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Abstract

We consider a diffusion process on D ⊂ Rd, which upon hitting ∂D, is redistributed
in D according to a probability measure depending continuously on its exit point.
We prove that the distribution of the process converges exponentially fast to its
unique invariant distribution and characterize the exponent as the spectral gap for
a differential operator that serves as the generator of the process on a suitable
function space.

Key words: Diffusion processes, spectral gap, rate of convergence, invariant
measure, ergodic
MSC: primary 60J60

1 Introduction and Statement of Results

Let D ⊂ Rd be a bounded domain and let

L =
1

2
∇ · a∇+ b · ∇

be a second order elliptic operator on D. We will assume that the domain
D has a C2,α-boundary, that a = {aij}d

i,j=1 is positive definite with entries
in C2,α(Rd) and that b = (b1, . . . , bd)

d
i=1 has entries in C1,α(Rd), for some

α ∈ (0, 1]. We have written the principal part of the operator L in divergence
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form for convenience and, in light of the above conditions on the coefficients,
without loss of generality. The solution to the generalized martingale problem
for L on D is a diffusion process in D, killed upon hitting the boundary ∂D.
Let P denote the set of probability measures on D with the topology of weak
convergence. Let ν{·} be a continuous map from ∂D to P . Consider now a pro-
cess in D obtained in the following manner. The process coincides with the
diffusion in D until it hits the boundary. If it hits the boundary at ζ ∈ ∂D,
then it jumps to a point in D according to the distribution νζ and starts the
diffusion afresh. The same mechanism is repeated independently each time
the process reaches the boundary. This process will be called a diffusion with
random jumps from the boundary. Not surprisingly, the process is ergodic and
its distribution converges in total variation exponentially fast to its invariant
measure. An upper bound can be obtained by a short Doeblin-type argument,
similar to the one given in [GK, Section 7]. The chief objective of this pa-
per is to provide a characterization of the rate in terms of a certain spectral
gap/eigenvalue problem. That is, we want to relate the probabilistic notion
of rate of convergence to the analytic notion of spectral gap. For reversible
processes, results of this form follow from the spectral theorem. However, for
non-reversible processes this is much more delicate and at present there is no
general theory that guarantees such a link. In this work we propose an abstract
approach to this problem that can be applied to a host of processes besides
diffusion with random jumps from the boundary. In a separate paper, [BAP],
we study this spectral gap quantitatively, when νζ is independent of the point
of exit ζ. A closely related model is the Fleming-Viot-type system studied in
[BHM00], [GK06] and [Löb]. The case of Brownian motion (L = 1

2
∆) with a

jump measure that is independent of the point of exit and also deterministic
(νζ ≡ δx0 , for some x0 ∈ D) was studied in [GK02] for d = 1 and then extended
to higher dimensions in [GK]. The main idea of these two papers is to study
the process through its resolvent, via a Laplace transform inversion formula.
This approach has some limitations, discussed below Theorem 1, which do not
allow extension to the level of generality we aim to in this paper. Our approach
is functional analytic and its main idea is to study the ergodic properties of
the processes through its adjoint semigroup, which turns out to be easier to
handle. We show that the exponential convergence to the invariant measure
is equivalent to the statement that the spectral radius of a certain operator is
strictly less than one.

We begin with some notation. Let Z ≡ {Z(t) : t ≥ 0} denote the diffusion
process in D corresponding to L and killed at the boundary. We denote the
sub-probability transition function of Z by pD(t, x, y). The law of Z with initial
distribution ρ ∈ P will be denoted by PD

ρ , and the corresponding expectation
will be denoted by ED

ρ . When ρ = δx, for some x ∈ D, we write PD
x and ED

x

instead. Let τD denote the hitting time of the boundary by the diffusion Z. It
is well known that for every x ∈ D, the harmonic measure, PD

x (Z(τD) ∈ ·), is
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absolutely continuous with respect to the Lebesgue surface measure on ∂D.
Its density will be denoted by H(x, y). In addition, H is L-harmonic in x
and continuous in y. See [Pin95] for details. If F : D → R, and ρ ∈ P , we
will write F (ρ) for

∫
D

F (x)dρ(x). In particular, H(ρ, y) ≡ ∫
D

H(x, y)dρ(x) and

pD(t, ρ, y) ≡ ∫
D

pD(t, x, y)dρ(x).

We now proceed to the construction of the diffusion with random jumps pro-
cess with initial distribution ρ ∈ P . Let W ρ,0 be a diffusion process on D
corresponding to L, killed at the boundary and with initial distribution ρ. Let
{W νζ ,n : ζ ∈ ∂D, n ∈ N} denote a family of independent diffusion processes on
D which all correspond to L and are killed at ∂D, such that W νζ ,n has initial
distribution νζ . We also require that {W νζ ,n : ζ ∈ ∂D, n ∈ N} be independent
of W ρ,0. Let τ0 = 0 and Θ0 = W ρ,0(0). Let

τ1 = σ1 = inf{t ≥ 0 : W ρ,0(t) ∈ ∂D}, Θ1 = W ρ,0(σ1).

We continue inductively:

σn+1 = inf{t ≥ 0 : W νΘn ,n ∈ ∂D}, Θn+1 = W νΘn ,n(σn+1),

and we let τn+1 = τn + σn+1.

Lemma 1 limn→∞ τn = ∞, a.s.

This lemma allows us to define for all t ≥ 0:

X(t) =
∞∑

n=0

1{t∈[τn,τn+1)}W
νΘn ,n(t− τn).

We call X ≡ {X(t) : t ≥ 0} a diffusion with random jumps from the boundary.
The construction guarantees that X is a Markov process. It is not hard to show
that because of the boundary condition, the process X cannot be reversible,
even if the underlying diffusion process killed at the boundary is reversible.

In what follows, we write Pρ (Eρ) for the probability measure (expectation)
induced by X corresponding to the initial distribution ρ. We abbreviate and
write Px (Ex) when ρ = δx. We also extend the latter definition to x ∈ ∂D by
letting Pζ ≡ Pνζ

, for ζ ∈ ∂D.

