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Abstract. Let D ⊂ Rd be a bounded domain and let P(D) denote

the space of probability measures on D. Consider a Brownian motion

in D which is killed at the boundary and which, while alive, jumps in-

stantaneously according to a spatially dependent exponential clock with

intensity γV to a new point, according to a distribution µ ∈ P(D). From

its new position after the jump, the process repeats the above behavior

independently of what has transpired previously. The generator of this

process is an extension of the operator −Lγ,µ, defined by

Lγ,µu ≡ −1

2
∆u + γV Cµ(u),

with the Dirichlet boundary condition, where Cµ is the “µ-centering”

operator defined by

Cµ(u) = u−
∫

D

u dµ.

The principal eigenvalue, λ0(γ, µ), of Lγ,µ governs the exponential rate

of decay of the probability of not exiting D for large time. We study the

asymptotic behavior of λ0(γ, µ) as γ →∞. In particular, if µ possesses

a density in a neighborhood of the boundary, which we call µ, then

lim
γ→∞

γ−
1
2 λ0(γ, µ) =

∫
∂D

µ√
V

dσ
√

2
∫

D
1
V

dµ
.

If µ and all its derivatives up to order k−1 vanish on the boundary, but

the k-th derivative does not vanish identically on the boundary, then

λ0(γ, µ) behaves asymptotically like ckγ
1−k
2 , for an explicit constant ck.
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1. Introduction and Statement of Results

Let D ⊂ Rd be a bounded domain with C2,α-boundary (α ∈ (0, 1]) and

let P(D) denote the space of probability measures on D. Fix a measure

µ ∈ P(D), and consider a Markov process X(t) in D which performs Brow-

nian motion and is killed at the boundary, and which while alive, jumps

instantaneously according to a spatially dependent exponential clock with

intensity γV to a new point, according to the distribution µ. That is, the

probability that the process X(·) has not jumped by time t, is given by

exp(− ∫ t
0 γV (X(s))ds). From its new position after the jump, the process

repeats the above behavior independently of what has transpired previously.

Let τD denote the lifetime of the process. We assume that V is positive and

continuous in D̄, and normalize it by
∫

D
V (x)dx = 1.

We will think of V as being fixed and of γ and µ as parameters that may be

varied. Denote probabilities and expectations for the process starting from

x ∈ D by P γ,µ
x and Eγ,µ

x .

Define the contraction semigroup

T γ,µ
t f(x) = Eγ,µ

x (f(X(t)); τD > t), f ∈ C0(D̄),

where C0(D̄) is the space of continuous functions on D̄ vanishing on ∂D.

The infinitesimal generator of this semigroup is an extension of the operator

−Lγ,µ, defined on C2(D̄) ∩ {u : u, Lγ,µu ∈ C0(D̄)} by

Lγ,µu ≡ −1
2
∆u + γV Cµ(u),

with the Dirichlet boundary condition, where Cµ is the “µ-centering” oper-

ator defined by

Cµ(u) = u−
∫

D
u dµ.

The operator T γ,µ
t is compact. These facts were proven in [3] in the case

of constant V , and can be proved similarly for variable V as defined above.
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Since T γ,µ
t is compact, the resolvent operator for T γ,µ

t is also compact, and

consequently the spectrum σ(Lγ,µ) of Lγ,µ consists exclusively of eigenval-

ues. By the Krein-Rutman theorem, one deduces that Lγ,µ possesses a

principal eigenvalue, λ0(γ, µ); that is, λ0(γ, µ) is real and simple and satis-

fies λ0(γ, µ) = inf{Re(λ) : λ ∈ σ(Lγ,µ)} [4]. It is known that λ ∈ σ(Lγ,µ) if

and only if exp(−λt) ∈ σ(T γ,µ
t ) [2]. Thus, since ||T γ,µ

t || < 1, it follows that

λ0(γ, µ) > 0. We have

sup
f∈C0(D̄),||f ||≤1

||T γ,µ
t f || = sup

x∈D
P γ,µ

x (τD > t);

thus, a standard result [5] allows us to conclude that

lim
t→∞

1
t

log sup
x∈D

P γ,µ
x (τD > t) = −λ0(γ, µ).

It is well known that this is equivalent to

(1.1) lim
t→∞

1
t

log P γ,µ
x (τD > t) = −λ0(γ, µ), x ∈ D.

The Brownian motion with random jumps analyzed here is a paradigm for

a phenomenon that occurs in various settings and which is best illustrated

perhaps in terms of computer-games or the game “chutes and ladders.” The

object of the game is to reach the boundary of D in as little time as possible

(or alternatively, to avoid reaching the boundary for as much time as possi-

ble). The game is played in rounds; however, time is always accumulating.

Various obstacles (modelled by the spatially dependent exponential clock

with intensity γ) lead to the end of a round, and each new round begins

afresh from a new position which may be deterministic or random (mod-

elled by the measure µ). Then λ0(γ, µ) is a measure of the probability of

long-term failure (or success, depending on the rules). As γ increases, the

obstacles become more dense.

In [3], the behavior of λ0(γ, µ) was analyzed for the regimes γ ¿ 1 and

γ À 1 in the case of constant V . In this paper we consider the regime γ À 1.

Note that probabilistic intuition suggests the general direction of the result.

