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Abstract. Let X(t) be a positive recurrent diffusion process corresponding to an
operator L on a domain D ⊆ Rd with oblique reflection at ∂D if D 6≡ Rd. For each
x ∈ D, we define a volume-preserving norm that depends on the diffusion matrix
a(x). We calculate the asymptotic behavior as ε → 0 of the expected hitting time of
the ε-ball centered at x and of the principal eigenvalue for L in the exterior domain
formed by deleting the ball, with the oblique derivative boundary condition at ∂D
and the Dirichlet boundary condition on the boundary of the ball. This operator
is non-self-adjoint in general. The behavior is described in terms of the invariant
probability density at x and Det(a(x)). In the case of normally reflected Brownian
motion, the results become isoperimetric-type equalities.

Let D ⊆ Rd, d ≥ 2, be a domain. If D 6≡ Rd, assume that D has a smooth

boundary and let ν : ∂D → Sd be smooth and satisfy ν(x) · n(x) > 0 for all

x ∈ ∂D, where n(x) denotes the inward unit normal to D at x ∈ ∂D. We will call

ν a reflection vector. Let X(t) be the diffusion process in D with ν-reflection at

∂D (if D 6≡ Rd), and corresponding to the operator

L =
1
2
∇ · a∇+ b · ∇,

where a = {ai,j}d
i,j=1 ∈ C2,α

loc (Rd) is positive definite and b = (b1, ..., bd) ∈ C1,α
loc (Rd),

for some α ∈ (0, 1]. The smoothness assumptions have been made in order to insure
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that the adjoint operator has Cα-coefficients which then guarantees that invariant

densities, which are solutions to the adjoint equation, are classical solutions. But

this can be relaxed considerably since all we use is the existence of a continuous

invariant density. In the case that the coefficients ai,j ,
∂ai,j

∂xk
, and bi are bounded,

the existence and uniqueness in law of such a diffusion process follows from [15]

via the submartingale problem. In the case that the coefficients are not necessarily

bounded, there exists a unique solution to the generalized submartingale problem

up to a possibly finite explosion time (see [9] for the passage from the martingale

problem to the generalized martingale problem in the case of diffusions on Rd; the

passage from the submartingale problem to the generalized submartingale problem

for reflected diffusions is treated similarly). Let Px denote the probability measure

corresponding to the diffusion starting from x ∈ D̄.

We investigate the asymptotic behavior of the expected hitting time of a small

ball starting from outside the ball and of the principal eigenvalue for L in the

punctured domain obtained by deleting the small ball and placing the Dirichlet

boundary condition on the resulting boundary. Note that the operator in question

is in general non-self-adjoint because of the oblique derivative boundary condition

as well as because of the drift term b. We will assume throughout the paper that

the diffusion process is positive recurrent, which of course is always true if D is

bounded. Indeed, the expected hitting time is finite if and only if the process is

positive recurrent; that is, if and only if there exists an invariant probability density

µ (see [8, Theorem 4.9.6] for a proof of the equivalence in the case Rd = D). For

the investigation of the principal eigenvalue, we will need an additional assumption

which always holds if D is bounded.

The original motivation for this investigation was a recent paper [2] in which it

was shown that if T (x, ε) is the first hitting time of the disc of radius ε for Brownian

motion on the two-dimensional unit torus T , then limε→0 supx∈T 2
T (x,ε)
| log ε|2 = 2

π a.s.

A basic first step was to obtain estimates on the asymptotic behavior as ε → 0 of

the expected value of T (x, ε) starting from points y ∈ T − {x}.
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For a positive definite d× d matrix Γ, define the norm

||v||Γ = (v,
Γ

Det
1
d (Γ)

v)
1
2 , for v ∈ Rd.

Note that this norm preserves the Euclidean volume but distorts directions. For

x ∈ D and r > 0, let BΓ
r (x) = {y ∈ Rd : ||y−x||Γ < r} denote the open ball of radius

r in the Γ- norm and centered at x, and define τBΓ
r (x) = inf{t ≥ 0 : X(t) ∈ B̄Γ

r (x)}.
In the case of the standard Euclidean norm, when Γ is a scalar multiple of I, we

will use the notation |v| and Br(x) in place of ||v||I and BI
r (x). Let ωd denote the

volume of the unit ball in Rd.

Let ainv(x) denote the inverse matrix to a(x). Here is the main result with

regard to expected hitting times.

Theorem 1. Let X(t) be a positive recurrent diffusion in a domain D ⊆ Rd with

ν-reflection at ∂D (if D 6≡ Rd) and corresponding to an operator of the form L as

above. Let µ denote the invariant probability density. Let x ∈ D and y ∈ D̄ − {x}.
i. If d = 2, then

(1.1-i) lim
ε→0

Eyτ
B

ainv(x)
ε (x)

− log ε
=

1
πDet

1
2 (a(x))µ(x)

;

ii. If d ≥ 3, then

(1.1-ii) lim
ε→0

Eyτ
B

ainv(x)
ε (x)

ε2−d
=

2
d(d− 2)ωdDet

1
d (a(x))µ(x)

.

Remark. In the case that the diffusion process is reversible, the invariant density

can be given explicitly. The diffusion is reversible if and only if the drift vector

b is of the form b = a∇Q, for some function Q, and the reflection vector ν is in

the conormal direction; that is, ν(x) = c(x)a(x)n(x), where c(x) is the normalizing

scalar so that ν ∈ Sd. In this case, positive recurrence is equivalent to the condition
∫

D
exp(2Q(y))dy < ∞, and we have

µ(x) =
exp(2Q(x))∫

D
exp(2Q(y))dy

.

Thus, in the reversible case, the right hand side of (1.1) is given explicitly in terms

of the coefficients of L.
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If X(t) is normally reflected Brownian motion, then X(t) is positive recurrent if

and only if D has finite volume, in which case the invariant probability density is

1
V ol(D) . In this case, Theorem 1 becomes an asymptotic isoperimetric-type equality.

Corollary 1. Let X(t) be normally reflected Brownian motion in a domain D ⊂ Rd

of finite volume. Let x ∈ D and y ∈ D̄ − {x}.
i. If d = 2, then

lim
ε→0

EyτBε(x)

− log ε
=

V ol(D)
π

;

ii. If d ≥ 3, then

lim
ε→0

EyτBε(x)

ε2−d
=

2V ol(D)
d(d− 2)ωd

.

