DETECTING TAMPERING IN A RANDOM HYPERCUBE
ROSS G. PINSKY

ABSTRACT. Consider the random hypercube Hj (pn) obtained from the
hypercube H3 by deleting any given edge with probabilty 1 — p,, inde-
pendently of all the other edges. A diameter path in H3' is a longest
geodesic path in H3'. Consider the following two ways of tampering with
the random graph H3 (pn): (i) choose a diameter path at random and
adjoin all of its edges to H3 (pn); (ii) choose a diameter path at ran-
dom from among those that start at 0 = (0,---,0), and adjoin all of its
edges to H3 (pn). We study the question of whether these tamperings

are detectable asymptotically as n — oo.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let H} = (Vy,, ep) denote the n-dimensional hypercube. Recall that the
vertices V,, of HY are identified with {0,1}", and an edge in e,, connects two
vertices if and only if they differ in exactly one component. Denote vertices
by £ = (21, -+ ,2,). A geodesic path from Z to y is a shortest path from
Z to y. A diameter path in H3 is a longest geodesic path in HJ. The set
of diameter paths is the set of paths ZoZ1 - - Z,, where Z,, = 1 — Zg and
1=(1,---,1).

Let H}(py) denote the random hypercube obtained by starting with the
graph H3 and deleting any given edge with probability 1—p,, independently
of all the other edges. Let P, ,, denote the corresponding probability mea-
sure; P, ,, is a measure on &, = 2°¢, the space of all subsets of e,. An
element of &, will be called an edge configuration.
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We consider two similar ways of tampering with the random hypercube.
The first way is to choose a diameter path from HJ at random and adjoin
it to HY(pn); that is, we “add” to the random graph every edge of this
diameter path that is not already in the random graph. Denote the induced
measure on &, by P}L‘:"ﬁl . The second way is to consider 0 = (0,---,0)
as a distinguished vertex in the hypercube, and to adjoin to the random
hypercube a diameter path chosen at random from among those diameter
paths which start at 0. Denote the induced measure on &, by Pia?,

Can one detect the tampering asymptotically as n — oco? Let @), be
generic notation for either Pi%™ or PO Let ||Poy, — QullTy denote
the total variation distance between the probability measures P, ,, and
Qn. If limy oo [|Prp, — @QnllTv = 1, we call the tampering detectable. If
limy, 00 || Prp, — @nllTv = 0, we call the tampering strongly undetectable,
while if {||Pp, — Qnl|TVv}5Z, is bounded away from 0 and 1, we call the
tampering weakly undetectable.

The number of diameter paths in HY is easily seen to be 2"~ !n! while
the number of diameter paths in H3 that start from 0 is n!. Let m,, denote
the number of diameter paths in either of these two cases. Numbering the

diameter paths from 1 to m,, let O, ; denote the set of edge configurations

which contain the j-th diameter path. From the above description of the

tampered measures Qn, = Py4" or Q, = ﬁ?pmn’o, it follows that
1
(1.1) Qn() = 7zpn,pn(' |On.j)-
mn

Let Ndiam . g {0,1,--- ,m,} denote the number of diameter paths
in an edge configuration, and let NJamO ey {0,1,--- ,m,} denote the
number of diameter paths starting from 0 in an edge configuration. Let
N,, be generic notation for either N32m or NEamO e vefer to N, as the

diameter counting function.
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The following proposition, which we prove in the next section, shows that
the tampered measure is in fact obtained from the original measure by size

biasing with respect to the diameter counting function N,.

Proposition 1. Let ), denote either of the two tampered measures, and
let N, denote the corresponding diameter counting function. Then

Np(w)

Qn(w) = By N»

pn (W), W E Ey.
The following proposition is immediate in light of Proposition 1.

Proposition 2. Let ), denote either of the two tampered measures, and

let N, denote the corresponding diameter counting function. Then
lim [|Pap, — Qull7v =0
n—oo

if and only if the weak law of numbers holds for N,, under P,,, ; that is, if
and only if

N,
lim Py, p, (]

n JR—
e m—1‘>6)—0,f07’a”6>0.

The second moment method then yields the following corollary. Let

Var,, ;,, denote the variance with respect to P, ., .