Since γ À 1, the Brownian motion doesn’t get very far before it jumps and
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gets redistributed according to µ. In particular then, if supp(µ) ⊂ D, it will

be very difficult for the Brownian motion to exit D, and in light of (1.1)

one expects that limγ→∞ λ0(γ, µ) = 0. More generally, one expects that

the leading order asymptotic behavior for large γ will depend only on the

behavior of µ arbitrarily close to the boundary. For the case of constant V ,

in [3] it was shown that if µ is compactly supported in D, then there are

constants c1, c2 such that exp(−c2γ
1
2 ) ≤ λ0(γ, µ) ≤ exp(−c1γ

1
2 ), for large

γ. Under the assumption that the measure µ possesses an appropriately

smooth density in a neighborhood of the boundary, which we will also call

µ, it was proven in [3] that

(1.2) lim
γ→∞ γ−

1
2 λ0(γ, µ) =

1√
2|D| 12

∫

∂D
µdσ.

Assuming appropriate smoothness of the above density µ, it was also proven

there that if µ ≡ 0 on ∂D, then

(1.3) lim
γ→∞λ0(γ, µ) =

1
2

∫

∂D
(∇µ · n)dσ,

while if µ,∇u ≡ 0 on ∂D, then

(1.4) lim
γ→∞ γ

1
2 λ0(γ, µ) =

|D| 12
2
√

2

∫

∂D
∆µdσ.

The above results show that in the case of constant V , λ0(γ, µ) grows on

the order γ
1
2 if the density µ of the jump measure does not vanish identically

on ∂D, while for k = 1 or 2, if all the derivatives of µ up to order k−1 vanish

identically on the boundary, and at least one of the derivatives of order k

does not vanish identically on ∂D, then λ0(γ, µ) behaves asymptotically on

the order γ
1−k
2 . It is natural to expect that such behavior would continue

for all positive integers k.

The case of variable V is not at all a straight forward generalization of

the constant case. To see why, consider first of all what occurs if V is

allowed to be identically 0 in some sub-domain A ⊂ D. Then as long as the

process remains in A, it never jumps; consequently, starting at x ∈ A, the

probability of not exiting D by time t is greater than the probability of a
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standard Brownian motion not exiting A by time t. In light of (1.1), this

means that λ0(γ, µ) ≤ λA
0 , where λA

0 is the principal eigenvalue for −1
2∆ in

A with the Dirichlet boundary condition. In particular, λ0(γ, µ) is bounded

and the behavior in (1.2) cannot occur. Now consider the case that V is

positive in D but decreases to 0 at ∂D. If this occurs at an appropriate

rate, it should increase the tendency of the process to leave the region, and

thus raise the value of λ0(γ, µ). Indeed, in order for the process to exit

the region, when the process is very near the boundary it needs to refrain

from jumping. Thus, in the case of variable V , the dependence on V of the

corresponding constant on the right hand side of (1.2) should be consistent

with the above discussion.

In this paper, for variable, strictly positive V , we prove the analog of (1.2)

and the analog of a generalization of (1.3), (1.4) for the case that for some

positive integer k, all the derivatives of µ up to order k−1 vanish identically

on ∂D.

Theorem 1. Let D ⊂ Rd, d ≥ 1, be a bounded domain with a C2,α-boundary

(α ∈ (0, 1]) and let µ ∈ P(D). Assume that V > 0 on D̄. Let σ denote

Lebesgue measure on ∂D. Let Dε = {x ∈ D : dist(x, ∂D) < ε}.
i. Assume that for some ε > 0, the restriction of µ to Dε possesses a

density which belongs to C1(D̄ε): µ(dx)|Dε ≡ µ(x)dx. Assume also that

V ∈ C2,α(D̄). Then

(1.5) lim
γ→∞ γ−

1
2 λ0(γ, µ) =

∫
∂D

µ√
V

dσ
√

2
∫
D

1
V dµ

.

ii. Let k ≥ 1. Assume that for some ε > 0, the restriction of µ to Dε

possesses a density which belongs to Ck+1(D̄ε): µ(dx)|Dε ≡ µ(x)dx. Assume

also that V ∈ Ck+1(D̄) if k is odd and that V ∈ Ck+1,α(D̄) if k is even.

Assume that

dβµ

dxβ
≡ 0 on ∂D, for all |β| ≤ k − 1.
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Let n denote the inward unit normal to D at ∂D.

If k is odd, then

(1.6) lim
γ→∞ γ

k−1
2 λ0(γ, µ) =

∫
∂D V − k+1

2 ∇(∆
k−1
2 µ) · ndσ

2
k+1
2

∫
D

1
V dµ

.

If k is even, then

(1.7) lim
γ→∞ γ

k−1
2 λ0(γ, µ) =

∫
∂D V − k+1

2 ∆
k
2 µdσ

2
k+1
2

∫
D

1
V dµ

.

Remark. As V decreases to 0 on some sub-domain A ⊂⊂ D (and increases

elsewhere in order to maintain the normalization
∫
D V dx = 1), assuming

that supp(µ)∩A 6= ∅, the constant on the right hand side of (1.5) converges

to 0, which is consistent with the discussion in the penultimate paragraph

before Theorem 1. (If on the other hand A∩ supp(µ) = ∅, then as V

decreases to 0 on A, the constant on the right hand side of (1.5) remains

bounded away from 0. This is not inconsistent with the above-mentioned

discussion; it shows that the asymptotic behavior as γ →∞ is not uniform

over V .)