The above results are asymptotic ones. In the case of Brownian motion with

oblique reflection, we can give an exact calculation for the hitting time of a ball of

fixed radius from distinguished starting points. Let x ∈ D and let 0 < R < l be

such that B̄l(x) ⊂ D. Then there exists a point zl;R ∈ ∂Bl(x) for which Ezl;RτBR(x)

can be calculated explicitly. Before stating the result, we recall a few facts about

positive recurrent obliquely reflected Brownian motion. As noted above, the process

is reversible if and only if ν = n and, if it is reversible, it is positive recurrent if

and only if V ol(D) < ∞, in which case the invariant density is 1
V ol(D) . When

the process is not reversible, this simple condition for positive recurrence fails.

If D is bounded, then the process is always positive recurrent; however, if D is

unbounded, then the question of positive recurrence is highly non-trivial. We can

write ν(x) = c(x)n(x) − T (x), where c ∈ (0, 1] and T 6≡ 0 is a tangent vector field

on ∂D. The density µ of an invariant measure must satisfy the adjoint equation:

1
2∆µ = 0 in D and ∇µ · n +∇ · (T

c µ) = 0 on ∂D. In particular, Lebesgue measure

will be invariant only if ∇· T
c ≡ 0 on ∂D, which is in fact impossible if d is odd and

∂D is compact. It is not hard to give examples where V ol(D) < ∞ but the process

is not positive recurrent, as well as examples where V ol(D) = ∞ but the process

is positive recurrent.

Theorem 2. Let X(t) be ν-reflected Brownian motion in a domain D ⊂ Rd. As-
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sume that the process is positive recurrent and let µ denote the invariant probability

density. Let x ∈ D and let l > 0 be such that B̄l(x) ⊂ D. For each R ∈ (0, l), there

exists a zl;R ∈ ∂Bl(x) such that

i. if d = 2, then

(1.2-i) Ezl;RτBR(x) =
1

µ(BR(x))
R2 log

l

R
− 1

2
(l2 −R2);

ii. if d ≥ 3, then

(1.2-ii) Ezl;RτBR(x) =
2Rd

d(d− 2)µ(BR(x))
(R2−d − l2−d)− 1

d
(l2 −R2).

Remark. Consider Theorem 2 when the reflection vector is normal, in which case

we assume that V ol(D) < ∞ and we have µ(BR(x)) = ωdRd

V ol(D) . Then the theorem

indicates that for x ∈ D and for 0 < R < l such that B̄l(x) ⊂ D, one can find a

point zl;R such that Ezl;RτBR(x) is equal to the common value that one obtains for

the expected value of τBR(x) starting from any point on ∂Bl(x) in the case that the

domain is a ball of the same volume centered at x.

We note that Theorem 1 can also be thought of as giving a formula for the

invariant density in terms of the asymptotic behavior of expected hitting times

of small balls. Green’s function and potential theory afficianados might want to

represent this as follows: let G
B

ainv(x)
ε (x)

(·, ·) denote the Green’s function for L

in D − B̄
ainv(x)
ε (x) with the oblique derivative boundary condition in the direc-

tion ν = cn − T at ∂D (if D 6≡ Rd) and the Dirichlet boundary condition at

∂B
ainv(x)
ε (x). (The probabilistic representation is given by G

B
ainv(x)
ε (x)

(z, A) =

Ez

∫ τ
B

ainv(x)(x)
ε

0 1{A}(X(t))dt, where G
B

ainv(x)
ε (x)

(z, A) =
∫

A
G

B
ainv(x)
ε (x)

(z, y)dy.)

Then

Ezτ
B

ainv(x)
ε (x)

=
∫

D−B
ainv(x)
ε (x)

G
B

ainv(x)
ε (x)

(z, y)dy,

for z ∈ D − B
ainv(x)
ε (x); thus, the unique solution µ > 0 to the adjoint equation

L̃µ = 0 in D and ∇µ · n +∇ · (T
c µ) = 0 on ∂D, where L̃ = 1

2∇ · a∇− b · ∇ −∇ · b,
is given by

(1.3-i) µ(x) = lim
ε→0

− log ε

πDet
1
2 (a(x))

∫
D−B

ainv(x)
ε (x)

G
B

ainv(x)
ε (x)

(z, y)dy
, if d = 2,
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and

(1.3-ii)

µ(x) = lim
ε→0

2ε2−d

d(d− 2)ωdDet
1
d (a(x))

∫
D−B

ainv(x)
ε (x)

G
B

ainv(x)
ε (x)

(z, y)dy
, if d ≥ 3,

for any z ∈ D − {x}.
In fact, (1.3) along with a slightly modified version of it will be used to prove

our result concerning the asymptotic behavior of the principal eigenvalue, which we

now consider. First consider the case that D is bounded. Of course, the principal

eigenvalue for the operator −L in D with the oblique derivative boundary condition

in the direction ν on ∂D is 0 and the corresponding eigenvector is constant. For x ∈
D, let λε(x) denote the classical principal eigenvalue for −L in D−B̄ainv(x)(x) with

the oblique derivative boundary condition in the direction ν on ∂D and the Dirichlet

boundary condition on ∂Bainv(x)(x). Since the domain is bounded, the operator in

question has a compact resolvent and it follows from the Krein-Rutman theorem

that λε(x) > 0 (see [7] and also [9, chapter 3] which treats the case of Dirichlet

boundary rather than oblique reflection). If D is unbounded, then we need to define

the principal eigenvalue λε(x) carefully and we need to make the assumption that it

is in fact strictly positive. We define the generalized principal eigenvalue as follows:

let {Dk} be an increasing sequence of bounded domains with smooth boundaries

satisfying ∪∞k=1D̄k = D̄ and consider the operator −L on Dk− B̄
ainv(x)
ε (x) with the

oblique derivative boundary condition in the direction ν on the relative interior of

∂Dk∩∂D in ∂Dk and with the Dirichlet boundary condition on the relative interior

of ∂Dk − ∂D in ∂Dk and on ∂B
ainv(x)
ε (x). No boundary condition is imposed on

the relative boundary of ∂Dk in ∂D. A principal eigenvalue λ
(k)
ε (x) exists for this

problem [7] and is positive and monotone nonincreasing. The generalized principal

eigenvalue is defined as λε(x) = limk→∞ λ
(k)
ε (x).