Corollary 1. Let Q,, denote either of the two tampered measures, and let
N,, denote the corresponding diameter counting function.

i. If Vary,p, (Np) = 0((En7pnNn)2), then limy, o0 || Pnp, — Qnll7v = 0 and
the tampering is strongly undetectable;

it. If Varyp, (Ny) = O((Bnp,Nn)?), then {||Pnp, — Qnll7v}SZ, is bounded

away from 1; thus the tampering is not detectable.

Part (i) of the corollary of course follows from Chebyshev’s inequality; we
give a proof of part (ii) in section 2.

We will prove the following result.
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Theorem 1. a. Consider the random hypercube H3 (py) and tamper with it
by adding a random diameter path. Let Nﬁh“m denote the diameter counting
function.

i. If pn < I, with v < §, then the tampering is detectable; furthermore, the
distribution of N%™ under P, ,, converges to the §-distribution at 0;

. If pn > I, with v > §, then the tampering is strongly undetectable;
equivalently, the distribution of N4™ under P, p, satisfies the law of large
numbers.

b. Consider the random hypercube H3(py) and tamper with it by adding a
random diameter path that starts from 0. Let Ngmm’o denote the diameter
counting function.

i. If pp < %, with v < e, then the tampering is detectable; furthermore, the
distribution of Nﬁlmm’o under P, p, converges to the d-distribution at 0;

ii. If pp > %, with v > e, and limsup,,_,,, npn < 00, then the tampering
is weakly undetectable; in particular, the distribution of Nﬁiwm’o under P, p,
does not satisfy the law of large numbers;

i15. If limy, oo np, = 00, then the tampering is strongly undetectable; equiv-
alently, the distribution of NEem0 o der P, p, satisfies the law of large

numbers.

Remark. If under P, ,, , the distribution of IV,, converges to the -distribution
at 0, then the tampering is detectable since under the tampered measure one
has N,, > 1 a.s. By Proposition 1, if the tampering is strongly undetectable,
then the distribution of N, must converge to the §-function at co. Naive
intuition might suggest that for a tampering problem of the above type, the
above two statements should be if and only if statements, except perhaps
conceivably in some narrow bifurcation region between two regimes. Theo-
rem 1 shows that this is indeed the case for the tampering problem under
consideration. (The proof of the theorem will reveal that in case (b-ii), the

distribution of N3 converges neither to the d-distribution at 0 nor to the
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d-distribution at co.) However, we now point out two examples of similar

tampering problems where this intuition fails.

Ezample 1. Let G(n) be the complete graph on n vertices, and let G(n, p,) be
the Erdos-Renyi random graph with edge probabilities p,,; that is, G(n, py,) is
obtained from G(n) by deleting any particular edge with probability 1 — p,,
independently of all the other edges. Let P, ,, denote the corresponding
probability measure on edge configurations. As above, denote the space of
all edges by e, and the space of all possible edge configurations by &,. Recall
that a Hamiltonian path in G(n) is a path that traverses each of the vertices
of the graph exactly once; that is, a path of the form zx5 - - - x,,, where the
x; are all distinct. Tamper with the random graph by choosing at random a
Hamiltonian path from G(n) and adjoining it to G(n, py,); that is, “add” to
the random graph every edge of this Hamiltonian path that is not already in
the random graph. Call the induced measure P}jgf‘. The number of Hamil-
tonian paths in G(n) is m, = in!l. Let N}a™ : &, — {0,1,--- ,m,} denote
the number of Hamiltonian paths in an edge configuration; we call Nam
the Hamiltonian path counting function. Quite sophisticated graph theoret-

ical techniques along with probabilistic analysis have yielded the following

_ logn+loglog n4w
= =T oe o then

beautiful result: if p, -

lim P, (NJ™™ > k) =1, for all k, if lim w, = oo;
n—o0

lim P p, (N ™™ = 0) =1, if lim w, = —c0.

(See [4] and [2, chapter 7 and references]. In fact these references treat
Hamiltonian cycles. With regard to the case that lim, . w, = oo, it is
shown that the limit above holds for Hamiltonian cycles when k = 1. Since
any Hamiltonian cycle can be cut open in n possible locations, yielding n
Hamiltonian paths, we obtain the result above for any k.)