Note that {Θn : n ∈ N} is a time-homogeneous Markov process, and that
Θ ≡ {Θn : n ∈ N0} is a non time-homogeneous Markov process. Let H̃(x, y) =
H(νx, y), for x, y ∈ ∂D. Then, the transition functions of Θ are given by:

Px(Θ1 ∈ dy) = H(x, y)dy, Px(Θn+1 ∈ dv|Θn = u) = H̃(u, v)dv,

for n ∈ N, x ∈ D and u, v, y ∈ ∂D.
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For n ∈ N, we let H̃n denote the n-fold transition function for Θ, starting from
time 0. In other words, H̃n(x, y)dy = Px(Θn ∈ dy). Hence, H̃1(x, y) = H(x, y)
and for n ≥ 2,

H̃n(x, yn) =
∫

D

. . .
∫

D

H(x, y1)H̃(y1, y2) . . . H̃(yn−1, yn)dy1 . . . dyn−1.

(Note that H̃ and H̃1 are different.) Since ζ → νζ is continuous and ∂D is
compact, it follows that {νζ : ζ ∈ ∂D} is a compact subset of P . In particular
it is tight, which guarantees that there exists U ⊂⊂ D such that νζ(U) > 1

2

for all ζ ∈ ∂D. As a consequence,

H̃(νζ , y) ≥
∫

U

H(z, y)dνζ(z) ≥ 1

2
inf
z∈U

H(z, y) > 0.

This shows that {Θn : n ∈ N} satisfies the Doeblin condition. In particular, it
possesses a unique invariant probability measure m; that is,

H̃(m, y)dy = dm(y). (1.1)

To show that X(t) possesses a density, we observe that for every f ∈ C(D),

Exf(X(t)) = Ex[f(X(t)); τ1 > t] +
∞∑

n=1

Ex[f(X(t)); τn ≤ t < τn+1].

The first term on the righthand side is equal to
∫
D

pD(t, x, y)f(y)dy. For n ∈ N,

we have

Ex[f(X(t)); τn ≤ t < τn+1] = ExEx[f(X(t)); τn ≤ t < τn+1|Θn]

=
∫

D

∫

∂D

t∫

0

pD(t− s, νζ , y)f(y)dPx(τn ≤ s|Θn = ζ)H̃n(x, ζ)dζdy.

As a consequence, we observe that X possesses a transition density p(t, x, y),
with respect to Lebesgue measure on D given by

p(t, x, y) = pD(t, x, y)

+
∞∑

n=1

∫

∂D

t∫

0

pD(t− s, νζ , y)dPx(τn ≤ s|Θn = ζ)H̃n(x, ζ)dζ. (1.2)

Let G(x, y) denote the Green’s function for pD(t, x, y); that is,

G(x, y) =

∞∫

0

pD(t, x, y)dt.

4



The following result identifies the invariant measure of X.

Proposition 1 Let ν =
∫

∂D
νζdm(ζ), where m is as in (1.1). That is, ν is

the unique measure in P such that
∫
D

fdν =
∫

∂D

∫
D

fdνζdm(ζ), for all f ∈ C(D).

Then X has an invariant probability measure µ, which is absolutely continuous
with respect to Lebesgue measure on D. Its density, also denoted by µ, is given
by

µ(y) =
G(ν, y)∫

D
G(ν, z)dz

.

We recall that a family of bounded operators Q ≡ {Qt : t ≥ 0} mapping some
Banach space Ξ into itself is called a semigroup ifQ0 is the identity operator on
Ξ and Qt+s = QtQs for all t, s ≥ 0. A semigroup Q is a contraction semigroup
if for all t ≥ 0, the operator norm of Qt is bounded above by 1. A semigroup
Q on Ξ is strongly continuous if limt→0Qtx = x for all x ∈ Ξ.

In the sequel the L∞ (L1) space on D with respect to the Lebesgue measure
will be denoted by L∞ (L1). We denote the L∞ (L1) norm as well as the
corresponding operator norm by ‖ · ‖∞ (‖ · ‖1).

Since X has a density with respect to Lebesgue measure, it follows from the
Markov property that X naturally induces a contraction semigroup T ≡ {Tt :
t ≥ 0} on L∞ defined by

(Ttf)(x) = Exf(X(t)) =
∫

D

p(t, x, y)f(y)dy, (1.3)

as well as a contraction semigroup S ≡ {St : t ≥ 0} on L1 defined by

Stg(y) =
∫

D

p(t, x, y)g(x)dx.

Note that T is the dual semigroup to S; that is, Tt = S∗t for all t ≥ 0. As we
shall see in Lemma 3 below, S is a strongly continuous compact semigroup. By
duality, this guarantees that T is a compact semigroup, but strong continuity
is not preserved through duality. In fact,

Proposition 2 The semigroup T is not strongly continuous.

This constitutes a limitation if one wants to apply results from the rich theory
of strongly continuous semigroups, including the Laplace inversion formula
that was the main ingredient in [GK02] and [GK]. This problem was avoided
in [GK] by considering the restriction of T to a suitable space of continuous
functions, on which it can be shown to be strongly continuous. But then the
supremum in (1.4) of Theorem 1 can be taken only over functions in that
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space, which does not automatically guarantee convergence in total variation
as in our result. Furthermore, the inversion formula for the Laplace transform
also requires some non-trivial estimates for analytical semigroups. We take a
different path, showing that S is strongly continuous and compact. We derive
the ergodic theorem for S through the spectral radius formula and finally
obtain the ergodic theorem by duality.

Let

D = {f ∈ C2(D) ∩ L∞, ∀ζ0 ∈ ∂D lim
D3x→ζ0∈∂D

f(x) =
∫

D

f(y)dνζ0(y)}.

We also let

D̃ = {f ∈ D : Lf ∈ D},
where D is the closure of D in L∞. Let L denote the restriction of L to D̃. We
denote the set of eigenvalues of L by σp(L). Let

γ1 = sup{Re λ : 0 6= λ ∈ σp(L)}.