Assuming that µ 6≡ 0 on ∂D, if V is of the form ε+(1−ε|D|)V̂ , where V̂ is

a smooth function which is strictly positive in D and vanishes on ∂D, then

as ε → 0, the right hand side of (1.5) converges to ∞. This is consistent

with the discussion in the penultimate paragraph before Theorem 1.5. It

also suggests that for a smooth V which is strictly positive in D and vanishes

on ∂D, λ0(γ, µ) will grow on a larger order than γ
1
2 . However, we cannot

prove this, and it seems conceivable to us that in fact the order of growth is

smaller than γ
1
2 —see section 4.

We will also prove the following result in the case that µ is compactly

supported.

Proposition 1. Let µ be compactly supported in D. Then there exist con-

stants c1, c2 such that

(1.8) exp(−c2γ
1
2 ) ≤ λ0(γ, µ) ≤ exp(−c1γ

1
2 ), for γ > 1.
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In section 2 we present some preliminary results needed for the proof of

Theorem 1, and we conclude that section with the proof of Proposition 1.

Theorem 1 is proved in section 3. In section 4 we discuss an open problem

concerning the behavior of λ0(γ, µ) in the case that V is positive in D but

vanishes on the boundary.

2. Preliminary Results and Proof of Proposition 1

In this section we prove a number of preliminary results, culminating in

the proof of Proposition 1. Let Px and Ex denote respectively probabilities

and expectations for Brownian motion starting from x.

Let uλ,γ and vλ,γ denote the solutions to the equations

(2.1)





1
2∆uλ,γ + (λ− γV (x))uλ,γ = 0 in D;

uλ,γ = 1 on ∂D;

(2.2)





1
2∆vλ,γ + (λ− γV (x))vλ,γ = −1 in D;

vλ,γ = 0 on ∂D.

Lemma 1. The principal eigenvalue λ0(γ, µ) is the smallest positive solution

λ to the equation

(2.3) λ =

∫
D uλ,γdµ∫
D vλ,γdµ

.

In particular

(2.4) λ0(γ, µ) =

∫
D uλ0(γ,µ),γdµ∫
D vλ0(γ,µ),γdµ

.

Proof. Let wγ denote the eigenfunction corresponding to the principal eigen-

value of Lγ,µ, normalized by
∫
D wγdµ = 1. Then wγ satisfies





1
2∆wγ − γV (x)wγ + γV (x) = −λ0(γ, µ)wγ ;

wγ |∂D = 0;
∫
D wγdµ = 1.
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From the Feynman-Kac formula, one has

wγ(x) = Ex

∫ τ

0
γV (X(t)) exp(

∫ t

0
(λ0(γ, µ)− γV (X(s)))ds)dt,

and then the normalization condition gives

(2.5) 1 = Eµ

∫ τ

0
γV (X(t)) exp(

∫ t

0
(λ0(γ, µ)− γV (X(s)))ds)dt.

Integrating by parts gives
∫ τ

0
γV (X(t)) exp(

∫ t

0
(λ0(γ, µ)− γV (X(s)))ds)dt =

∫ τ

0
exp(λ0(γ, µ)t)

d

dt
[− exp(−

∫ t

0
γV (X(s))ds)]dt =

− exp(
∫ τ

0
(λ0(γ, µ)− γV (X(s)))ds) + 1

+ λ0(γ, µ)
∫ τ

0
exp(

∫ t

0
(λ0(γ, µ)− γV (X(s)))ds)dt.

Substituting this in (2.5), we obtain

(2.6) λ0(γ, µ) =
Eµ exp(

∫ τ
0 (λ0(γ, µ)− γV (X(s)))ds)

Eµ

∫ τ
0 exp(

∫ t
0 (λ0(γ, µ)− γV (X(s)))ds)dt

.

By the Feynman-Kac formula again, we have that

(2.7) uλ0(γ,µ),γ(x) = Ex exp(
∫ τ

0
(λ0(γ, µ)− γV (X(s)))ds),

and

(2.8) vλ0(γ,µ),γ(x) = Ex

∫ τ

0
exp(

∫ t

0
(λ0(γ, µ)− γV (X(s)))ds)dt.

Thus, by (2.6), λ0(γ, µ) is a positive solution to (2.3).

Conversely, working backwards, if λ is a solution to (2.3) (or equivalently,

of (2.6) with λ0(γ, µ) replaced by λ), then it is an eigenvalue. ¤

The following lemma plays a crucial role in both the proof of Proposition

1 and the proof of Theorem 1.

Lemma 2. The principal eigenvalue satisfies

(2.9) lim
γ→∞

λ0(γ, µ)
γ

= 0.
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Proof. Using (2.5) we have

1
γ maxV

≤ Eµ

∫ τ

0
exp(

∫ t

0
(λ0(γ, µ)− γV (X(s)))ds)dt ≤ 1

γ minV
,

or equivalently from (2.8)

1
γ maxV

≤
∫

D
vλ0(γ,µ),γdµ ≤ 1

γ minV
.

Multiplying above by λ0(γ, µ), (2.4) gives

(2.10)
λ0(γ, µ)
γ maxV

≤
∫

D
uλ0(γ,µ),γdµ ≤ λ0(γ, µ)

γ minV
.