The above result shows in particular that under P, ,,, the Hamiltonian
path counting function NP converges to the d-distribution at oo if p,, is as

above with lim,,_o w, = 00. The naive intuition noted in the remark after
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Theorem 1 would suggest that the tampering in this case would be strongly
undetectable. After all, how much can one additional Hamiltonian path be
felt in such a situation? However, we now demonstrate easily that whenever
lim,, o0 pp, = 0, the tampering is detectable, while whenever p,, = p € (0,1)
is constant, the tampering is not strongly undetectable. (In fact, it is weakly
undetectable, but we will not show that here.) In light of Proposition 1,
this also shows that when p,, = p € (0,1) is constant, the weak law of large
numbers does not hold for N2 a fact that has been pointed out by Jansen
[3], where a lot of additional results concerning N#™ can be found.

Label the edges of G, from 1 to |e,| = $n(n — 1). The random graph
G(n, pn) with probability measure P, ,, is constructed by considering a col-
lection {B]}‘]e;l of IID Bernoulli random variables taking on the values 1
and 0 with respective probabilities p,, and 1 — p,,, and declaring the j-th
edge to exist if and only if B; = 1. Let NEdes . g 5 {0,1-+- ,|en|} count
the number of edges present in an edge configuration. So under P, ), , one
has that N5%* is the sum of IID random variables: NS'8 = Z'fz"l‘ B;.

The expected value of Nﬁdges under the measure P, ,, is |ey|pn. Now
the tampering involved selecting n — 1 edges from e, and demanding that
they exist in the tampered graph. Thus, the expected value of Nﬁdges under
the tampered measure P,}f;‘: is (len] — (n — 1))pn + (n — 1). The increase
in the mean of NS%% when using the tampered measure instead of the
original one is thus equal to (1 — p,)(n — 1). We denote this change in
mean by AExp,,. The variance of NS%% under the untampered measure is
|en|pn(1 —pp), and under the tampered measure is (|e,| — (n—1))pp (1 —pp).
Note that these two variances are on the same order since |ey| is on the
order n%. Let SD,, = \/m denote the standard deviation under
the untampered measure. Using the central limit theorem, it is easy to
show that if AExp,, is on a larger order than SD,,, then the tampering is
detectable, while if AExp,, is on the same order as SD,,, then the tampering

is not strongly undetectable. In the case that lim,_ ., p, = 0, we have
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AExp,, on the order n and SD,, on the order o(n), while in the case that
pn =p € (0,1) is constant, we have both AExp,, and SD,, on the order n.

Ezxample 2. Consider a random permutation ¢ € S, as a row of n cards
labeled from 1 to n and laid out from left to right in random order. Now
tamper with the cards as follows. Select k, of the cards at random, re-
move them from the row, and then replace them in the vacated spaces in
increasing order. Let U, denote the uniform measure on S,, that is, the
measure corresponding to a “random permutation,” and let U5 do
note the measure on S, induced from U, by the above tampering. Note
that by construction, a permutation o € S, will have an increasing se-
quence of length k, with U U"Pdkn_probability 1. On the other hand,
the celebrated result concerning the length of the longest increasing subse-
quence in a random permutation ([5], [8], [1]) states that the U,, probability
of there being an increasing subsequence of length cn? goes to 0 as n — o0,
if ¢ > 2. Thus, one certainly has lim,_ ||U, — Urilncsubseq’k"HTV =1, if
kn > cn%, with ¢ > 2. The above-mentioned result also states that the
U,,-probability of there being an increasing subsequence of length cns goes
to 1 as n — o0, if ¢ < 2. From this it follows that for &k, < cn%, ¢ < 2, the
distribution of the number of increasing subsequences of length k,, which
we denote by Nﬁncr’k", converges to the §-distribution at co as n — co. The
naive intuition in the remark after Theorem 1 would suggest that one can
tamper on the order k, without detection, if k, < ens with ¢ < 2; after
all, how much can one additional increasing subsequence be felt in such a