Before stating the main result we recall the notion of a core. Let Ξ be a Banach
space. Let B be a linear mapping from some subspace of D(B) of Ξ into Ξ.
The graph of B is the subspace {(x,Bx) : x ∈ D(B)} ⊂ Ξ × Ξ. We say that
B1 is a core for B2 if the graph of B1 is a subset of the graph of B2 which
is dense in the product topology. Finally, we also recall that a generator G
of a semigroup Q on a Banach space Ξ is a linear mapping whose domain is
the subspace D(G) = {x ∈ Ξ : limt→0+

1
t
(Qtx − x) exists }. For x ∈ D(G),

Gx = limt→0+
1
t
(Qtx− x).

Here is our main result.

Theorem 1 The restriction of T to the L∞-closure of D̃ is a strongly con-
tinuous compact semigroup and L is a core for its generator. The spectrum
of the generator consists entirely of eigenvalues and is equal to σp(L). It has
no accumulation points. Zero is an eigenvalue and all other eigenvalues have
strictly negative real part. Furthermore

lim
t→∞

1

t
ln sup
‖f‖∞≤1

‖Exf(X(t))−
∫

fdµ‖∞ = γ1 ∈ (−∞, 0). (1.4)

We conclude this section with a complete calculation in the case of Brownian
motion on the interval (0, π) with deterministic jumps from each endpoint:
ν0 = δp, νπ = δq, for some p, q ∈ (0, π). This is a two parameter family of
processes, indexed by (p, q) ∈ (0, π) × (0, π). To emphasize this dependence,
we write µp,q and γ1(p, q) for µ and γ1, respectively. For use in part (3) of the

proposition below, we denote by λD
n = − (n+1)2

2
, n ∈ N0, the eigenvalues of

L = 1
2

d2

dx2 on (0, π) with the Dirichlet boundary condition.

6



Proposition 3 Consider Brownian motion on the interval (0, π) with deter-
ministic jumps from 0 to p ∈ (0, π) and from π to q ∈ (0, π); that is, the case
L = 1

2
d2

dx2 on (0, π) with µ0 = δp and µ1 = δq.

(1) The set of eigenvalues of L is

{− 2π2l2

(π + q − p)2
,−2π2l2

p2
,− 2π2l2

(π − q)2
, l ∈ N} ∪ {0}.

In addition,
(a) When π−q

p
is not rational, all eigenvalues are simple.

(b) When π−q
p

= m
n
, for some m,n ∈ N, then all eigenvalues of the

form −2π2n2l2

p2 , l ∈ N, are of multiplicity 2. All other eigenvalues are
simple.

(2) The invariant density µp,q is given by

µp,q(y) = C





(π − q)y y ∈ [0, p ∧ q]

(π − q)p p ≤ q, y ∈ [p, q]

(pq + y(π − (p + q)) q ≤ p, y ∈ [q, p]

(π − y)p y ∈ [p ∨ q, π]

where C is a normalization constant. In particular, if (p, q) 6= (p′, q′),
then µp,q = µp′,q′ if and only if p + q = π, p′ = q and q′ = p.

(3)

γ1(p, q) = − 2π2

max(p2, (π − q)2, (π + q − p)2)
.

In particular,
(a) γ1(p, q) > −2 = λD

1 if and only if p < q. Thus, whenever (p, q) 6=
(p′, q′) and µp,q = µp′,q′, one has γ1(p, q) 6= γ1(p

′, q′).
(b) supp,q γ1(p, q) = limp→0,q→π γ1(p, q) = −1

2
= λD

0 ,
(c) minp,q γ1(p, q) = γ1(

2π
3

, π
3
) = −9

2
= λD

2 .
(d) γ1(p, p) = −2 = λD

1 .
(e) limp→π,q→0 γ1(p, q) = −2 = λD

1 .

Remark. Note that for the two parameter family of processes above, the
fastest exponential rate of convergence to equilibrium, which is equal to 9

2
,

occurs when p = 2
3
π and q = 1

3
π. There is no slowest rate, but the infimum of

the rates, which is equal to 1
2
, is approached as p → 0 and q → π. One can

show that as p → 0 and q → π, the diffusion with random jumps converges
weakly to the reflected Brownian motion on (0, π), corresponding to the op-
erator 1

2
d2

dx2 with the Neumann boundary condition. The spectral gap for this
operator, which gives the exponential rate of convergence to equilibrium for
the reflected diffusion, is also equal to 1

2
, as one would expect. When p → π

and q → 0, the rate of convergence to equilibrium approaches 2. One should be
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able to show that the diffusion with random jumps converges weakly to Brow-
nian motion on the circle (of length π). The spectral gap of the corresponding
generator, which gives the exponential rate of convergence to equilibrium for
Brownian motion on this circle, is equal to 2, as one would expect.
Remark. Note that for all pairs (p, q), we have λD

2 ≤ γ1(p, q) < λD
0 . In a

preprint of this article, we conjectured that these inequalities remain in ef-
fect for Brownian motion with arbitrary jump measures ν0 from 0 and νπ

from π. In fact the right hand inequality above has now been proved for ar-
bitrary jump measures [LLR]. Note that for all pairs of the form (p, p), we
have γ1(p, p) = λD

1 . This equality remains in effect for Brownian motion with
arbitrary jump measure ν from 0 and π—see [LLR] and [BAP].

2 Proofs of Lemma 1, Propositions 1, 2 and Theorem 1.

We prove Lemma 1, then Propositions 1 and 2. After that, Theorem 1 is
proved through a sequence of lemmas.

Proof of Lemma 1. Let Fn denote the σ-algebra generated by the process up
time time τn. Then

Eρ[e
−λσn+1|Fn] = ED

νΘn
[e−λτD ].

By compactness, it follows that there exists some x0 ∈ ∂D such that

max
ζ∈D

ED
νζ

[e−λτD ] = ED
νx0

[e−λτD ] < 1.