We will need the following hypothesis.

Hypothesis 1. For some ε0 > 0 and some λ̄ > 0,

sup
y∈D̄−B

ainv(x)
ε0 (x)

Ey exp(λ̄τ
B

ainv(x)
ε0 (x)

) < ∞.
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Lemma 1. i. Hypothesis 1 always holds if D is bounded.

ii. If

Ey exp(λ̄τ
B

ainv(x)
ε0 (x)

) < ∞, for y ∈ D̄ −Bainv(x)
ε0 (x),

for some ε0 > 0 and some λ̄ > 0, then λε(x) > 0 for all ε > 0.

From Lemma 1 it follows in particular that λε(x) > 0 for ε > 0 whenever

Hypothesis 1 is in effect.

We can now state the theorem.

Theorem 3. Let x ∈ D and let λε(x) denote the (generalized) principal eigenvalue

for L in D − B̄
ainv(x)
ε (x) with the oblique derivative boundary condition at ∂D (if

D 6≡ Rd) and the Dirichlet boundary condition at ∂B
ainv(x)
ε (x). If D is unbounded,

assume that Hypothesis 1 holds.

i. If d = 2, then

(1.4-i) lim
ε→0

(− log ε)λε(x) = πDet
1
2 (a(x))µ(x);

ii. If d ≥ 3, then

(1.4-ii) lim
ε→0

ε2−dλε(x) =
d(d− 2)ωdDet

1
d (a(x))µ(x)

2
.

Remark 1. Note that Theorems 1 and 3 show that Exτ
B

ainv(x)
ε (x)

and λε(x) have

reciprocal asymptotic behavior. This is not surprising because if τ
B

ainv(x)
ε (x)

had

an exact exponential distribution, then its expectation and the asymptotic rate

of decay of its tail probabilities would be reciprocals, and this latter quantity is

essentially λε(x).

Remark 2. From the remark following Theorem 1, it follows that in the reversible

case, the righthand side of (1.4) is given explicitly in terms of the coefficients of L.

Remark 3. A corresponding formula in the case that the operator is ∆ and the

Dirichlet boundary condition is placed on ∂D was obtained in [6], which actually
7



treated all the eigenvalues, not just the principal one. A similar result in the case

of a closed manifold was obtained in [1]. Note that this problem is self-adjoint.

Remark 4. In another paper, the technique used in the proof of Theorem 1 is used

along with other techniques to obtain the asymptotic behavior of the principal

eigenvalue in regions with many small holes in the case of the Laplacian with the

Neumann boundary condition [10]. For other papers concerning the shift of the

principal eigenvalue in regions with many holes, see for example [4, 11, 12] as well

as the exposition in [13, chapter 22].

Consider the case of Brownian motion with normal reflection in a domain D of

finite volume. By Lemma 1-i, if the domain is bounded then Hypothesis 1 is always

satisfied. An interesting question is whether Hypothesis 1 is ever satisfied (or

whether λε(x) is ever positive) when D is unbounded. As evidence that λε(x) = 0

whenever D is unbounded, consider the case that D is horn-shaped of the form D =

{z = (s, w) ∈ R×Rd−1 : |w| < H(|s|)}, where H is a positive, continuous function

satisfying
∫∞
0

Hd−1(s)ds < ∞. Then D ⊂ Rd has finite volume. Look now at the

punctured domain D − B̄ε(0), for small ε > 0. The operator − 1
2∆ in this domain

with the Neumann boundary condition at ∂D and the Dirichlet boundary condition

at ∂Bε(0) is self adjoint; thus, an upper estimate on the principal eigenvalue can

be obtained via the Rayliegh-Ritz quotient [14]. For δ > 0, define the test function

fδ(z) = sin πδ(s− ε) for s ∈ (ε, 1
δ + ε), fδ(z) = 0 for s ∈ [0, ε] and s ≥ 1

δ + ε, and fδ

extended to negative values of s as an even function. Then fδ vanishes on ∂Bε(0)

and
1
2

∫
D−Bε(0)

|∇fδ(z)|2dz∫
D−Bε(0)

f2
δ
(z)dz

≤ π2

2 δ2. Thus, by the Rayliegh-Ritz formula, λε(0) = 0,

and by Lemma 1 it also follows that Hypothesis 1 is not satisfied.

Analogously to Corollary 1, we have the following corollary, which in light of the

above discussion, might be vacuous if D is unbounded.

Corollary 2. Let X(t) be normally reflected Brownian motion in a domain D ⊂ Rd

of finite volume. If D is unbounded, assume that Hypothesis 1 holds. Let x ∈ D.
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i. If d = 2, then

lim
ε→0

− log ελε(x) =
π

V ol(D)
;

ii. If d ≥ 3, then

lim
ε→0

ε2−dλε(x) =
d(d− 2)ωd

2V ol(D)
.

We will prove Theorem 2 in section 2, Theorem 1 in section 3, and Theorem 3

and Lemma 1 in section 4.

2. Proof of Theorem 2. Let x,R and l be as in the statement of the theorem.

Define inductively stopping times σ1 = inf{t ≥ 0 : X(t) ∈ ∂Bl(x)}, ηn = inf{t ≥
σn : X(t) ∈ ∂BR(x)}, and σn+1 = inf{t ≥ ηn : X(t) ∈ ∂Bl(x)}, n = 1, 2, ... .