situation? However, this turns out to be false. In [6], it was shown that

limy, o0 ||Up — URSIPSeGEn | 10— 0, if ky, < n! with [ < 2 and in [7] it was
shown that limy, e [[Up — U™ || py = 1, if k, > n' with I > §. So

in the former case the tampering is strongly undetectable and in the latter

case it is detectable.
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In section 2 we give the proof of Proposition 1 and of part (ii) of Corollary
1. In section 3 we prove Theorem 1. The proof of parts (a-i) and (b-i) are
almost immediate using the first moment method. The proof of parts (a-ii)
(b-ii) and (b-iii) use the second moment method and involve some quite
nontrivial computations, some of which may be interesting in their own

right.

2. PROOF OF PROPOSITION 2 AND COROLLARY 1-II.

. 110, 1(@)Pnpy (w)
Proof of Proposition 2. Let w € &,. Then we have P, p, (w |Oy, ;) = ’J

Pn,pn(on,j)
Since Nyp(w) = 377" 1o, ;(w), and since the O, ; have the same P, -

probabilities for all j, we have E, , N, = mpPy p,(On1). Using these facts
along with the definition of @,, in (1.1) we have

mn

1 Py, (W) =
=—)>» P Opj) = ——22 N 140, 3 (w) =
Qn(w) a2 npn (@ [On,j) Py (Op 1) pt {Ow}(w)
Np
—— P, .
En,pnNn n,pn (w)
(|
Proof of Corollary 1-ii. Let Y, = 2= Using Proposition 1 along with

En,pn Ny~

an alternative equivalent definition of the total variation distance, we have

Np(w)

AL SN = ]
En,pn N'n, ) n,Pn (W),

1Qn = Papallov = > (1

wegn

where at = a Vv 0. From this it follows that lim, e ||Qn — Pap,|lTv = 1
if and only if limy 00 Ppyp, (Y > €) = 0, for all € > 0. By the assumption
in part (ii) of the corollary, E, ,,Y,2 < M for some M and all n. For every

€ > 0, we have

N

1
1= En,PnYn S €+ En:pnYn]‘Y;L>€ S €+ (Pn:pn (Yn > 6)) (En:pnYTLQ)E S

1

e+ (MP,,, (Y, >€)2.

From this it is not possible that lim, o P p, (Yn >€) =0, if € < 1. O
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3. PROOF OF THEOREM 1

We begin with the quick proofs of (a-i) and (b-i).

Proof of (a-i). There is a two-to-one correspondence between HY x S,, and
diameter paths in H3'. Indeed, for z € H3 and o € S, we begin the diameter
path at £ and use the permutation o to determine the order in which we
change the components of . (The correspondence is two to one because
the diameter path is not oriented.) In particular there are 2"~ !n! diameter
paths. The probability that any particular diameter path is contained in
the random hypercube H3 (py,) is p}}; thus we have

(3.1) B, p, NJiam — gn=lp1pn,

From this it follows that limy,—e0 Epp, N9 = 0, if p, < 2, with v < &.
Thus, for such p,, N&am under P, p, converges to the d-distribution at 0 as
n — 0o, from which it follows that the tampering is detectable.

Proof of (b-i). There is a one-to-one correspondence between S,, and diame-
ter paths that start at 0. The probability that any particular diameter path

is contained in the random hypercube H¥ (py,) is plt; thus we have
(3.2) By p, Ndam0 — p1pn.

From this it follows that limy, e Enp, N ™™ = 0, if p, < 2, with v < e.

As in part (a-i), it then follows that the tampering is detectable.
By Corollary 1, to prove (a-ii) it suffices to show that

(3:3) Vary p, (N7™™) = 0((Epp, N*™)),

if p,, is as in (a-ii), and to prove (b-iii) it suffices to show that

(3.4) Vary, p,, (Ndiam’o) = 0((En,pnN3iam’0)2)v

n

if p,, is as in (b-iii).
With regard to (b-ii), note that under the untampered measure, the prob-
ability that O is an isolated vertex is (1 —p,)™. If p, is as in (b-ii), then this
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probability stays bounded from 0. On the other hand, under the tampered
measure, the probability that 0 is isolated is 0. Thus, in the case of (b-ii),
the tampering cannot be strongly undetectable. Thus, by Corollary 1, to
complete the proof that the tampering is weakly detectable, it suffices to
show that

(3.5) Varnp, (N @™0) = O((Engp, Ny ™™0)?),

n

if p,, is as in (b-ii).

