(y)/y + B(y)/y)−l, a.s. [P a,b
x ]. (5.3)

As 1/(1 + l) > 1/2,

lim
y→∞

B(y)/y = lim
t→∞

B(t)/(Ct)1/(1+l) = 0, a.s. [P a,b
x ].

At this point, one can see why we may assume a(x) = 1. The limit is not affected

when B is multiplied by a bounded process. Restricting the discussion to some

set of P a,b
x measure 1, we regard the last equations as true for all paths. Let

α = lim sup
y→∞

g(y)/y. (5.4)
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Then (5.3) implies lim inf
y→∞

g′(y) ≥ α−l. Integration of this inequality yields

lim inf
y→∞

g(y)/y ≥ α−l. (5.5)

Using this in (5.3) gives lim sup
y→∞

g′(y) ≤ αl2 . Consequently, by integration,

lim sup
y→∞

g(y)/y ≤ αl2 . (5.6)

Since by assumption |l| < 1, (5.4) and (5.5) imply α ≥ 1. Similarly (5.4)

and (5.6) imply α ≤ 1. Therefore α = 1. The same line of reasoning gives

lim infy→∞ g(y)/y = 1. Finally, dividing (5.2) by y while letting y →∞,

lim
t→∞

X(t)/(Ct)1/(1+l) = lim
y→∞

g(y)/y = 1.

Proof of Proposition 2. By the strong Markov property, the sequence {Aρ
n} con-

sists of independent events. By Borel-Cantelli,

P
1, k−1

2x
x {Aρ

j i.o.} =





0 if
∞∑

j=1

P
1, k−1

2x
x (Aρ

j ) < ∞,

1 otherwise.

(5.7)

We will show that the (5.7) converges if and only if ρ > 1
k−2

. By (4.2) and (4.3),

we have

P
1, k−1

2x
x (Aρ

j ) =

∫ ((j+2)!)ρ

((j+1)!)ρ y1−kdy
∫ ((j+2)!)ρ

(j!)ρ y1−kdy

=
((j + 1)!)−ρ(k−2) − ((j + 2)!)−ρ(k−2)

(j!)−ρ(k−2) − ((j + 2)!)−ρ(k−2)
(5.8)

= (j + 1)−ρ(k−2) 1− (j + 2)−ρ(k−2)

1− ((j + 1)(j + 2))−ρ(k−2)
.

Thus there exist constants C1, C2 > 0 such that

C1j
−ρ(k−2) ≤ P

1, k−1
2x

x (Aρ
j ) ≤ C2j

−ρ(k−2). (5.9)

The convergence/divergence dichotomy for (5.7) now follows from (5.9).

Proof of Proposition 3. Since limt→∞ X(t) = ∞, a.s. [P 1,b
x ] and a.s. [P 1,̂b

x ], for all

x ∈ R, it is enough to prove (1.7) for x ≥ 3. Note that for such x, the random
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variables {N (ρ)
n }∞n=n0(x) only depend on the process when it is in [2,∞), in which

case the drifts b and b̂ are as given in the second and third lines of (1.5).

Fix ρ = 1−2β
k−2

as in the statment of the proposition. Let σx = inf{t ≥ 0 : X(t) = x}.
Similar to (4.2) and (4.3), it follows that P 1,B

((n+1)!)ρ(σ(n!)ρ < σ((n+1)!)ρ) = p
(ρ)
n (B),

for B = b, b̂, where p
(ρ)
n (B) is as in (1.6). It then follows from the strong Markov

property that the sequence of random variables {N (ρ)
n }∞n=n0(x) are independent

and distributed according to geometric distributions. Specifically

P 1,B
x (N (ρ)

n = j) = (p(ρ)
n (B))j(1− p(ρ)

n (B))

for B = b, b̂ and j = 0, 1, . . . . Under P 1,B, the sequence {N (ρ)
n }∞n=n0(x) induces

a probabilty measure QB
x on {0, 1, . . . }N, for B = b, b̂. Denoting the restrictions

of Qb
x and Qb̂

x to the first n coordinates of {0, 1, . . . }N respectively by Qb
x,n and

Qb̂
x,n, and letting Fx,n =

dQb̂
x,n

dQb
x,n

, Lemma 1 shows that

lim
n→∞

Fx,n = 0 a.s. [Qb
x] ⇔ lim sup

n→∞
Fx,n = ∞ a.s. [Qb̂

x] ⇔ Qb̂
x ⊥ Qb

x. (5.10)

As the {N (ρ)
n } are geometric random variables, it is easy to see that

Fx,n(z) =
n∏

j=1

((
p

(ρ)
n0(x)+j−1(̂b)

p
(ρ)
n0(x)+j−1(b)

)zj

1− p
(ρ)
n0(x)+j−1(̂b)

1− p
(ρ)
n0(x)+j−1(b)

)
, z = (z1, z2, . . . ) ∈ {0, 1, . . . }N.