Note that under Pz with z ∈ ∂Bl(x), we have η1 = inf{t ≥ 0 : X(t) ∈ ∂BR(x)}.
Under Pz, with z ∈ ∂BR(x) ∪ ∂Bl(x), the sequence X(σ1), X(η1), X(σ2), X(η2), ...

is a Markov process on a compact space and consequently possesses an invariant

probability measure. Thus, there exist probability measures m1 and m2 on ∂BR(x)

and ∂Bl(x) respectively such that Pm1(X(σ1) ∈ ·) = m2(·) and Pm2(X(η1) ∈ ·) =

m1(·).
We now use Hasminski’s construction of the invariant measure for a recurrent

diffusion process. (See [3] where the construction is carried out in the case of an

unrestricted diffusion on all of space; the same construction works for any Feller

process.) With an abuse of notation, we let µ denote the invariant probability

measure as well as its density. By Hasminskii’s construction

(2.1) µ(A) =
Em1

∫ η1

0
1A(X(t))dt

Em1η1
, for A ⊂ D̄.

We now express Em2τBR(x) as the sum of two terms.

(2.2) Em2τBR(x) = Em2

∫ η1

0

1D−Bl(x)(X(t))dt + Em2

∫ η1

0

1Bl(x)−BR(x)(X(t))dt.

Using (2.1) and the invariance property of m2, we write the first term on the right

hand side of (2.2) as

(2.3)
Em2

∫ η1

0

1D−Bl(x)(X(t))dt = Em1

∫ η1

0

1D−Bl(x)(X(t))dt

= µ(D −Bl(x))Em1η1,
9



and the second term on the right hand side of (2.2) as

(2.4)

Em2

∫ η1

0

1Bl(x)−BR(x)(X(t))dt =

Em1

∫ η1

0

1Bl(x)−BR(x)(X(t))dt− Em1

∫ σ1

0

1Bl(x)−BR(x)(X(t))dt =

µ(Bl(x)−BR(x))Em1η1 − Em1

∫ σ1

0

1Bl(x)−BR(x)(X(t))dt.

Setting A = BR(x) in (2.1), we have

(2.5)
Em1η1 =

Em1

∫ η1

0
1BR(x)(X(t))dt

µ(BR(x))

=
Em1

∫ σ1

0
1BR(x)(X(t))dt

µ(BR(x))
.

From (2.2)-(2.5), we obtain

(2.6)
Em2τBR(x) =

1− µ(BR)
µ(BR)

Em1

∫ σ1

0

1BR(x)(X(t))dt

− Em1

∫ σ1

0

1Bl(x)−BR(x)(X(t))dt.

Note that the two expectations on the right hand side of (2.6) are actually inde-

pendent of the particular measure m1 because of symmetry considerations.

Let vR,l(r) denote the solution to

(2.7)

1
2
v′′(r) +

d− 1
2r

v′(r) = −1[0,R](r), r ∈ (0, l);

v′(0) = 0, v(l) = 0.

Then, as is well-known,

(2.8) Em1

∫ σ1

0

1BR(x)(X(t))dt = vR,l(R).

Solving the differential equation in (2.7) separately on [0, R] and on [R, l], and

matching the solutions and their first derivatives at r = R, we obtain

(2.9) Em1

∫ σ1

0

1BR(x)(X(t))dt = vR,l(R) =

{
R2 log l

R , if d = 2
2Rd

d(d−2) (R
2−d − l2−d), if d ≥ 3.

Similarly, let uR,l(r) denote the solution to

(2.10)

1
2
u′′ +

d− 1
2r

u′ = −1, r ∈ (0, l);

u′(0) = 0, u(l) = 0.
10



Then Em1σ1 = uR,l(R) and consequently

(2.11) Em1

∫ σ1

0

1Bl(x)−BR(x)(X(t))dt = uR,l(R)− vR,l(R).

Solving (2.10) for uR,l and using (2.11), we obtain

(2.12) Em1

∫ σ1

0

1Bl(x)−BR(x)(X(t))dt =
1
d
(l2 −R2)− vR,l(R), for all d ≥ 2.

Now (1.2) follows from (2.6), (2.9), (2.12) and the fact that EzτBR(x) is continuous

in z. ¤

3. Proof of Theorem 1. Let x ∈ D. Define stopping times σn and ηn and identify

probability measures m1 and m2 in the same way as at the beginning of the proof

of Theorem 2, except this time instead of using the domains BR(x) and Bl(x), use

the domains B
ainv(x)
ε (x) and Bl(x), where l satisfies B̄l(x) ⊂ D and ε is sufficiently

small so that B̄
ainv(x)
ε (x) ⊂ Bl(x). As the notation is awkward, in the sequel we

will write B
ainv(x)
· for B

ainv(x)
· (x). The calculations from (2.1)-(2.6) hold in the

present context. Substituting B
ainv(x)
ε for BR(x) in (2.6), we have

(3.1)
Em2τB

ainv(x)
ε

=
1− µ(Bainv(x)

ε )

µ(Bainv(x)
ε )

Em1

∫ σ1

0

1
B

ainv(x)
ε

(X(t))dt

− Em1

∫ σ1

0

1
Bl(x)−B

ainv(x)
ε

(X(t))dt.

The second term on the right hand side of (3.1) remains bounded when ε → 0; thus

the asymptotic behavior of the left hand side of (3.1) coincides with the asymptotic

behavior of the first term on the right hand side of (3.1) as ε → 0. Let G(l)(x, y)

denote the Green’s function corresponding to the diffusion process in Bl(x) which

is killed upon hitting ∂Bl(x). The expected value appearing in the first term on

the right hand side of (3.1) can be rewritten in terms of G(l) as follows:

(3.2) Em1

∫ σ1

0

1
B

ainv(x)
ε

(X(t))dt =
∫

∂B
ainv(x)
ε

∫

B
ainv(x)
ε

G(l)(z, y)dy m1(dz).