We now give the long and involved proof of (3.3) to prove (a-ii). After that
we will only need a single long paragraph to describe the changes required
to proof (3.4) and (3.5), which are a bit less involved.

The diameter paths are labeled from 1 to m,, = 2" 'n!, and we have de-
fined O, ; to be the set of edge configurations which contain the j-th diame-
ter path. We relabel for convenience. Let Oz, denote the set of edge configu-

rations which contain the diameter path corresponding to (Z, o) in the above

two-to-one correspondence. Then we have NJam — %Zfe Hp oS, 10;.4-
Thus

. 1

diam 2 n
(3.6) Enp, (Nn )T = 4 Z Py (Oa’c,a N Og,.,-).

57Q€H§L7077'€Sn

By symmetry considerations, letting id denote the identity permutation and
letting 0 € HY denote the element with zeroes in all of its coordinates, we

have

(3.7) > PP (0seNOpr)=2"nl > PP(Oz,NOpsq).
zZ,ycHY ,0,7€5, ZeHY ,0€Sn

Let W,,(z, o) denote the number of edges that the diameter path correspond-
ing to (7, 0) has in common with the diameter path corresponding to (0, id).

Then we have

(33 P2 (Osr 1 Opia) = g5,
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Letting the generic E denote the expectation with respect to the uniform

measure on H} x S, it then follows from (3.1) and (3.6)-(3.8) that
(3.9) Enp, (Ng™™)? = (Bpp, Ny )2 Ep, .
Thus, if we show that

(3.10) lim E(p,""; W, >1) =0,

n—oo

then it will follow from (3.9) that (3.3) holds.

We now estimate P(W,, > m), for m > 1, where P denotes the probability
corresponding to the expectation E. In fact, in the quite involved estimate
that follows, it will be convenient to assume that m > 2; one can show that
the estimate obtained below in (3.19) also holds for m = 1. The diameter
path (0,id) has n edges, which we label ey, es,--- ,e,, with e; being the
edge connecting 0 to (1,0--- ,0), es being the edge connecting (1,0--- ,0) to
(1,1,0---,0), etc. (At the beginning of the paper, e,, was used for the set of
edges in Hj; such use for e,, will not appear again.) Let A;, ... ;. C HY x S,

denote those diameter paths which contain the edges e;,, - ,¢€;,,. Then

(3.11) P(W, >m) < > P(Ay .. 1)

1<li<lao<-<Im<n

We now estimate P (A, ... 1,.)-

We first determine for which o € S,, one has that (0,0) € Ay, ... 5,,; this

o
result will be needed for the general case of determining which (Z, o) belong
to Ay, ... 1,,- We will say that [j] is a sub-permutation of ¢ if o maps [j] onto
itself. A moment’s thought reveals that the edge e; belongs to the diameter
path (0,0) if and only if both [j — 1] and [j] are sub-permutations for o.
Thus, (0,0) € Ay, ..., if and only [l1 — 1], [l1], [l2 — 1], [l2], -+ , [lm — 1] and
[l;n] are all sub-permutations of o. The number of permutations o € S,
for which this holds is easily seen to be (I1 — D)!(lo — 1 —I1)! -+ (L — 1 —
l—1)(n — In)!. Let Thy 0, C S, denote those permutations for which

[l1 — 1], [l], [l2 — 1], [l2), - -, [lm — 1] and [l,,] are all sub-permutations. So
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we have
(3.12) |T7?7z§ll,"'7lm| =l =Dl —=1=1) (Il —1—=lp—1)!(n—Ln).