Let p be an accumulation point of λ0(γ,µ)
γ as γ → ∞. We note that if

p = ∞, then for certain large γ we would have
∫ τ
0 (λ0(γ, µ)−γV (X(s)))ds >

λD
0 τ , where λD

0 is the principal eigenvalue for the operator −1
2∆ in D with

the Dirichlet boundary condition. Using the representation in (2.7) and [4,

chapter 3], this would give uλ0(γ,µ),γ ≡ ∞, contradicting (2.10).

Now assume that 0 < p < ∞. Let {γn} be such that p = limn→∞
λ0(γn,µ)

γn
.

As was shown in Lemma 1, λ0(γ, µ) is the smallest positive solution of the

equation

(2.11) λ =
Eµ exp(

∫ τ
0 (λ− γV (X(s)))ds)

Eµ

∫ τ
0 exp(

∫ t
0 (λ− γV (X(s)))ds)dt

.

Both sides of (2.11) are continuous in λ, and since the left hand side is

zero at λ = 0 and the right hand side is positive at λ = 0, it follows that

for λ < λ0(γ, µ) the left hand side is smaller the the right hand side. Fix

q ∈ (0, min(p,minV )). Since qγn ≤ λ0(γn) for sufficiently large n, we have

qγn ≤
Eµ exp(

∫ τ
0 (qγn − γnV (X(s)))ds)

Eµ

∫ τ
0 exp(

∫ t
0 (qγn − γnV (X(s)))ds)dt

≤

Eµ exp(−(minV − q)γnτ)
Eµ

∫ τ
0 exp(−(maxV − q)γnt)dt

=
γn(maxV − q)Eµ exp(−(minV − q)γnτ)

1− Eµ exp(−(maxV − q)γnτ)
.

Or equivalently,

(2.12)
q

(maxV − q)
≤ Eµ exp(−(minV − q)γnτ)

1−Eµ exp(−(maxV − q)γnτ)
.



10 NITAY ARCUSIN AND ROSS G. PINSKY

Letting n → ∞, the right hand side of (2.12) goes to zero by the bounded

convergence theorem, and this is a contradiction. We have now shown that

there are no accumulation points p ∈ (0,∞], which proves (2.9). ¤

We now prove Proposition 1.

Proof of Proposition 1. Define

Hγ(λ) =
Eµ exp(

∫ τ
0 (λ− γV (X(s)))ds)

Eµ

∫ τ
0 exp(

∫ t
0 (λ− γV (X(s)))ds)dt

.

By Lemma 1, λ0(γ, µ) is the smallest positive solution to the equation

Hγ(λ) = λ. We now show that the smallest positive solution to Hγ(λ) = λ

satisfies the upper bound in Proposition 1. Let H+
γ (λ) satisfy

Hγ(λ) ≤ H+
γ (λ), ∀λ > 0,

and let λ+(γ) be the smallest positive solution to H+
γ (λ) = λ. If we define

Gγ(λ) = Hγ(λ)− λ,

then from the definition of Hγ(λ), one has Gγ(0) > 0 and

Gγ(λ+(γ)) = Hγ(λ+(γ))− λ+(γ) ≤ H+
γ (λ+(γ))− λ+(γ) = 0.

Since λ0(γ, µ) is the first positive zero of Gγ , it follows that λ0(γ, µ) ≤ λ+(γ).

Thus, it suffices to show that λ+(γ) (with an appropriate choice of H+
γ ).

satisfies the upper bound in Proposition 1. Note for use below that the

above argument does not even require that H+
γ be continuous or monotone,

just that there be a smallest positive root to the equation H+
γ (λ) = λ.

To find an appropriate H+
γ , we write

Hγ(λ) =
Eµ exp(

∫ τ
0 (λ− γV (X(s)))ds)

Eµ

∫ τ
0 exp(

∫ t
0 (λ− γV (X(s)))ds)dt

≤ Eµ exp((λ− γ minV )τ)
Eµ

∫ τ
0 exp((λ− γ maxV )t)dt

=
(γ maxV − λ)Eµ exp(γ minV ( λ

γ min V − 1)τ)

1− Eµ exp(γ maxV ( λ
γ max V − 1)τ)

≤ γ maxV
Eµ exp(γ minV ( λ

γ min V − 1)τ)

1−Eµ exp(γ maxV ( λ
γ max V − 1)τ)

.
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By the bounded convergence theorem, Eµ exp(γ maxV ( λ
γ max V − 1)τ) ≤ 1

2 ,

for λ ≤ 1 and γ sufficiently large. Also, since µ is compactly supported,

there exists a c0 > 0 such that Eµ exp(γ minV ( λ
γ min V −1)τ) ≤ exp(−c0γ

1
2 ),

for λ ≤ 1 and γ sufficiently large (see [3, equation (3.3)]). Thus, there exists

a c1 > 0 such that Hγ(λ) ≤ exp(−c1γ
1
2 ), for λ ≤ 1 and γ sufficiently large.

For sufficiently large γ, we now define H+
γ (λ) = exp(−c1γ

1
2 ), for λ ≤ 1,

and H+
γ (λ) = Hγ(λ), for λ > 1. Then the smallest positive to the equation

H+(λ) = λ is λ+(γ) = exp(−c1γ
1
2 ). This gives the upper bound in the

proposition.