The Green’s function exhibits the following behavior at its pole:

(3.3)

G(l)(z, y) = − 1
2πDet

1
2 (a(z))

log((y − z), ainv(z)(y − z))

+ lower order terms, as y → z, if d = 2;

G(l)(z, y) =
2

d(d− 2)ωdDet
1
2 (a(z))

((y − z), ainv(z)(y − z))
2−d
2

+ lower order terms, as y → z, if d ≥ 3.
11



(See [5, p.17] and note that in this reference ωd is the surface area of the unit

ball rather than the volume.) Since a(z) is continuous, it follows that as ε → 0,

the leading term in the asymptotics for the right hand side of (3.2) is the same

as what one would get with G(l)(z, y) replaced by the explicit term on the right

hand side of (3.3), but with a(z) and ainv(z) replaced by a(x) and ainv(x). Letting

(ainv)
1
2 (x) denote the positive definite square root of ainv(x) and making the change

of variables (ainv)
1
2 (x)

Det
1
2d (ainv(x))

(y − z) = u, we calculate for d ≥ 3,

(3.4)

1
Det

1
2 (a(x))

∫

B
ainv(x)
ε

((y − z), ainv(x)(y − z))
2−d
2 dy

=
1

Det
1
d (a(x))

∫

|u+
(ainv)

1
2 (x)

Det
1
2d (ainv(x))

(z−x)|<ε

|u|2−ddu.

Since z ∈ ∂B
ainv(x)
ε , it follows that | (ainv)

1
2 (x)

Det
1
2d (ainv(x))

(z−x)| = ε, and thus the integral

on the right hand side of (3.4) is independent of z ∈ ∂B
ainv(x)
ε . This is imperative

because we have no control over the probability measure m1(dz) on ∂B
ainv(x)
ε . We

conclude then that

(3.5)
2

d(d− 2)ωdDet
1
2 (a(x))

∫

∂B
ainv(x)
ε

∫

B
ainv(x)
ε

((y − z), ainv(x)(y − z))
2−d
2 dy m1(dz)

=
2

d(d− 2)ωdDet
1
d (a(x))

∫

|u+wε|<ε

|u|2−ddu, for any wε satisfying |wε| = ε.

We have now established that the leading term in the asymptotics for

Em1

∫ σ1

0
1

B
ainv(x)
ε

(X(t))dt =
∫

∂B
ainv(x)
ε

∫
B

ainv(x)
ε

G(l)(z, y)dy m1(dz) coincides with

the leading term in the asymptotics for the right hand side of (3.5). Note that when

L = 1
2∆, in which case a(x) = I, an exact expression for Em1

∫ σ1

0
1Bε(x)(X(t))dt

has already been given in (2.9) (with R replaced by ε). Comparing (2.9) with (3.5)

then allows us to deduce that

(3.6)
∫

|u+wε|<ε

|u|2−ddu = ωdε
2 + o(ε2), as ε → 0.

From (3.5) and (3.6) we conclude that

(3.7)

∫

∂B
ainv(x)
ε

∫

B
ainv(x)
ε

G(l)(z, y)dy m1(dz) ∼ 2ε2

d(d− 2)Det
1
d (a(x))

,

as ε → 0, if d ≥ 3.
12



The same argument in the case d = 2 leads to

(3.8)
∫

∂B
ainv(x)
ε

∫

B
ainv(x)
ε

G(l)(z, y)dy m1(dz) ∼ − ε2 log ε

Det
1
2 (a(x))

, as ε → 0, if d = 2.

From (3.1), (3.2), (3.7), (3.8) and the fact that V ol(Bainv(x)
ε ) = V ol(Bε(x)) = ωdε

d,

we conclude that

(3.9-i) lim
ε→0

Em2τB
ainv(x)
ε

− log ε
=

1
πDet

1
2 (a(x))µ(x)

, if d = 2,

and

(3.9-ii) lim
ε→0

Em2τB
ainv(x)
ε

ε2−d
=

2
d(d− 2)ωdDet

1
d (a(x))µ(x)

, if d ≥ 3.

Recall that m2 is a certain probability measure on Bl(x), where l has been chosen

so that B̄l(x) ⊂ D. Thus, in light of (3.9), to complete the proof of Theorem 1 it

is enough to show that

(3.10) lim
ε→0

Ey1τB
ainv(x)
ε

Ey2τB
ainv(x)
ε

= 1, uniformly for y1, y2 in compact subsets of D̄ − {x}.

Let B1 and B2 be balls centered at x and satisfying B̄1 ⊂ B2 ⊂ D. Redefine the

stopping times σn and ηn and the probability measures m1 and m2, defined at the

beginning of the proof in terms of the domains B
ainv(x)
ε and Bl(x), in terms of the

domains B1 and B2. For y ∈ D̄ −B2, we have for ε sufficiently small

(3.11) Eyτ
B

ainv(x)
ε

= Eyσ1 +
∫

∂B2

Ezτ
B

ainv(x)
ε

Py(X(σ1) ∈ dz).

Since Eyσ1 is bounded for y in a compact subset of D̄, it follows from (3.11) that

in order to prove (3.10) for an arbitrary compact subset of D̄−{x}, it is enough to

prove (3.10) for the compact subset ∂B2.

We now set out to prove (3.10) in this particular case. By Harnack’s inequality,

it follows that there exists a C > 0 such that

(3.12)
1
C

Py1(X(η1) ∈ ·) ≤ Py2(X(η1) ∈ ·) ≤ CPy1(X(η1) ∈ ·), for all y1, y2 ∈ ∂B2.

13



(See, for example, [9, Theorem 7.4.5] which treats the case of diffusions that are

killed rather than reflected at the boundary; however, the boundary is irrelevant

since the interior Harnack inequality is used.). Thus, writing

Eyi
τ
B

ainv(x)
ε

= Eyi
η1 +

∫

∂B1

Ewτ
B

ainv(x)
ε

Pyi
(X(η1) ∈ dw), for yi ∈ ∂B2,

it follows that

(3.13)
1
C
≤ lim inf

ε→0

Ey1τB
ainv(x)
ε

Ey2τB
ainv(x)
ε

≤ lim sup
ε→0

Ey1τB
ainv(x)
ε

Ey2τB
ainv(x)
ε

≤ C for all y1, y2 ∈ ∂B2.

Now (3.12) continues to hold with y1 replaced by m2. Since Pm2(X(η1) ∈ ·) =

m1(·), we conclude in particular that

(3.14) Py(X(η1) ∈ ·) ≥ 1
C

m1(·), for y ∈ ∂B2.