We now consider when (z,0) € A, ..., for general z. It is not hard
to see that a necessary condition for (Z,0) € A, .., is that either z =
(1, ,xpn)satisfies z; = 0, forall iy < j <I,,orz; =1,forallly <j <l
We will refer to these two conditions on Z by Koy, 1,, and Ky, 4,

If one of these two conditions on x is satisfied, then in order to have
(z,0) € Ay,.... 1,,,, the following conditions are required on o. Recall that
o gives the order in which the n coordinates of T are changed so that the
diameter path moves from Z to 1 — z. So if 0 = (04, ,0,), then the j-th
edge in the diameter path will involve changing the o;-th coordinate. Let
By, (z) denote those j € {1,---,l; — 1} for which z; =0, and let Cy,,, (Z)
denote those j € {l,, + 1, ,n} for which z; = 1 (Bo.1(z), Com(z) = 0).
Let 1y, 4,.(Z) = |Boy, (Z)| + |C1y,,(Z)]. Then it is not hard to see that the
first 7y, 4,.(Z) coordinates in o must be reserved for By, (Z) U Cy,,(Z); that
is, {o1,-++, 00, (@} = Bou,(2) U C1y,,(2). Let 217 denote the vertex in
H3 whose first j components are 1 and whose remaining components are 0.
Of course, this vertex belongs to the diameter path (0,id). If o is as above,
then the 7y, 4, (Z)-th vertex of the diameter path (Z, ) will be 2101 =1(z) if z

satisfies condition Koy, j,,, and will be glitm

if Z satisfies condition Ky, ;,,..
In the former case, we must then have Try o ()41 = l1, and in the latter case,
we must then have o,  (7)41 = Im. In the former case, the (ry, 4, () +1)-th
vertex of the diameter path (Z,c) will be 211 (z) and the 7, ;,, (Z))-th edge
will be ¢;,, and in the latter case, the (1, (Z)+1)-th vertex of the diameter
path (Z,0) will be 5m~1(z) and the 7, ;,, (%))-th edge will be ¢, . (Recall
that a diameter path has n + 1 vertices.)

If 7 satisfies condition Koy, 4,,, then the next [, — l; coordinates of o

must involve the numbers (I; + 1,11 + 2,--- ,[,,), and must move the di-

ameter path (Z,0) from the vertex 25 (Z) to the vertex xz''m(Z) while
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passing through the edges e;,, - ,€;,,. Based on our analysis above, for
this to happen one requires that (oy,+1 —l1, 00,42 —l1,- -+ ,01,, — 1) belong
to TTiZL" 21}2 oo 11 C Sl —1,- Similarly, if Z satisfies condition Ky, ..,

then the next [,, — [ coordinates of o must involve the numbers (I; + 1,1 +
2, 1), and must move the diameter path (Z, o) from the vertex z'm ()

to the vertex 211 (z) while passing through the edges ¢; ,er,. Invert-

1"

ing the direction of our analysis above, for this to happen one requires that

(o141 =1, 004211, - —1) belong to T/~ Dy C Stp—ty -

m—1,"" lm_ZQ

Then finally, the last n—1m, 4, (5:) —1— (I, — 1) coordinates of o can be cho-

sen arbitrarily from the remaining numbers. Putting the above all together,

we obtain
(3.13)
P(Ay, ) =
n—Ilml1—1 n l 1
_ |-
an' ( >( b )(b+c)!(n—b—c—1—(lm—ll))!x
=0 b=0
lm—1 U —1
(|Tm 2;2 1, lm—l*ll‘ + ’Tm 2%m*lm 1, lm*lz‘)'
Given that Z satisfies condition Koy, ,, or condition Kiy, j,,, there are
s01bm 1)tm
(”_clm) (11;1) ways to choose Z so that b = | By, (Z)| and ¢ = |Cyy,,(Z)|. And
given this, there are (b+c¢)l(n—b—c—1— (I, —11))! (\Tff}lg R
ways to choose o if condition Ky, ;,. was satisfied, and (b+¢)!(n —b—c—
1— (ly — ll))‘\Tlmle}mflm 1o 1, Ways to choose o if condition K1y, 4,

was satisfied.)