Therefore, it follows that limn→∞ Eρe
−λτn = 0, proving the claim. ¤

Proof of Proposition 1. By the definition of ν,

∫

∂D

H(ν, z)νzdz =
∫

∂D

∫

∂D

H(νζ , z)dm(ζ)νzdz =
∫

∂D

∫

∂D

H̃(ζ, z)dm(ζ)νzdz

=
∫

∂D

νzdm(z) = ν,

where the second to last equality follows from the fact that m is H̃-invariant.
The left hand side represents the distribution of X at time τ1, under Pν . This
shows that under Pν , X and X(τ1 + ·) are identically distributed. Since X
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coincides with the killed diffusion up to time τ−1 , we have

∫

D

Eyf(X(t))G(ν, y)dy = ED
ν

τD∫

0

EZ(s)f(X(t))ds =

Eν

τ1∫

0

EX(s)f(X(t))ds = Eν

τ1∫

0

f(X(t + s))ds =

Eν

t+τ1∫

t

f(X(s))ds =

ED
ν

τD∫

0

f(Z(s))ds + Eν

τ1+t∫

τ1

f(X(s))ds− Eν

t∫

0

f(X(s))ds.

Since X and X(τ1 + ·) are identically distributed under Pν , the last two terms
cancel and we obtain

∫

D

Eyf(X(t))G(ν, y)dy =
∫

D

G(ν, y)f(y)dy.

¤

Proof of Proposition 2. Let λD
0 < 0 denote the principal eigenvalue for L on

D with the Dirichlet boundary condition, and let φD denote a corresponding
positive eigenfunction. Let c = infζ∈D

∫
D

φD
0 (x)dνζ(x). From the continuity of

ζ → νζ , it follows that c =
∫
D

φD
0 (x)dνζ0(x) for some ζ0 ∈ ∂D. Therefore c > 0

and we obtain

Ttφ
D
0 (x) = p(t, x, φD

0 )

≥
(1.2)

∫

∂D

t∫

0

pD(t− s, νζ , φ)dPx(τ1 ≤ s|Θ1 = ζ)H(x, ζ)dζ

=
∫

D

t∫

0

eλD
0 (t−s)

∫

D

φD
0 (z)dνζ(z)dPx(τ1 ≤ s|Θ1 = ζ)H(x, ζ)dζ

ceλD
0 t

t∫

0

dPx(τ1 ≤ s) = ceλD
0 tPx(τ1 ≤ s).

In particular, lim infx→∂D |Ttφ
D
0 (x)− φ0(x)| ≥ ceλD

0 t →
t→0

c > 0. ¤

We now state and prove a sequence of results culminating in the proof of
Theorem 1. Since the domain D has a C2,α-boundary, the function pD(t, x, y)
is continuous on (0,∞)×D×D, [Fri64, Theorem 3.16, page 82]. This is a key
fact in the following discussion.
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We begin with a technical lemma.

Lemma 2 For all n ∈ N and t > 0,

lim
ε→0

sup
x∈D

Px(τn ∈ (t− ε, t]) = 0.

Proof. Since Px(τ1 ∈ (t − ε, t]) =
∫
D

pD(t − ε, x, y) − pD(t, x, y)dy, the lemma

in the case that n = 1 follows from the uniform continuity of pD on compact
subsets of (0,∞)×D ×D.
We now assume that n ≥ 2. We write τn = τ1 + γn−1, where γn−1 =

∑n
k=2 σk.

Let ζ ∈ ∂D. We note that the random variables τn−1 under Pζ , and γn−1 under
Px(·|Θ1 = ζ) are identically distributed. Let u, ε ≥ 0. For ζ ∈ ∂D and n ≥ 2,

Pζ(τn ∈ [u− ε, u])

=
∫

∂D

u∫

0

Pζ′(τn−1 ∈ [u− s− ε, u− s])dPζ(τ1 ≤ s|Θ1 = ζ ′)H̃(ζ, ζ ′)dζ ′.

Therefore,

Pζ(τn ∈ [u− ε, u]) ≤ sup
ζ′∈∂D

sup
v∈[0,u]

Pζ′(τn−1 ∈ [v − ε, v]).

By induction,

sup
ζ∈∂D

Pζ(τn ∈ [u− ε, u]) ≤ sup
ζ′∈∂D

sup
v∈[0,u]

Pζ′(τ1 ∈ [v − ε, v]). (2.1)

Let

Υt(ε) ≡ sup
ζ∈∂D

sup
u≤t

Pζ(τ1 ∈ [u− ε, u]).

Since

Px(τn ∈ (t− ε, t])

=
∫

∂D

t∫

0

Pζ(τn−1 ∈ (t− s− ε, t− s))dPx(τ1 ≤ s|Θ1 = ζ)H(x, ζ)dζ,

it follows from (2.1) that

sup
x∈D

Px(τn ∈ (t− ε, t]) ≤ Υt(ε).

To complete the proof of the lemma, we now show that

Υt(ε) →
ε→0

0. (2.2)
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Since ∂D is compact and ζ → νζ is continuous, the family {νζ : ζ ∈ ∂D} is a
compact subset of P . In particular it is tight. Thus,

lim
ρ→0

sup
ζ∈∂D

νζ(D
ρ) = 0, where Dρ = {x ∈ D : dist(x, ∂D) < ρ}. (2.3)

As is well known, the function u(x, t) ≡ Px(τ1 > t) = Px(τD > t) solves
ut = Lu in D × (0, t), with initial condition u(x, 0) = 1. In particular then,
it is continuous on [0, T ]×D and uniformly continuous on [0, T ]× (D −Dδ),
for any T > 0 and δ > 0. Fix δ > 0. By (2.3), there exists a ρδ > 0 such that
νζ(D

ρδ) ≤ δ, for all ζ ∈ ∂D. Thus, we have

Pζ(τ1 ∈ [u−ε, u]) = Pνζ
(τ1 ∈ [u−ε, u]) ≤ δ+(1−δ) sup

x∈D−Dρδ

Px(τ1 ∈ [u−ε, u]).