Using (3.14), we can make a Doeblin-type coupling argument to conclude that

(3.15) Py(X(σn) ∈ ·) = an−1m2(·)+(1−an−1)µy,n(·), for all y ∈ ∂B2, n = 2, 3, ...,

where µy,n(·) is a probability measure on ∂B2, and an is defined recursively by

a1 = 1
C , an+1 = an + 1

C (1 − an) for n ≥ 1. In particular, limn→∞ an = 1. The

coupling is achieved as follows. Start the process from y ∈ ∂B2 at time t = 0 = σ1

and wait until time t = η1. By (3.14), the measure Py(X(η1) ∈ ·) dominates

1
C m1. Since Pm1(X(σ1) ∈ ·) = m2(·), it follows that the measure Py(X(σ2) ∈ ·)
dominates 1

C m2. Thus, by time t = σ2, the process is running from equilibrium with

probability 1
C . With probability 1− 1

C it is running from some arbitrary distribution,

but applying the same reasoning again on another circuit shows that by time t = σ3,

the process is running from equilibrium with probability 1
C + 1

C (1− 1
C ). Continuing

like this gives the coupling as above. (For more details, see for example [8, pp.

6-8].) Using (3.15), we have

(3.16)
Eyτ

B
ainv(x)
ε

= Eyσn ∧ τ
B

ainv(x)
ε

+ an−1Py(τ
B

ainv(x)
ε

> σn)Em2τB
ainv(x)
ε

+ (1− an−1)Py(τ
B

ainv(x)
ε

> σn)Eµy,nτ
B

ainv(x)
ε

, for y ∈ ∂B2, n = 1, 2, ...

The first term on the right hand side of (3.16) remains bounded when ε → 0.

Also, note that Py(τ
B

ainv(x)
ε

> σn) as function of y ∈ ∂B2 is increasing pointwise
14



to 1 as ε → 0. Thus, by Dini’s Theorem, the convergence is uniform. By (3.13),

Eµy,n
τ
B

ainv(x)
ε

≤ CEm2τB
ainv(x)
ε

. Using these facts along with (3.16) and the fact

that limn→∞ an = 1, (3.10) now follows for y1, y2 ∈ ∂B2. This completes the proof

of (3.10). ¤

4. Proof of Theorem 3 and Lemma 1. We first prove Theorem 3 and then

Lemma 1, although the proof of Theorem 3 uses Lemma 1.

Proof of Theorem 3. Recall the definition of G
B

ainv(x)
ε

before (1.3). We prove the

theorem by using a slight variation of (1.3) along with (1.3) and some ideas from

criticality theory for elliptic operators. Let {Dn}∞n=1 be a sequence of bounded

domains satisfying D̄n ⊂ Dn+1 and ∪∞n=1Dn = D. The variant of (1.3) that we

need is this:

(4.1-i) µ(x) = lim
n→∞,δ→0

lim
ε→0

− log ε

πDet
1
2 (a(x))

∫
Dn−Bδ(x)

G
B

ainv(x)
ε

(z, y)dy
, if d = 2,

and

(4.1-ii)
µ(x) = lim

n→∞,δ→0
lim
ε→0

2ε2−d

d(d− 2)ωdDet
1
d (a(x))

∫
Dn−Bδ(x)

G
B

ainv(x)
ε

(z, y)dy
,

if d ≥ 3,

for any z ∈ D−{x}. To prove (4.1), let Bl(x), Bainv(x)
ε , σn and ηn be as defined at

the beginning of section 3. Consider ε > 0, δ ∈ (0, l) and n such that B̄
ainv(x)
ε ⊂

Bδ(x) and B̄l(x) ⊂ Dn. Using (2.1), we make a calculation very similar to (2.2)-

(2.6). We have

(4.2)
Em2

∫ η1

0

1Dn−Bδ(x)(X(t))dt = Em2

∫ η1

0

1Dn−Bl(x)(X(t))dt

+ Em2

∫ η1

0

1Bl(x)−Bδ(x)(X(t))dt.

Using (2.1) and the invariance property of m2, we write the first term on the right

hand side of (4.2) as

(4.3)
Em2

∫ η1

0

1Dn−Bl(x)(X(t))dt = Em1

∫ η1

0

1Dn−Bl(x)(X(t))dt

= µ(Dn −Bl(x))Em1η1,
15



and the second term on the right hand side of (4.2) as

(4.4)

Em2

∫ η1

0

1Bl(x)−Bδ(x)(X(t))dt =

Em1

∫ η1

0

1Bl(x)−Bδ(x)(X(t))dt− Em1

∫ σ1

0

1Bl(x)−Bδ(x)(X(t))dt =

µ(Bl(x)−Bδ(x))Em1η1 − Em1

∫ σ1

0

1Bl(x)−Bδ(x)(X(t))dt.

Setting A = B
ainv(x)
ε in (2.1), we have

(4.5)

Em1η1 =
Em1

∫ η1

0
1

B
ainv(x)
ε

(X(t))dt

µ(Bainv(x)
ε )

=
Em1

∫ σ1

0
1

B
ainv(x)
ε

(X(t))dt

µ(Bainv(x)
ε )

.

From (4.2)-(4.5), we obtain

(4.6)
Em2

∫ η1

0

1Dn−Bδ(x)(X(t))dt =
µ(Dn −Bδ(x))

µ(Bainv(x)
ε )

Em1

∫ σ1

0

1
B

ainv(x)
ε

(X(t))dt

− Em1

∫ σ1

0

1Bl(x)−Bδ(x)(X(t))dt.

If we replace (3.1) with (4.6) and continue with the argument in section 3, we obtain

instead of (1.1):

(4.7-i) lim
ε→0

Ey

∫ τ
B

ainv(x)
ε

0 1Dn−Bδ(x)(X(t))dt

− log ε
=

µ(Dn −Bδ(x))
πDet

1
2 (a(x))µ(x)

, if d = 2;

(4.7-ii)

lim
ε→0

Ey

∫ τ
B

ainv(x)
ε

0 1Dn−Bδ(x)(X(t))dt

ε2−d
=

2µ(Dn −Bδ(x))
d(d− 2)ωdDet

1
d (a(x))µ(x)

, if d ≥ 3.

Now just as (1.3) is the analytical equivalent of (1.1), (4.1) without the term

limn→∞,δ→0 is the analytical equivalent of (4.7). Thus (4.1) follows by noting

that limn→∞,δ→0 µ(Dn −Bδ(x)) = 1.