The lower bound is proved similarly using a function H− satisfying H− ≤
H. At the point where [3, equation 3.3] was used above, one uses instead

[3, equation 3.6]. We leave the details to the reader. ¤

3. Proof of Theorem 1

We will use (2.4) to evaluate the asymptotic behavior of λ0(γ, µ). The

behavior of the denominator in (2.4) is easy.

Lemma 3. For all µ ∈ P(D),

(3.1) lim
γ→∞ γvλ(γ,µ),γ =

1
V

, boundedly pointwise in D.

Thus,

(3.2) lim
γ→∞ γ

∫

D
vλ0(γ,µ),γdµ =

∫

D

1
V

dµ.

Proof. For notational convenience we write vγ ≡ vλ0(γ,µ),γ . Define zγ =
1

γV−λ0(γ,µ) , wγ = vγ − zγ and yγ = 1
2∆zγ . Then using (2.2), wγ solves the

equation

1
2
∆wγ + (λ0(γ, µ)− γV )wγ = −yγ in D;

wγ =
1

λ0(γ, µ)− γV
on ∂D.
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From the Feynman-Kac formula, one has

(3.3)
wγ(x) = Ex

1
λ0(γ, µ)− γV (X(τ))

exp(
∫ τ

0
(λ0(γ, µ)− γV (X(t)))dt)

+ Ex

∫ τ

0
yγ(X(t)) exp(

∫ t

0
(λ0(γ)− γV (X(s)))ds)dt.

By Lemma 2, γyγ and γ
λ0(γ,µ)−γV are bounded as γ → ∞, and λ0(γ, µ) −

γV ≤ −1
2(minV )γ, for large γ. Thus, for some C > 0, we have

|γwγ(x)| ≤ CEx exp(−1
2
(minV )γτ) + CEx

∫ τ

0
exp(−1

2
(minV )γt)dt.

Thus, limγ→∞ |γwγ(x)| = 0, which along with Lemma 2 gives (3.1). ¤

We now turn to the analysis of the numerator in (2.4). We will need the

following key result, essentially from [3].

Lemma 4. Let x0 ∈ ∂D and let n denote the inward unit normal to D at

∂D. Then

lim
γ→∞ γ−

1
2 (∇uλ0(γ,µ),γ · n)(x0) = −

√
2V (x0).

Proof. The result was proved in [3] for the case that V = 1. From the scaling,

it follows that the result continues to hold for V equal to any constant. The

method of proof in [3] used localization; only the behavior near x0 of the

coefficients of the differential equation solved by uλ0(γ,γ),γ are relevant. In

addition, by the maximum principle, the solutions uλ,γ,ε to (2.1) with V (x)

replaced by the V − ε are pointwise monotone increasing in ε ∈ R, and for

γ sufficiently large so that λ − γV (x) is everywhere non-positive, they are

also bounded above by 1. Thus, (∇uλ,γ,ε · n)(x0) is monotone decreasing in

ε ∈ R. From these facts one deduces the lemma. ¤

By assumption, the measure µ can be written as µ = µcs + µreg, where

µcs is a compactly supported sub-probability measure and µreg is a sub-

probability measure possessing a density which satisfies the smoothness con-

ditions in the statement of the theorem, and which we will also denote by
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µreg. Note that µreg(x) restricted to Dε coincides with the density µ(x)

appearing in the statement of the theorem. We write (2.4) as

(3.4) λ0(γ, µ) =

∫
D uλ0(γ,µ),γµregdx∫

D vλ0(γ,µ),γdµ
+

∫
D uλ0(γ,µ),γdµcs∫
D vλ0(γ,µ),γdµ

.

Using (2.7) and Lemma 2 for the first inequality below, and [3, equation 3.3]

and the fact that µcs is compactly supported for the second one, one has for

some c > 0 and large γ,

(3.5)

uλ0(γ,µ),γ(x) ≤ Ex exp(−1
2
(minV )γτD) ≤ exp(−cγ

1
2 ), for all x ∈ supp(µcs).

From (3.5) and Lemma 3, there exists a C > 0 such that for large γ,

(3.6)

∫
D uλ0(γ,µ),γdµcs∫
D vλ0(γ,µ),γdµ

≤ exp(−Cγ
1
2 ).

In the statement of the theorem, note that (1.5) is in fact the same as (1.7)

with k = 0. (We simply separated this case out for the sake of exposition.)

Thus to prove the theorem, we must show that (1.7) holds for even k ≥ 0

and that (1.6) holds for odd k ≥ 1. In light of (3.4), (3.6) and Lemma 3,

the theorem will be proved if we show that

(3.7)

lim
γ→∞ γ

k+1
2

∫

D
uλ0(γ,µ),γµregdx =

∫
∂D V −k+1

2 ∇(∆
k−1
2 µ) · ndσ

2
k+1
2

, for odd k ≥ 1,

and that

(3.8) lim
γ→∞ γ

k+1
2

∫

D
uλ0(γ,µ),γµregdx =

∫
∂D V − k+1

2 ∆
k
2 µdσ

2
k+1
2

, for even k ≥ 0.