(2.4)
By the above-noted uniform continuity,

lim
ε→0

sup
u≤t

sup
x∈D−Dρδ

Px(τ1 ∈ [u− ε, u]) = 0. (2.5)

From (2.4), (2.5) and the definition of Υt(ε) we obtain lim supε→0 Υt(ε) ≤ δ.
Letting δ → 0 gives (2.2). ¤

Lemma 3 S is a strongly continuous, compact semigroup.

Proof. We have

Exf(X(t)) = Ex[f(X(t)); τ1 > t] + Ex[f(X(t)); τ1 ≤ t]

=
∫

D

pD(t, x, y)f(y)dy

+
∫

D

∫

∂D

t∫

0

p(t− s, νζ , y)f(y)dPx(τ1 ≤ s|Θ1 = ζ)H(x, ζ)dζdy.

We obtain

p(t, x, y) = pD(t, x, y)+
∫

∂D

t∫

0

p(t−s, νζ , y)dPx(τ1 ≤ s|Θ1 = ζ)H(x, ζ)dζ. (2.6)

Therefore,

‖Stg − g‖1 ≤ ‖
∫

D

pD(t, x, y)g(x)dx− g(y)‖1 +
∫

D

|g(x)|Px(τ1 ≤ t)dx.

By the bounded convergence theorem, the second term on the righthand side
above converges to 0 as t → 0. As for the first term, let f ∈ Cc(D) with
‖f − g‖1 ≤ ε. Then

‖pD(t, g, y)− g‖1 ≤ ‖pD(t, f, y)− f‖1 + ‖pD(t, g − f, y)‖1 + ‖f − g‖1.
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Using [Pin95, Theorem 3.4.1], one sees that the first term goes to 0 as t → 0.
Each of the other two terms is bounded by ‖g − f‖1 ≤ ε. Since ε is arbitrary,
this concludes the proof that S is strongly continuous.

Next, we prove that S is compact. Fix t > 0. For n ∈ N0 and ε ≥ 0, define
the linear operator Tn,ε by Tn,εf(x) = Ex[f(X(t)); τn + ε ≤ t < τn+1]. Then
Tn,ε = S∗n,ε, where

S0,0g(y) =
∫

D

pD(t, x, y)g(x)dx,

and for n ∈ N,

Sn,εg(y) =
∫

D

∫

∂D

t−ε∫

0

pD(t− s, νζ , y)g(x)dPx(τn ≤ s|Θn = ζ)H̃n(x, ζ)dζdx.

By duality, ‖Sn,ε‖1 = supx∈D Px(t ∈ [τn + ε, τn+1]). For every R ∈ N,
St =

∑R
n=0 Sn,0 +

∑∞
R+1 Sn,0. The dual of

∑∞
R+1 Sn,0 is the operator that maps

f to Ex[f(X(t)); τR+1 ≤ t]. The L∞-norm of this operator is bounded above
by supx∈D Px(τR+1 ≤ t). However,

Px(τR+1 ≤ t) ≤ sup
ζ∈∂D

Pζ(τR ≤ t) = sup
ζ∈∂D

Pζ(e
−τR ≥ e−t).

Repeating the argument in the proof of Lemma 1, we can show that

sup
ζ∈∂D

Eζ [e
−τR ] ≤ αR,

for some α ∈ (0, 1). Therefore, it follows that supx∈D Px(τR+1 ≤ t) converges
to 0 as R →∞ exponentially fast. Thus by duality, St is the limit of

∑R
n=0 Sn,0

in the operator norm. Since the subspace of compact operators is closed with
respect to the operator norm, it is sufficient to prove compactness for the par-
tial sums

∑R
n=0 Sn,0. The latter is boils down to showing that Sn,0 is compact,

for all n ≥ 0. We recall that pD is uniformly continuous on [ε, t]×D ×D. In
particular, for every δ > 0, there exists η > 0 such that whenever |y− y′| ≤ η,
one has |pD(s, x, y) − pD(s, x, y′)| ≤ δ, for all (s, x) ∈ [ε, t] × D. Fix n ≥ 1.
Then we have

|Sn,εg(y)| ≤ max
(s,x,y)∈[ε,t]×D×D

pD(s, x, y)‖g‖1.

and

|Sn,εg(y)− Sn,εg(y′)| ≤ δ‖g‖1, if |y − y′| ≤ η.

These inequalities show that Sn,ε maps bounded sets in L1 to bounded, equi-
continuous sets in C(D). Consequently, Sn,ε is compact. The same reasoning
shows that S0,0 is compact. In order to complete the proof, we note that for

12



n ∈ N,

‖Sn,ε − Sn,0‖1 = ‖Tn,ε − Tn,0‖∞ = sup
x∈D

Px(τn ∈ (t− ε, t]).

By Lemma 2, the righthand side goes to 0 as ε → 0. ¤

We continue with some notation. Let B be a (possibly unbounded) linear
operator on some Banach space Ξ. We let D(B) denote the domain of B. We
define σ(B), the spectrum of B as the set of points λ ∈ C for which λ−B does
not possess a bounded inverse on Ξ. We define σp(B), the point spectrum of
B, as the set of eigenvalues of B. We also recall that a linear operator on Ξ is
called closed if its graph (defined above Theorem 1) is closed in the product
topology. Finally, if Ξ is some vector space, we write IdΞ for the identity
mapping on Ξ.

Since S is a strongly continuous semigroup, by the Hille-Yosida theorem, it
possesses a densely defined closed generator A. The next lemma is essentially
[Paz83, Theorem 2.2.4]. However the statement of the theorem is only on the
spectra and we also need a statement on the eigenfunctions.

Lemma 4

(1) Let ρ ∈ σp(A) and let ϕ be a corresponding eigenfunction. Then Stϕ =
eρtϕ for all t ≥ 0.

(2) Let eρt ∈ σp(St) for some t > 0 and let ϕ be a corresponding eigenfunc-

tion. For k ∈ Z let xk =
t∫
0

e−i2πks/t−ρsSsϕds. Then not all xk are zero. In

addition, if xk 6= 0 then Axk = (ρ + i2πk/t)xk.