We have
n—lm l1—1
S () (7 Y 1
(3.14) b:01

n—lm l1— n—lim h—1
Wm 1=l =) <02 —1 = (I — 1)),
0 b+c

where the last inequality follows from the fact that the fraction in the sum
above is always less than 1. After completing the current proof, we will

prove the following proposition.
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Proposition 3. For every d > 0, there exist a cs > 0 and an rs > 0 such
that [T, o [ = =Dl =1 =)l (bn — 1 = lm—1)H(n — Iin)! satisfies

HATE

Z Ty iyl S com™(1+0)"(n—m)!, T<m <n <oo.
1<li<la<-<Im<n

From Proposition 3, it follows that for any ¢ > 0, there exists a ¢5 > 0

and an 75 > 0 such that

lm —1 lm —1
Z (|Tn;n_2§}2_lly“' dm—1—l | + |TT;Ln_2jm_lm—17'“ dm—l2 ’) S
(315) h<lag<-lm—1<lm

2esm™ (1 +6)" (L, — li —m +2)\.
(Note that in the sum above, the last subscript, l,,,—1—{1 in Té;”_}it_lh”. P,

and [,,,—ls in Téﬁ_}i}m_lmihm Doy is strictly less than the superscript {,,—!1,

whereas in the sum in Proposition 3 the last subscript, i, in 777, ., , can
attain the value n of the superscript; however, this is no problem since the

inequality goes in the right direction.) Now (3.13), (3.14) and (3.15) give

> P(Ayy ) <
h<lo<<lm—1<lm

2csm"on?

27’L

(3.16)
n—l—(lm—ll))!(lm—ll —m+2)!

n!

(1+5)m(

Now summing over /1 and l,,, and denoting k = [,,, — l; + 1, we have
(3.17)

2esm”in3 "1 (k—=m+1)!
Z P(Ap 1) < T(1+5)m Z (”)(k')
1<l <lp< - <lm_1<lm<n k=m \k ’

Let p(k) = @(kﬂg!ﬂ)! = n(nﬁkl;f'?(:l_)];rl), m < k < n, and let h(k) =
p(k+1)

o) It is easy to check that h is increasing, which implies that p is

convex. Thus, p attains its maximum at an endpoint. We conclude that the
(n—m—+1)!
n!

maximum of p(k) is p(n) = . Using Stirling’s formula, it is easy to

check that there exists a K such that W < K(£)™~1. Using these

facts in (3.17), we obtain

2K csm™nS (1 +6)e\m
(3.18) > P(Ay,..0,) < o ( - )"

1<hi<lo<-<lpm—1<Im<n
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Using (3.18) in (3.11) now gives

2K csm™n® (1 +6)eym
1 P(W, > < .
(3.19) (Wa > m) < == w )

Thus, if p, = I, then from (3.19) we have

(3.20)
_ - 2K st I (14 6)e
EpWVew >1) < Mympw, > m) < m
"W 2 ) < 3P0V, 2 m) < S0 5 (T

We may choose § > 0 as small as we like in (3.20). For v > §, choose § so
that 129° < 2. Then it follows from (3.20) that (3.10) holds for p, = 2

with v > 5. (]
We now return to prove Proposition 3.
Proof of Proposition 3. Define
0 _ N~ 1
i=0 \i
and then define by induction the iterates
J (m—1)
m C;
CmM =3 j20m> 1.
i=0 (1)
We have
lo—1 1
321) > (Dl —1-h) = -2 5 = (- 20,
1<l1<l2 =1 (llfl)
and then using (3.21),
Y =Dl =115 —1—1y)! =
1<li<lz<ls
I3—1 ~(0)
0 lo— 1
S (=210 (s — 1 — ) = (Is = 3)1 > 222 = (15— 3)1C{ .
2<la<lIs lo=2 (1272)

Continuing in this vein, we obtain

S D11 (o — L= L)t = (i — m)IC D,

1<lhi<la<-<lm
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and
(3.22)
> (=) (la—1=1)! -+ (=1 =Ly ) (n—1)! = (R—m)1C™ D),

1<l <lp<-<lm<n
In light of (3.22), to complete the proof of Proposition 3, it suffices to show
that for every § > 0, there exist a ¢5 > 0 and an rs > 0 such that
(3.23) sup C\F) < ¢sk™ (1 +6)F, k> 1.
n>1
Let ng > 1, and for n > ng write

no C-(k_l) n C-(k_l)

(3.24) ch =3 =i

i=0 (z) * i=ng+1 W

We need the following lemma whose proof we defer until the completion of

, k>1,n>ng.

the proof of the proposition.
Lemma 1. For each n there exists a constant ¢, such that
(3.25) C®) < e k", k> 1.