Although we could give a steam-lined proof that works simultaneously for

all even k and another one that works for all odd k, we prefer the following

route, in the interest of clarity of exposition. We will first show (3.7) for

k = 1 and (3.8) for k = 0. Then we will show how to iterate the method

for k = 1 to obtain (3.7) for k = 3 and will note how to continue for general

odd k. Then we will show how to iterate the method for k = 0 to obtain

(3.8) for k = 2 and will note how to continue for general even k.
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We begin with k = 1, which is easier than k = 0. Recalling that n denotes

the unit inward normal, and using (2.1) and the fact that µreg vanishes on

∂D, integration by parts gives

(3.9)
γ

∫

D
uλ0(γ,µ),γµregdx =

∫

D
(
1
2
∆uλ0(γ,µ),γ)

γµreg

γV − λ0(γ, µ)
dx =

1
2

∫

D
uλ0(γ,µ),γ(∆

γµreg

γV − λ0(γ, µ)
)dx +

1
2

∫

∂D
∇(

γµreg

γV − λ0(γ, µ)
) · ndσ.

By Lemma 2, as γ → ∞, ∆ γµreg

γV−λ0(γ,µ) converges boundedly pointwise to

∆µreg

V . By (3.5), uλ0(γ,µ),γ converges boundedly pointwise to 0 in D. Also,

∇( γµreg

γV−λ0(γ,µ)) ·n converges boundedly pointwise to ∇µreg

V on ∂D. Since µreg

vanishes on ∂D, one has ∇µreg

V = V −1∇µreg on ∂D. Using these facts and

letting γ →∞ in (3.9) gives (3.7) for k = 1.

We now turn to the case k = 0. For large γ, let wγ solve the equation

(3.10)
∆

wγ

γV − λ0(γ, µ)
= 0 in D;

wγ = µreg on ∂D.

We will show below that

(3.11) lim
γ→∞ γ

1
2

∫

D
uλ0(γ,µ),γ(µreg − wγ)dx = 0.

Thus, it is enough to show (3.8) for k = 0 with µreg replaced by wγ . Using

(2.1) and (3.10), and integrating by parts, we have

(3.12)

γ
1
2

∫

D
uλ0(γ,µ),γwγdx = γ−

1
2

∫

D
(
1
2
∆uλ0(γ,µ),γ)

γwγ

γV − λ0(γ, µ)
dx =

− γ−
1
2

2

∫

∂D

γµreg

γV − λ0(γ, µ)
(∇uλ0(γ,µ),γ · n)dσ,

where we have used the fact that
∫

∂D
∇(

γwγ

γV − λ0(γ, µ)
) · ndσ =

∫

D
∆

γwγ

γV − λ0(γ, µ)
dx = 0.

Letting γ →∞ in (3.12) and using Lemma 4 and Lemma 2, we obtain

(3.13) lim
γ→∞ γ

1
2

∫

D
uλ0(γ,µ),γwγdx =

∫
∂D

µreg√
V

dσ

2
1
2

,

which is (3.8) for k = 0 with µreg replaced by wγ .
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To complete the proof of the case k = 0, we now prove (3.11). For ε > 0,

we have

(3.14)

|γ 1
2

∫

Dε

uλ0(γ,µ),γ(µreg−wγ)dx| ≤ sup
x∈Dε

|µreg(x)−wγ(x)|(γ 1
2

∫

D
uλ0(γ,µ),γdx).

Note that by Lemma 2, w ≡ limγ→∞wγ solves ∆V w = 0 in D and w = µreg

on ∂D. From standard results, it then follows that

(3.15) lim
ε→0

sup
x∈Dε

|µreg(x)− wγ(x)| = 0.

In the case that, say, µreg ≡ 1 on ∂D, it follows from the maximum principle

that wγ is strictly positive in D̄, uniformly over large γ. By the maximum

principle and Lemma 2, uλ0(γ,µ),γ is decreasing in γ, for large γ. Using

these facts with (3.13), it follows that for all choices of µ, one has that

γ
1
2

∫
D uλ0(γ,µ),γdx is bounded as γ → ∞. Using this with (3.15), it follows

from (3.14) that

(3.16) lim
ε→0

lim sup
γ→∞

|γ 1
2

∫

Dε

uλ0(γ,µ),γ(µreg − wγ)dx| = 0.

By (3.5) and the uniform boundedness in γ of wγ , it follows that

(3.17) lim
γ→∞ γ

1
2

∫

D−Dε

uλ0(γ,µ),γ(µreg − wγ)dx = 0.

Now (3.11) follows from (3.16) and (3.17).

We now consider the cases k = 2 and k = 3, beginning with k = 3. In

the case k = 3, µ and all its derivatives up to order 2 vanish on ∂D; in

particular, the last term on the right hand side of (3.9) is 0. Thus, using

(2.1) again, integrating by parts and using the fact that the second order
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derivatives of µ vanish on ∂D, we have from (3.9)

(3.18)

γ2

∫

D
uλ0(γ,µ),γµregdx =

γ

2

∫

D
uλ0(γ,µ),γ(∆

γµreg

γV − λ0(γ, µ)
)dx =

1
2

∫

D
(
1
2
∆uλ0(γ,µ),γ)

γ

γV − λ0(γ, µ)
(∆

γµreg

γV − λ0(γ, µ)
)dx =

1
22

∫

D
uλ0(γ,µ),γ(∆

γ

γV − λ0(γ, µ)
∆

γµreg

γV − λ0(γ, µ)
)dx+

1
22

∫

∂D
∇(

γ

γV − λ0(γ, µ)
∆

γµreg

γV − λ0(γ, µ)
) · ndσ.