Proof. For µ ∈ C consider the family {e−µtSt : t ≥ 0}. As can be readily seen,
this is a strongly continuous semigroup on L1 and its generator is A−µ. Then
by [Paz83, Theorem 1.2.4]

e−µtSt = IdL1 + (A− µ)

t∫

0

e−µsSsds (2.7)

and on D(A), the second term on the righthand side is equal to
t∫
0

e−µsSs(A−
µ)ds.

(1) Setting µ = 0 in (2.7) we obtain Stϕ = ϕ + ρ
t∫
0
Ssϕds for all t ≥ 0. Since

s → Ssϕ is a continuous function, this implies that Stϕ = eρtϕ for all t ≥ 0.
(2) Note that {xk : k ∈ Z} are Fourier coefficients of the continuous, non-zero

mapping s → e−ρsSsϕ. Hence for some k0, xk0 6= 0. Let µ = i2πk0/t + ρ. Note
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that e−µt = e−ρt and then e−µtStϕ = ϕ. But by (2.7) we have

ϕ = ϕ + (A− µ)

t∫

0

e−i2πk0s/t−ρsSsϕds = ϕ + (A− µ)xk0 ,

completing the proof.

¤

Lemma 5

(1) σ(A) consists of a countable set of eigenvalues having no accumulation
points, all with real part ≤ 0.

(2) For t ≥ 0, σ(St) = etσ(A) ∪ {0}.
(3) The only eigenvalue of A with nonnegative real part is 0. It is simple and

the corresponding eigenspace is spanned by µ.

Proof.

(1) SinceA is the generator of a contraction semigroup, it follows that its spectrum
consists only of complex numbers with real part ≤ 0.
For λ 6∈ σ(A), let Uλ denote the resolvent of A, that is the bounded inverse
of λ−A. Then

(λ−A)Uλ = IdL1 and Uλ(λ−A) = IdD(A). (2.8)

It is known that

Uλ =

∞∫

0

e−λtStdt, if Re λ > 0,

where the integral converges in the operator norm. Since S is compact, this
implies that that Uλ is compact for Re λ > 0. Fix λ > 0. Note that (2.8)
implies that σp(A) = {(λ − ρ)−1 : ρ ∈ σp(Uλ)}. The operator Uλ is compact
therefore σp(Uλ) is countable and its only accumulation point is 0. However
0 6∈ σp(Uλ) because by the first equality in (2.8) Uλ is one-to-one. Therefore
σp(A) is a countable set with no accumulation points.

Next we show that σ(A) = σp(A). Since A is a closed operator, it follows
from the closed graph theorem that whenever ρ − A is one-to-one and onto,
then its inverse is bounded. Therefore if ρ ∈ σ(A), then either ρ − A is not
one-to-one, in which case ρ ∈ σp(A), or else ρ − A is one-to-one, but is not
onto. Fix λ > 0. We have

(ρ−A)Uλ = (λ−A)Uλ + (ρ− λ)Uλ = IdL1 + (ρ− λ)Uλ. (2.9)

This operator is not invertible because by assumption it is not onto. Since
Uλ is compact, the Fredholm alternative guarantees that (λ− ρ)−1 ∈ σp(Uλ),
hence ρ ∈ σp(A). This contradicts the assumption on ρ.
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Finally, it follows from [Lax02, Theorem 13, p. 437] that σ(A) is in fact
countably infinite.

(2) An immediate consequence of Lemma 4 is that

eσp(A) ⊂ σp(St) ⊂ eσp(A) ∪ {0}.

But by part (1) σp(A) = σ(A) and by the compactness of St, σ(St) = σp(St)∪
{0}.

(3) Suppose that the purely imaginary number iθ is an eigenvalue of A. Fix t > 0
and let ϕ be an eigenfunction of St corresponding to the eigenvalue eiθt. There
is no loss of generality assuming ‖ϕ‖1 = 1. By definition, St|ϕ| is a probability
density on D, therefore ‖St|ϕ|‖1 = 1. In addition, |Stϕ| = |eiθtϕ| = |ϕ|, so
‖Stϕ‖1 = 1. As a consequence, St|ϕ| = |Stϕ|, a.e. D. Fix some y ∈ D for
which the last equality holds. Explicitly,

∫

D

|ϕ(x)|p(t, x, y)dx = |
∫

D

ϕ(x)p(t, x, y)dx|.

Since p(t, ·, y) > 0 on D, it follows immediately that ϕ = α|ϕ| a.e. D, for some
α ∈ C, |α| = 1 (c.f. [Rud, Theorem 1.39(c)]). Hence Arg ϕ is constant a.e. D.
There is no loss of generality assuming that ϕ is real-valued. This guarantees
that eiθt is real-valued. Since t is arbitrary, it follows that θ = 0. Next, sup-
pose that ϕ1, ϕ2 are eigenfunctions of A corresponding to the eigenvalue 0.
Since both have constant argument a.e. there is no loss of generality assuming
that they are both non-negative a.e. . Furthermore, we may also assume that∫
D

ϕ1dx =
∫
D

ϕ2dx = 1. Since A(ϕ1 − ϕ2) = 0, it follows that ϕ1 − ϕ2 has a

constant argument. Without loss of generality, ϕ1−ϕ2 ≥ 0, a.e. . The normal-
ization assumption then implies ϕ1 = ϕ2. Hence the kernel of A is one dimen-
sional. Since µ ∈ L1 and

∫
D

f(x)dµ(x) =
∫
D
Ttf(x)µ(x)dx =

∫
D

f(x)Stµ(x)dx, it

follows that µ is in the domain of A and that Aµ = 0.

¤

Let A∗ denote the dual of A. More precisely,

D(A∗) =
{
f ∈ L∞ : ∃ϕf ∈ L∞ such that

∫

D

Ag(x)f(x)dx =
∫

D

g(x)ϕf (x)dx, ∀g ∈ D(A)
}
,

and for f ∈ D(A∗) we let A∗f = ϕf . This mapping is well-defined because
D(A) is dense in L1. Let f ∈ D(A∗). Then for all g ∈ D(A) we have

∫

D

Ag(x)Ttf(x)dx =
∫

D

(ASt)g(x)f(x)dx =
∫

D

g(x)(TtA∗)f(x)dx.
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The first equality if due to the fact that a strongly continuous semigroup
commutes with its generator on its domain. Therefore Ttf ∈ D(A∗). Let M+

denote the closure of D(A∗). Then T maps M+ to M+. In particular, the
restriction of T to M+ is a semigroup on M+. We denote it by T +.