From (3.24) and (3.25), it follows that for each ng there exists a constant

Yno Such that

n C(k—l)
(3.26) CP < (k=1 + > Z k> 1,n > ng.
i=ng+1 (’l)
Let
1
(3.27) dp, = sup Z .

It is easy to see that

(3.28) Jim_dy, = 1.

Letting
Ak) = sup CT(Z]“),

no
n>ngo

we have from (3.26) and (3.27) that

(3.29) AR <y (= 1) 4+ dp ARV k> 1.
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It is not hard to show that

supC’(O) = supz n g;

n>0 n>0 z

however, all we need for our purposes is that this quantity is bounded, and

this is very easy to see. Thus, we have

(3.30) AY <

OJ\OO

It is easy to show that if {x; };‘?:0 satisfies the recursive inequalities zg < %

and z; < C+dn0xj 1, for 1 < 5 <k, then z; < C’(1+dn0+-~+d,’§;1+
k
Bk ) = c(d"0 -+ 84" ). Applying this with C' = 7, (k — 1), it follows

37 no

from (3.29) and (3.30) that

e —1 8
(3.31) sup CF) = AW <0 (k — 1)”%% + gd’go), k> 1.
n>ngo no

By (3.28), for any § > 0, there exists an ng such that d,, < 1+9. Using this

with (3.31), and using (3.25) with n < ng, one concludes that (3.23) holds.

This completes the proof of the proposition. O
We now return to prove Lemma 1.

Proof of Lemma 1. Fix n > 1. Let B denote the n x n matrix with

entries b;;, 1 < 4,5 < n, given by b;; = (%) for ¢ > j, and b;; = 0,

for j > i. Let v° denote the n-vector with entries v , 1 <j<n, glven by

0o_ ~(0) __
vj = Cj { 0
it follows that

( 5 Then from the recursive definition of the {C’ k=0

(3.32) c®) = (BF0),, k> 1,

n

where (B*v°),, denotes the n-th coordinate of the n-vector B*v°. Since B
is lower triangular with all ones on the diagonal, it follows that there exist
vectors v!, -+, o™t such that Bv® = v +o!, Bv! = vl 4 02,-.. | By 2 =
"2 4+ "1 and Bv™" ! = o™ . From this, it follows that

kAn

(3.33) B =" (?) ol

=0
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Thus, from (3.32) and (3.33), we obtain

kAn
(3.34) e =3 <I;> ol
1=0
where v/, is the n-th coordinate of v. The lemma follows immediately from
(3.34). O
We have now completed the proof of (3.3), and thus the proof of (a-ii).
To complete the proof of (b-ii) and (b-iii) we need to prove (3.4) and (3.5).
In fact all the work has been done in the above proof. The proof up to
(3.11) is the same as before, except that now we work with the space S,
instead of with H% x Sj,. In particular then, we now have W,, = W, (o), and
it denotes the number of edges that the diameter path starting from 0 and
corresponding to ¢ has in common with the diameter path starting from 0

and corresponding to id. Similarly, 4, .. ;. C S, denotes the number of

m

diameter paths starting from 0 which contain the edges e;,,--- ,¢;,,. From

the paragraph after (3.11), it follows that A;, .., =1T" and that

mili,lm
(3-35) P(All77lm) | m,l;' 7lm|.

Using (3.35) with (3.11) and Proposition 3, it follows that

(3.36) P(Wiy > m) < cgm™s(1 4 oy =1t

n!

As noted above, there exists a K such that = < K(£)™. Thus, we have

n!

(631 BEpViW 2 1) < Key Y (o) s oy (E

m=1

From (3.37), it follows that as n — oo, E(p,"; W > 1) converges to 0 if p,
is as in (b-iii), and remains bounded if p,, is as in (b-ii). Thus, it follows
from (3.9) that (3.4) holds if p,, is as in (b-iii) and that (3.5) holds if p,, is
as in (b-ii). O
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