By Lemma 2, as γ → ∞, ∆ γ
γV−λ0(γ,µ)∆

γµreg

γV−λ0(γ,µ) converges boundedly

pointwise to ∆ 1
V ∆µreg

V , and by (3.5), uλ0(γ,µ),γ converges boundedly point-

wise to 0. Also, ∇( γ
γV−λ0(γ,µ)∆

γµreg

γV−λ0(γ,µ))·n converges boundedly pointwise

on ∂D to ∇( 1
V ∆µreg

V ) · n. Since µ and all of its derivatives up to order 2

vanish on ∂D, one has ∇( 1
V ∆µreg

V ) = V −2∇(∆µreg) on ∂D. Thus, letting

γ →∞ in (3.18) gives (3.7) for k = 3. Note that in (3.18) we needed µreg and

V to be 4 times differentiable. When k = 5, the boundary term on the right

hand side of (3.18) vanishes, and one again uses (2.1) to replace uλ0(γ,µ),γ in

the first term on the right hand side of (3.18) by (1
2∆uλ0(γ,µ),γ) 1

γV−λ0(γ,µ) .

This time the calculations requires that µreg and V be 6 times differentiable.

It should be clear how to continue for all odd k.

We now consider the case k = 2. Since µ and its first order derivatives

vanish on ∂D, we have from (3.9)

(3.19) γ
3
2

∫

D
uλ0(γ,µ),γµregdx =

γ
1
2

2

∫

D
uλ0(γ,µ),γ(∆

γµreg

γV − λ0(γ, µ)
)dx.

As with the case k = 0, we define an auxiliary function wγ , which satisfies

this time the equation

(3.20)
∆

wγ

γV − λ0(γ, µ)
= 0 in D;

wγ = ∆
γµreg

γV − λ0(γ, µ)
on ∂D.

The same argument used to show (3.11) shows that

(3.21) lim
γ→∞ γ

1
2

∫

D
uλ0(γ,µ),γ(wγ −∆

γµreg

γV − λ0(γ, µ)
)dx = 0.
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From (3.19) and (3.21) we have

(3.22) lim
γ→∞ γ

3
2

∫

D
uλ0(γ,µ),γµregdx = lim

γ→∞
γ

1
2

2

∫

D
uλ0(γ,µ),γwγdx.

Using (2.1) and (3.20), and integrating by parts, we have

(3.23)

γ
1
2

2

∫

D
uλ0(γ,µ),γwγdx =

γ−
1
2

2

∫

D
(
1
2
∆uλ0(γ,µ),γ)

γwγ

γV − λ0(γ, µ)
dx =

− γ−
1
2

4

∫

∂D
(∇uλ0(γ,µ),γ · n)

γwγ

γV − λ0(γ, µ)
dσ =

− γ−
1
2

4

∫

∂D
(∇uλ0(γ,µ),γ · n)

γ

γV − λ0(γ, µ)
∆

γµreg

γV − λ0(γ, µ)
dσ,

where we have used the fact that
∫

∂D
∇(

γwγ

γV − λ0(γ, µ)
) · ndσ =

∫

D
∆

γwγ

γV − λ0(γ, µ)
dx = 0.

Note that since µ and its first derivatives vanish on ∂D, one has ∆µreg

V =

V −1∆µreg on ∂D. Using this and letting γ → ∞, it follows from (3.22),

(3.23) and Lemma 4 that

(3.24) lim
γ→∞ γ

3
2

∫

D
uλ0(γ,µ),γµregdx =

∫
∂D V − 3

2 ∆µregdσ

2
3
2

,

which is (3.8) for k = 2. It should be clear how to continue in the same vein

for larger even k.

We now explain the smoothness requirement in the case of k = 2, k = 0

and then for higher order k. First consider k = 2. In order to apply the

divergence theorem in (3.23) we needed for wγ to be in C2(D) ∩ C1(D̄).

For this, we claim that it suffices to have µreg ∈ C3(D̄) and V ∈ C3,α(D̄).

To see this, recall that the standard theory [1] guarantees that if L is a

second-order elliptic operator, then the equation Lu = f in D and u = φ

on ∂D has a solution u ∈ C2,α(D) ∩ C(D̄) if f and the coefficients of L

are in Cα(D̄), φ is continuous and ∂D is a C2,α-boundary. Thus, by the

above smoothness assumptions on µreg and wγ , it follows from (3.20) that

wγ ∈ C2,α(D)∩C(D̄). Now formally differentiate (3.20) with respect to xj ,

and formally, let zγ = ∂wγ

∂xj
. Using the above smoothness of wγ , and again
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using the above smoothness assumptions on µreg and V , one has formally

that zγ satisfies an equation of the form L1zγ = f in D and zγ = φ on

∂D, where f and the coefficients of the operator L1 belong to Cα(D̄), and

φ is continuous. Thus, by the general theory, the above equation has a

solution zγ ∈ C2,α(D)∩C(D̄). One then shows that zγ is in fact ∂wγ

∂xj
, which

establishes that wγ is in C1(D̄).