Lemma 6

(1) T + is strongly continuous.
(2) Let A+ denote the generator of T +. Then L is a core for A+.
(3) σ(A+) = σp(A+) = σp(L) = σ(A).

Proof. By [Paz83, Theorem 1.10.14], T + is strongly continuous and its gener-
ator, A+, is the restriction of A∗ to the subspace D(A+), defined through

D(A+) = {f ∈ D(A∗) : A∗f ∈ M+}.

This proves part (1).

We turn to the proof of part (2). Let Rλ = U∗
λ . If Re λ > 0 then

Rλf =

∞∫

0

e−λtTtfdt.

Let Gλ(x, y) =
∞∫
0

e−λtpD(t, x, y)dt denote Green’s function for L−λ on D with

the Dirichlet boundary condition on ∂D. Then by (2.6)

Rλf(x) = Gλf(x)+

+
∫

D

∫

∂D

∞∫

0

e−λt

t∫

0

p(t− s, νζ , y)f(y)dPx(τ1 ≤ s|Θ1 = ζ)H(x, ζ)dtdζdy

︸ ︷︷ ︸
(*)

.

Define the linear operator Jλ on L∞ by letting

Jλu(x) =
∫

∂D

∫

D

u(z)dνζ(z)Ex[e
−λτ1|Θ1 = ζ]H(x, ζ)dζ

= Ex[e
−λτ1

∫

D

u(z)dνX(τ−1 )] (2.10)

By changing the order of integration we show that (∗) is equal to

∫

∂D

∞∫

0

e−λs
∫

D

∞∫

s

e−λ(t−s)p(t− s, νζ , y)f(y)dtdydPx(τ1 ≤ s|Θ1 = ζ)H(x, ζ)dζ

= (JλRλ)f(x)
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By [Paz83, Lemma 1.10.2], σ(A∗) ⊂ σ(A) and for all λ 6∈ σ(A), Rλ is the
inverse of λ−A∗. The latter statement means

(λ−A∗)Rλ = IdL∞ and Rλ(λ−A∗) = IdD(A∗). (2.11)

We continue according to the following steps.

Step 0: Smoothness of Rλf .

{Rλf : f ∈ L∞} ⊂ D0. (2.12)

Let f ∈ L∞. We first show that Gλf ∈ C0(D). Fix x0 ∈ D. For x ∈ D we
have

|Gλf(x)−Gλf(x0)| ≤ ‖f‖∞
∫

D

|hε(x, y)−hε(x0, y)|dy +2‖f‖∞(ε+λ−1e−λε−1

),

where hε(x, y) =
ε−1∫
ε

e−λtpD(t, x, y)dt. Note that the continuity of pD on [ε,∞)×
D×D implies that hε is continuous on D×D. By letting x → x0, the first term
on the righthand side converges to 0 by the bounded convergence theorem.
Then by letting ε → 0 the second term converges to 0. This proves continuity
of Gλf on D. Since pD(t, x, y) = 0 for all x ∈ ∂D and all t > 0 and y ∈ D, we
also have Gλf(x) = 0 on ∂D.

We now consider JλRλf . Let u(x, ζ) = Ex[e
−λτ1|Θ1 = ζ]H(x, ζ). For each

fixed ζ ∈ ∂D, u(·, ζ) is continuous on D because it is a harmonic function for
λ−L. Furthermore, if U ⊂⊂ D then sup(x,ζ)∈U×∂D u(x, ζ) < ∞. Therefore by
bounded convergence Jλu(x) ∈ C(D) for every u ∈ L∞. In addition, it follows
directly from the definition (2.10) that ‖Jλu‖∞ ≤ ‖u‖∞. Therefore Rλf ∈
C(D) ∩ L∞. As a consequence, the mapping r : ∂D → R defined by r(ζ) =∫
D

Rλf(z)dνζ(z) is continuous. By (2.10), JλRλf(x) = Ex[e
−λτ1r(X(τ−1 ))], and

we observe that limx→ζ∈∂D JλRλf(x) = r(ζ), proving (2.12). Furthermore,
note that JλRλf ∈ C2(D) for all f ∈ L∞. If we assume f ∈ C(D) ∩ L∞, then
also Gλf ∈ C2(D) and we get

{Rλf : f ∈ C(D) ∩ L∞} ⊂ D. (2.13)

Step 1: L = A∗ on {Rλf : f ∈ C(D)}.
Fix f ∈ C(D) and let u = Rλf . Then (λ−A∗)u = f . But

(λ− L)u = (λ− L)Gλf + (λ− L)JλRλu = f + 0.

Step 2: {Rλf : f ∈ C(D)} = D.
By (2.13), {Rλf : f ∈ C(D)} ⊂ D. Let u ∈ D and set f = (λ − L)u. Let
v = u − Rλf . Then v ∈ D and (λ − L)v = 0. By Feynman-Kac, v(x) =
Ex[e

−λτ1v(X(τ−1 ))]. Let M = supx∈D v(x). The condition v ∈ D guarantees
that M is attained. Clearly, v(x) ≤ MExe

−λτ1 . Hence either M = 0 or that

17



M is only attainable on ∂D. The latter case is impossible because for every
ζ ∈ ∂D, v(ζ) =

∫
D

v(z)dνζ(z) and νζ ∈ P(D). Thus, M = 0. Repeating the

argument for −v, we obtain v = 0. Hence u = Rλf , showing that D ⊂ {Rλf :
f ∈ C(D)}.

Step 3: D̃ is a core for A+.
By [EK, Proposition 1.3.1], we need to show that (i) D̃ is dense in D(A+);
and (ii) {(λ−A+)ϕ : ϕ ∈ D̃} is dense in M+ = D(A+).