(5.11)

Let Yn = σ(N
(ρ)
1 , . . . , N

(ρ)
n ) and Y = σ(N

(ρ)
1 , N

(ρ)
2 , . . . ). Clearly, Y ⊆ F . Let

T : Ω → {0, 1 . . . }N be defined by Tω = (z1, z2 . . . ) ∈ {0, 1 . . . }N, if N
(ρ)
j (ω) = zj, j ∈ N.

If A ∈ {0, 1, . . . }n, then T−1(A) ∈ Yn. Therefore, Qb
x(A) = P 1,b

x (T−1A) and

Qb̂
x(A) = P a,̂b

x (T−1A). Since {Yn}n∈N generate Y , these equalities determine

the restrictions of P 1,b
x and P 1,̂b

x to Y . Letting F x,n = Fx,n ◦ T , we see that

F x,n(ω) = Fx,n((N
(ρ)
n0(x)(ω), N

(ρ)
n0(x)+1(ω), . . . )) and we obtain from (5.10)

lim
n→∞

F x,n = 0 a.s. [P 1,b
x ] ⇔ lim sup

n→∞
F x,n = ∞ a.s. [P 1,̂b

x ] ⇒ P 1,̂b
x ⊥ P 1,b

x . (5.12)

Since

lim sup
n→∞

F x,n = 0 a.s. [P 1,b
x ] ⇔ lim sup

n→∞
Fx,n = 0 a.s. [Qb

x],

it follows from (5.12) that in order to complete the proof it is enough to show

that lim supn→∞ Fx,n = 0, a.s. [Qb
x]. Kakutani’s dichotomy [3, Theorem 4.3.5]

states that

Qb̂
x ¿ Qb

x or Qb̂
x ⊥ Qb

x according as limn→∞ EQb
x
√

Fx,n > 0 or = 0.
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Thus in order to show that lim supn→∞ Fx,n = 0, a.s. [Qb
x], it follows from (5.10)

that it is enough to prove limn→∞ EQb
x
√

Fx,n = 0. To simplify notation, we let

pj = p
(ρ)
j (b) and qj = p

(ρ)
j (̂b). We have

(EP
√

Fx,n)2 =




∞∑
m1,...,mn=0

√√√√
n0(x)+n−1∏

j=n0(x)

(
qj

pj

)mj 1− qj

1− pj

n0(x)+n−1∏

j=n0(x)

p
mj

j (1− pj)




2

=




∞∑
m1,...,mn=0

n0(x)+n−1∏

j=n0(x)

√
(pjqj)mj(1− pj)(1− qj)




2

=




n0(x)+n−1∏

j=n0(x)

√
(1− pj)(1− qj)

∞∑
m=0

(pjqj)
m/2




2

=

n0(x)+n−1∏

j=n0(x)

(1− qj)(1− pj)

(1−√pjqj)2
=

n0(x)+n−1∏

j=n0(x)

1− (
√

pj −√qj)
2

(1−√pjqj)2
.

This product converges if and only if the series
∑∞ (

√
pj−√qj)

2

(1−√pjqj)2
converges. How-

ever, as we shall see below, limj→∞ pjqj = 0. Therefore to prove the first assertion

of the proposition, we must show that
∑∞(

√
pj − √qj)

2 = ∞. We will find a

lower (upper) bound for pj (qj). We start with pj.

Let

ζ = 1− 2β = ρ(k − 2)

and recall that pj is defined by (1.6) with B = b. Since L1,b of Proposition 2

and L1,b of Proposition 3 coincide for x ≥ 2, we can use the computations in the

proof of Proposition 2. By comparing (1.6) and (4.2), it is easily seen that the

righthand side of (5.8) gives te formula. That is,

pj = j−ζ

(
1− (j + 1)−ζ

1− (j(j + 1))−ζ

)

= j−ζ
(
1− (j + 1)−ζ

) (
1 + (j(j + 1))−ζ + O(j−4ζ)

)

> j−ζ(1− j−ζ),

for j sufficiently large. Since

√
1− x > 1− 3

4
x, x ∈ (0,

1

2
),

we obtain √
pj > j−ζ/2(1− 3

4
j−ζ), for j sufficiently large. (5.13)
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The evaluation of qj requires more work. Let u(x) =
∫ x

2
exp(−2

∫ y

2
b̂(z)dz)dy.

Then

u((j!)ρ)− u((m!)ρ) =

∫ (j!)ρ

(m!)ρ

exp

(
−

∫ y

2

k − 1

s
ds−

∫ y

2

c

s logβ s
ds

)
dy

=

∫ (j!)ρ

(m!)ρ

y1−k exp

(
− c

1− β
log1−β y

)
dy

=
y2−k

2− k
exp

(
− c

1− β
log1−β y

)
|(j!)ρ

(m!)ρ

+
c

2− k

∫ (j!)ρ

(m!)ρ

y1−k log−β y exp

(
− c

1− β
log1−β y

)
dy.