For k = 0, the auxiliary function wγ solves (3.10). By the line of reasoning

in the above paragraph, one needs µreg ∈ C1(D̄) and V ∈ C2,α(D̄). For

higher order even k, the auxiliary function wγ that one constructs solves the

equation

(3.25)
∆

wγ

γV − λ0(γ, µ)
= 0 in D;

wγ = ∆
k
2
γ,V µreg on ∂D,

where the operator ∆γ,V is defined by ∆γ,V g = ∆ γg
γV−λ0(γ,µ) . By the rea-

soning of the previous paragraph, one needs µreg ∈ Ck+1(D̄) and V ∈
Ck+1,α(D̄).

4. An Open Problem in a Degenerate Case

Consider the case that V is positive in D but vanishes on ∂D. As was

noted in the penultimate paragraph before Theorem 1, if V decays to 0 at

the boundary at an appropriate rate, it should increase the tendency of the

process to leave the region, and thus raise the value of λ0(γ, µ). Indeed, in

order for the process to exit the region, when the process is very near the

boundary it needs to refrain from jumping. And as was noted in the second

paragraph of the remark after Theorem 1, assuming that µ 6≡ 0 on ∂D, if V

is of the form ε+(1− ε|D|)V̂ , where V̂ is a smooth function which is strictly

positive in D and vanishes on ∂D, then as ε → 0, the right hand side of (1.5)

converges to ∞. These facts suggest that in the case that V is smooth and

vanishes on ∂D, and the density µ does not vanish identically on ∂D, then

λ0(γ, µ) should grow on an order larger than γ
1
2 as γ → ∞. On the other
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hand, if V is compactly supported in D −Dε, then by the reasoning in the

penultimate paragraph before Theorem 1, one has λ0(γ, µ) ≤ λDε
0 , where

λDε
0 is the principal eigenvalue for −1

2∆ in Dε with the Dirichlet boundary

condition. Thus, it also seems possible that if V decays to 0 at the boundary

sufficiently fast, then in fact λ0(γ, µ) should be of smaller order than γ
1
2 as

γ →∞.

To determine what happens, it should suffice to look at the simple one-

dimensional case with D = (0, 1). We consider V with a first-order 0 at the

boundary. To make things simple, we choose V symmetric: V (x) = 6x(1−x)

(we continue with the normalization
∫
D V dx = 1). We take µ to be Lebesgue

measure. Thus, we have

(4.1)
Lγ,µu(x) = −1

2
u′′(x) + 6γx(1− x)

(
u(x)−

∫ 1

0
u(y)dy

)
on (0, 1);

u(0) = u(1) = 0.

Unfortunately, we are only able to conclude that there exist c1, c2 > 0 such

that

(4.2) c1γ
1
3 ≤ λ0(γ, µ) ≤ c2γ

2
3 .

We obtain (4.2) as follows. By the criticality theory of second order

elliptic operators [4], which can be applied to Lγ,µ as in (4.1), λ0(γ, µ) can

be characterized as the supremum over those λ for which there exists a

function u > 0 on D satisfying Lγ,µu− λu ≥ 0 in D. (It is enough to work

with C1 functions that are piecewise C2.) One can check that if one defines

u(x) = x − γ
1
3 x2, for 0 ≤ x ≤ 1

2γ−
1
3 , u(x) = u(1

2γ−
1
3 ), for 1

2γ−
1
3 ≤ x ≤ 1

2 ,

and then extends u to (0, 1) by making it symmetric with respect to x = 1
2 ,

then for sufficiently small ε > 0, one has Lγ,µu− εγ
1
3 u ≥ 0 in D. This gives

the lower bound in (4.2).

Another way to characterize λ0(γ, µ) is that it is the largest λ such that

the generalized maximum principle holds for Lγ,µ−λ. That is, the largest λ

such that whenever one has Lγ,µv − λv ≤ 0 in D and v(0) = v(1) = 0, then
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necessarily one has v ≤ 0 in D. Choosing u as above, one can show that if

ε > 0 is sufficiently small, then one has Lγ,µu− εγ
2
3 u ≤ 0 in D. Since u ≥ 0

in D, the generalized maximum principle does not hold and consequently

λ0(γ, µ) ≤ εγ
2
3 , giving the upper bound in (4.2). We have experimented

with all sorts of much more complicated functions, but have not been able

to improve the above bounds.

The upper bound in (4.2) can be understood probabilistically by the fol-

lowing heuristic argument, which may be able to be made rigorous. If a

Brownian motion is at x, then the probability that it will reach 0 by time

s is no more than exp(−cx2

s ), for some c > 0. When the process X(·) is at

γ−l, the local jump rate is on the order γ1−l and thus the expected time to

jump is on the order γl−1. Letting s = γl−1 and x = γ−l, with l < 1
3 , it

follows that for large γ, any time the X(·) process finds itself in [γ−l, 1−γ−l],

the probability that the process will hit 0 before jumping is overwhelmingly

small. On a fixed time interval t, one expects no more than cγt jumps, for

some c > 0. The probability that all of these jumps will send the process to

[γ−l, 1 − γ−l] is at least (1 − 2γ−l)cγt. So the probability of not exiting by

time t is at least on the order (1− 2γ−l)cγt, which is at least exp(−c1γ
1−lt)

for some c1 > 0. By (1.1), we conclude that λ0(γ, µ) grows no faster than

γ1−l for any l < 1
3 .
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