The rest of the proof uses some ideas from criticality theory for elliptic operators—

see [7] and [9, chapter 4]. (We will give references from [9], which treats the case

that the entire boundary is given the Dirichlet boundary condition implicitly. We

say “implicitly”, because in fact no boundary condition is given in [9], but when the
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boundary is smooth, this is equivalent to the Dirichlet boundary condition. The re-

sults carry over to the case at hand as can be seen from [7]. Note however, that our

eigenvalue corresponds to the operator −L, while in [9] the operator in question is

L.) The eigenvalue λε(x) is monotone nondecreasing in ε; let λ0(x) = limε→0 λε(x).

Then it follows that λ0(x) is the generalized principal eigenvalue for −L on D−{x}
with the oblique derivative boundary condition in the direction ν [9, Theorem 4.4.1].

Since we have assumed that the diffusion corresponding to L on D with ν-reflection

at ∂D is recurrent, and since the point x is polar for the L diffusion, the diffusion

corresponding to L on D−{x} with ν-reflection at ∂D and absorption at {x} is also

recurrent. Equivalently, in the language of criticality theory, L on D−{x} with the

oblique derivative boundary condition in the direction ν is a critical operator [9,

Theorem 4.3.3]. From this we conclude that λ0(x) = 0 [9, Theorem 4.3.2] and that

the cone of positive harmonic functions for L+λ0(x) = L on D−{x} which satisfy

the oblique derivative boundary condition in the direction ν is one-dimensional [9,

Theorem 4.3.4]; thus the only such harmonic functions are the constants.

We now show that for small ε > 0, the operator L + λε(x) on D − B̄
ainv(x)
ε

with the oblique derivative boundary condition in the direction ν is also critical.

By Lemma 1 and Hypothesis 1 we have λε(x) > 0 for ε > 0. Fix ε1 > 0. Since

λε(x) is monotone nondecreasing in ε and since limε→0 λε(x) = 0, it follows that

λε(x) < λε1(x), for sufficiently small ε > 0. The criticality now follows from [9,

Theorem 4.7.2].

By the criticality, it follows again from [9, Theorem 4.3.4] that up to constant

multiples, there exists a unique positive (L + λε(x))-harmonic function φε on D −
B

ainv(x)
ε which satisfies ν∇φε = 0 on ∂D. Because the boundary ∂B

ainv(x)
ε is

smooth, we have φε = 0 on ∂B
ainv(x)
ε . Fixing some z0 ∈ D with z0 6= x and

considering ε > 0 sufficiently small so that z0 6∈ B̄
ainv(x)
ε , we normalize φε by

requiring φε(z0) = 1. By standard Schauder estimates and Harnack’s inequality, it

follows that {φε} is precompact in the C2
loc(D̄)–norm, that the convergence along

a subsequence to a limiting function is uniform on compact subsets of D̄ − {x},
17



and that any limiting function φ is positive and satisfies Lφ = 0 in D − {x} and

ν∇φ = 0 on ∂D. By the above proved uniqueness of L harmonic functions on

D − {x} satisfying the oblique derivative boundary condition in the direction ν,

and by the normalization, we conclude that

(4.8)
lim
ε→0

φε(y) = 1, for all y ∈ D̄ − {x},

and the convergence is uniform on compact subsets of D̄ − {x}.

We now show that

(4.9) φε(z) =
∫

D−B
ainv(x)
ε

G
B

ainv(x)
ε

(z, y)λε(x)φε(y)dy.

To see this, we note that if there exists a positive solution to Lu = −λε(x)φε in

D − B̄
ainv(x)
ε with the oblique derivative boundary condition in the direction ν on

∂D, then the right hand side of (4.9) is the smallest such solution (this is a slight

generalization of [9, Theorem 4.3.8]). Since φε is a positive solution, it follows

that the right hand side of (4.9), which we will denote by uε, is also a solution

and φε ≥ uε. Define wε = φε − uε. Then wε ≥ 0, Lwε = 0 and ν∇wε = 0 on

∂D. By the above proved uniqueness, it follows that wε = cε for some nonnegative

constant. However φε = 0 on ∂B
ainv(x)
ε which allows us to conclude that cε = 0;

hence uε = φε, proving (4.9).

Recalling that φε(z0) = 1, we can use (4.9) to represent the eigenvalue as

(4.10) λε(x) =
1∫

D−B
ainv(x)
ε

G
B

ainv(x)
ε

(z0, y)φε(y)dy
.

We will show below that

(4.11) lim sup
ε→0

sup
y∈D−B

ainv(x)
ε

|φε(y)| < ∞.

The theorem is now an immediate consequence of (1.3), (4.1), (4.8), (4.10) and

(4.11).

It remains to prove (4.11). It follows from (4.8) that it is enough to show that

|φε(y)| remains uniformly bounded as ε → 0 for y close to x and for y outside a

fixed neighborhood of x. Choose r0 > 0 so that B2r0(x) ⊂ D. Let λ̄ > 0 denote
18



the principal eigenvalue of −L on B2r0(x). (As in [9], we impose no boundary

condition, but implicitly, the eigenvalue in question is the one corresponding to the

Dirichlet boundary condition on ∂B2r0(x).) Consider ε > 0 sufficiently small so

that λε(x) < 1
2 λ̄. Since L + 1

2 λ̄ on B2r0(x) is subcritical, we can find a positive

solution u to

(L +
1
2
λ̄)u = 0 in B2r0(x).

We now show that for some c > 0

(4.12) φε(y) ≤ c sup
z∈Br0 (x)

u(z), for y ∈ Br0(x)−Bainv(x)
ε .

Define the h-transformed operator (L+λε(x))u of L+λε(x) (via the function u) by

(L+λε(x))uf ≡ 1
u (L+λε(x))(fu) so that (L+λε(x))u = L+a∇u

u ·∇+(λε(x)− 1
2 λ̄).