From (1.6) we know that

qj =
u((j!)ρ)− u(((j + 1)!)ρ)

u(((j − 1)!)ρ)− u(((j + 1)!)ρ)
.

We can write

qj =
Hj −Hj+1 + Aj,j+1

Hj−1 −Hj+1 + Aj−1,j+1

<
Hj + Aj,j+1

Hj−1 −Hj+1

, (5.14)

where

Hj =
(j!)−ζ

2− k
exp

(
− c

1− β
log1−β(j!)ρ

)
, and

Aj,j+i =
c

2− k

∫ ((j+i)!)ρ

(j!)ρ

y1−k log−β y exp

(
− c

1− β
log1−β y

)
dy.

Note that {Hj} is a strictly decreasing sequence of positive numbers and that

the quantities {Aj,j+i} are non-negative. Now,

Aj,j+1 =
c

2− k

∫ ((j+i)!)ρ

(j!)ρ

y1−k log−β y exp

(
− c

1− β
log1−β y

)
dy

=
c

2− k
log−β(j!)ρ

∫ ((j+i)!)ρ

(j!)ρ

y1−k logβ(j!)ρ log−β y exp

(
− c

1− β
log1−β y

)
dy.

Since limj→∞ logβ(j!)ρ log−β((j + i)!)ρ = 1, we have

Aj,j+1 = O(1) log−β(j!)ρ

∫ ((j+i)!)ρ

(j!)ρ

y1−k exp

(
− c

1− β
log1−β y

)
dy

= log−β(j!)ρO(u((j!)ρ)− u(((j + i)!)ρ)),

from which it follows that

Aj,j+1 = log−β(j!)O(Hj −Hj+i + Aj,j+1).
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Since Hj+i = o(Hj), we have

Aj,j+1 = log−β(j!)O(Hj + Aj,j+1).

In particular,

lim sup
j→∞

1

Hj/Aj,j+1 + 1
= lim sup

j→∞

Aj,j+1

Hj + Aj,j+1

= 0,

which shows that Aj,j+1 = o(Hj). These last observations lead to

Aj,j+1 = log−β(j!)O(Hj). (5.15)

In the sequel C denotes a positive constant which may vary from line to line. It

will be convenient to write

Hj

Hj−1

= j−ζ exp(−δj),

with

δj = C
(
log1−β(j!)− log1−β((j − 1)!)

)
.

Now

δj = C
(
(log((j − 1)!) + log j)1−β − log1−β((j − 1)!)

)

= C

(
log1−β((j − 1)!)

(
1 +

log j

log((j − 1)!)

)1−β

− log1−β((j − 1)!)

)

= C log1−β((j − 1)!)

(
1 + (1− β)

log j

log((j − 1)!)
+ o(

log j

log((j − 1)!)
)− 1

)

= C log j log−β((j − 1)!) + o(log j log−β(j!)) ≡ (∗)

Recall that

lim
j→∞

j log j

log(j!)
= 1, (5.16)

which implies

(∗) = O(j−β log1−β j).

Thus,

δj = O(j−β log1−β j). (5.17)

We are now in a position to estimate qj. From (5.14) and (5.15), we have

qj <
Hj

Hj−1

1 + O(log−β(j!))

1−Hj+1/Hj−1

= j−ζ exp(−δj)
(
1 + O(log−β(j!))

) (
1 + (j(j + 1))−ζ exp(−δj − δj+1) + O(j−4ζ)

)

< j−ζ exp(−δj)
(
1 + O(log−β(j!))

)
C(1 + j−2ζ).
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Therefore

√
qj < Cj−ζ/2 exp(−δj/2)

(
1 + O(log−β(j!))

)
(1 +

1

2
j−2ζ). (5.18)

Subtracting (5.18) from (5.13), we have

√
pj −√qj > j−ζ/2(1− exp(−δj/2))︸ ︷︷ ︸

(I)

− 3

4
j−3ζ/2

︸ ︷︷ ︸
(II)

− j−ζ/2O(log−β(j!))︸ ︷︷ ︸
(III)

− 1/2j−5ζ/2

−o(j−5ζ/2).

Since ζ = 1 − 2β, we obtain from (5.17) that (I) = O(j−1/2 log1−β j). From

(5.16) we see that (III) = O(j−1/2 log−β j). Finally, we want (II) to be negligible

with respect to (I). Clearly, this can be achieved if and only if 3ζ ≥ 1. This

condition is equivalent to β ≤ 1/3. To conclude, (
√

pj−√qj)
2 ≥ O(j−1 log2−2β j),

so ∞∑
(
√

pj −√qj)
2 = ∞.
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