Note that since u is bounded away from 0 in Br0(x), the coefficient a∇u
u is bounded

in Br0(x). We have (L + λε(x))u(φε

u ) = 0 in Br0(x). Since the zeroth order term,

λε(x)− 1
2 λ̄, of the operator (L + λε(x))u is negative, it follows from the maximum

principal that supy∈Br0 (x)
φε

u (y) = supy∈∂Br0 (x)
φε

u (y). Thus

(4.13) sup
y∈Br0 (x)

φε(y) ≤ sup
y∈Br0 (x)

u(y) sup
y∈∂Br0 (x)

φε(y)
u

.

By (4.8), φε is bounded on ∂Br0(x), uniformly as ε → 0. Thus, (4.12) follows from

(4.13).

Now fix ε0 and λ̄ as in Hypothesis 1. By the Feynman-Kac formula,

(4.14) v(y) ≡ Ey exp(λ̄τ
B

ainv(x)
ε0

), y ∈ D̄ − B̄ainv(x)
ε0

is a positive solution to (L + λ̄)u = 0 in D − B̄
ainv(x)
ε0 satisfying ν∇v = 0 on ∂D.

Consider ε < ε0 sufficiently small so that λε(x) < λ̄. We now show that for some

c > 0,

(4.15) φε ≤ cv on D − B̄ainv(x)
ε0 .

Since the operator L + λε(x) on D− B̄
ainv(x)
ε with the oblique derivative boundary

condition in the direction ν at ∂D is critical, the generalized eigenfunction φε
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corresponding to λε(x) is called a “ground state” and is a positive solution of

minimal growth at infinity for L+λε(x). (See [9] section 7.3 in general and Theorem

7.3.8 in particular.) This means in particular that the following maximum principal

holds in D−B
ainv(x)
ε0 : if w > 0 satisfies (L+λε(x))w ≤ 0 in D−B

ainv(x)
ε0 , ν∇w = 0

on ∂D and φε ≤ w on ∂B
ainv(x)
ε0 , then φε ≤ w in D − B

ainv(x)
ε0 . We apply this

with w =
sup

y∈∂B
ainv(x)
ε0

φε(y)

inf
y∈∂B

ainv(x)
ε0

v(y) v. Note that (L + λε(x))w < 0 because (L + λε(x))v =

(λε(x)− λ̄)v < 0. Thus, we conclude that

(4.16) φε(z) ≤
sup

y∈∂B
ainv(x)
ε0

φε(y)

inf
y∈∂B

ainv(x)
ε0

v(y)
v(z), for z ∈ D −Bainv(x)

ε0 .

By (4.8), φε is bounded on ∂B
ainv(x)
ε0 , uniformly as ε → 0. Thus, (4.15) follows from

(4.16). By Hypothesis 1 and (4.14), v is bounded on D − B̄
ainv(x)
ε0 . Using this fact

along with (4.8), (4.12) and (4.15) gives us (4.11). ¤

Proof of Lemma 1. i. Fix any ε0 > 0 such that B̄
ainv(x)
ε0 ⊂ D. Let ρ =

sup
y∈D̄−B

ainv(x)
ε0

Py(τ
B

ainv(x)
ε0

≥ 1). Since D̄ is compact, ρ < 1. An application

of the strong Markov property then shows that Py(τ
B

ainv(x)
ε0

≥ n) ≤ ρn, for all

y ∈ D̄ −B
ainv(x)
ε0 . Thus,

sup
y∈D̄−B

ainv(x)
ε0

Ey exp(λ̄τ
B

ainv(x)
ε0

) ≤
∞∑

n=0

exp(λ̄(n + 1))ρn < ∞,

for λ̄ < − log ρ.

ii. Let ε0 be as in the statement of the lemma and let ε ∈ (0, ε0). We will show

below that

(4.17) Ey exp(λ̄ετ
B

ainv(x)
ε

) < ∞, for y ∈ D̄ −Bainv(x)
ε and for some λ̄ε > 0.

This is enough to prove the lemma. Indeed, let

v(y) = Ey exp(λ̄ετ
B

ainv(x)
ε

), for y ∈ D̄ − B̄ainv(x)
ε .

Then by the Feynman-Kac formula, v is a positive solution to (L + λ̄ε)v = 0 in

D̄ − B̄
ainv(x)
ε with ν∇v = 0 on ∂D. Thus, λε(x) ≥ λ̄ε > 0. We now prove (4.17).
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Choose ε1 > ε0 such that B
ainv(x)
ε1 ⊂ D. For δ ∈ (0, ε1], let τ

∂B
ainv(x)
δ

= inf{t ≥
0 : X(t) ∈ ∂B

ainv(x)
δ }. Define ρε = sup

y∈∂B
ainv(x)
ε0

Py(τ
∂B

ainv(x)
ε1

< τ
∂B

ainv(x)
ε

). Of

course, ρε < 1. Let λ̄ be as in the statement of the lemma and choose λ̄ε ∈ (0, λ̄) suf-

ficiently small so that sup
y∈∂B

ainv(x)
ε0

Ey(exp(λ̄ετ
∂B

ainv(x)
ε1

)|τ
∂B

ainv(x)
ε1

< τ
∂B

ainv(x)
ε

) ≤
ρ
− 1

2
ε , sup

y∈∂B
ainv(x)
ε0

Ey(exp(λ̄ετ
∂B

ainv(x)
ε

)|τ
∂B

ainv(x)
ε

< τ
∂B

ainv(x)
ε1

) < ρ
− 1

2
ε , and

(4.18) Ey exp(λ̄ετ
∂B

ainv(x)
ε0

) < ∞, for y ∈ Bainv(x)
ε0 .

An application of the strong Markov property then shows that

(4.19)

Ey exp(λ̄ετ
B

ainv(x)
ε

) ≤





Ey exp(λ̄ετ
B

ainv(x)
ε0

)
∑∞

n=0 ρn
ε (ρ−

1
2

ε )n+1, for y ∈ D̄ −B
ainv(x)
ε0

Ey exp(λ̄ετ
∂B

ainv(x)
ε0

)
∑∞

n=0 ρn
ε (ρ−

1
2

ε )n+1, for y ∈ B
ainv(x)
ε0 .

The upper expression on the right hand side of (4.19) is finite by the assumption

in the lemma while the lower one is finite by (4.18). ¤
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