Since D̃ ⊂ D ⊂ D(A∗) Steps 1 and 2 guarantee that A∗ = L on D̃. For
f ∈ D̃, Lf ∈ D by definition. Therefore D̃ ⊂ D(A+).

Since T + is strongly continuous, ∩∞n=1D((A+)n) is dense in M+ (c.f. [Paz83,
Theorem 1.2.7]). By (2.11) D((A+)3) = {R3

λϕ : ϕ ∈ L∞}. By (2.12) and
(2.13), R2

λϕ ∈ D for all ϕ ∈ L∞. Hence R3
λϕ ∈ D̃. In particular, D(A+)∩ D̃ is

dense in M+. Since we proved above that D̃ ⊂ D(A+), we conclude that D̃ is
a dense subset of D(A+), which is (i).

Let f ∈ D. By Step 1, (λ− L)Rλf = f , hence Rλ ∈ D̃ ⊂ D(A+). But also
(λ − A+)Rλf = f . Since f is arbitrary, {(λ − A+)ϕ : ϕ ∈ D̃} ⊆ D, which is
(ii).

We turn to prove part (3). The semigroup T + is compact because T is compact
and A+ is its generator. Thus, the proof of Lemma 5-(1) applies here as well.
For the second equality note that by part (2) σp(L) ⊂ σp(A+). On the other
hand, if ρ ∈ σp(A+) and ϕ is a corresponding eigenfunction, then Rλϕ =
(λ− ρ)−1ϕ and the argument used to establish condition (ii) in Step 3 above
shows that ϕ ∈ D̃. Hence ρ ∈ σp(L).

To complete the proof we show σp(A) = σp(A+). Let ρ ∈ σp(A) and let ϕ be
a corresponding eigenfunction. Clearly, Uλϕ = (λ− ρ)−1ϕ. Therefore

0 =
∫

D

(IdL1 − (λ− ρ)−1Uλ)ϕ(x)f(x)dx =
∫

D

ϕ(x)(IdL∞ − (λ− ρ)−1Rλ)f(x)dx

(2.14)
for all f ∈ L∞. Since ϕ 6= 0, there exits fϕ ∈ L∞ such that

∫
D

ϕ(x)f(x)dx = 1.

Hence (IdL∞−(λ−ρ)−1Rλ) is not onto. Since Rλ = U∗
λ and Uλ is compact, Rλ

is compact and then the Fredholm alternative implies that (λ−ρ)−1 ∈ σp(Rλ).
Let f be a corresponding eigenfunction. Then A∗f = ρf . In addition, since
f,A∗f ∈ D(A∗), by definition of A+, f ∈ D(A+). Therefore ρ ∈ σp(A+).
Suppose that ρ ∈ σp(A+) and let f be a corresponding eigenfunction. Then
(2.14) holds for all ϕ ∈ L1. This implies that IdL1 − (λ− ρ)−1Uλ is not onto.
Therefore by the Fredholm alternative ρ ∈ σp(A). ¤

Proof of Theorem 1. We need only prove (1.4) because the rest of the theorem
follows from Lemma 5-(1)(3) and Lemma 6. Let F0 = {u ∈ L1 :

∫
D

u(y)dy = 0}.
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Define the operator I0 on L1 by letting

I0g = g − µ
∫

D

g(y)dy.

It follows from the definition that I0 is a projection (i.e. I2
0 = I0) onto F0. Let

S0
t = St|F0 . We note that for g ∈ F0,

∫

D

S0
t g(y)dy =

∫

D

Stg(y)dy =
∫

D

g(y)Tt1dy =
∫

D

g(y)dy = 0.

Therefore S0 is a strongly continuous compact semigroup on F0. Let γ be an
eigenvalue of St and let ϕ denote its corresponding eigenfunction. We have

γ
∫

D

ϕ(y)dy =
∫

D

Stϕ(y)dy =
∫

D

ϕ(y)Tt1(y)dy =
∫

D

ϕ(y)dy.

If γ 6= 1, this means that ϕ ∈ F0, so γ ∈ σp(S0
t ). Suppose that γ = 1. By

by Lemma 4-(2), there exists k ∈ Z such that Axk = i2πk/txk and xk =
t∫
0

e−i2πks/tSsϕds is non-zero. However Lemma 5-(3) implies that k = 0 and

xk = cµ for some non-zero constant c. In particular,
∫
D

xk(y)dy = c 6= 0. Since

F0 is invariant under S, the definition of xk implies that ϕ 6∈ F0 . Thus, we
have proved that

σ(S0
t ) = σ(St)\{1} = {etρ : ρ ∈ σ(A), Re ρ < 0}, (2.15)

where the second equality follows from Lemma 5-(2).

Let R denote the spectral radius of S0
1 . From (2.15) we have

ln R = sup{Re ρ : ρ ∈ σ(A), Re ρ < 0}. (2.16)

Since sup||f ||1≤1,f∈F0
||S0

t f || = sup||f ||1≤1 ||StI0f ||, it follows that

ln R = lim
t→∞

1

t
ln ||StI0‖1. (2.17)

From (2.16), (2.17), Lemma 6-(3) and the definition of γ1, we conclude that

γ1 = lim
t→∞

1

t
ln ||StI0‖1. (2.18)

Next, note that

Stg − µ
∫

D

g(y)dy = StI0g.

This gives,

sup
‖g‖1≤1

‖Stg − µ
∫

D

g(y)dy‖1 = ‖StI0‖1.
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Hence, from (2.18) we have

γ1 = lim
t→∞

1

t
ln sup
‖g‖1≤1

‖Stg − µ
∫

D

g(y)dy‖1.

Finally, by duality

sup
‖g‖1≤1

‖Stg − µ
∫

D

g(y)dy‖1 = sup
‖f‖∞≤1

‖Ttf −
∫

D

f(x)µ(x)dx‖∞.

¤

3 Proof of Proposition 3

Proof. By shifting the interval [0, π], we may assume that L = 1
2

d2

dx2 on
[−p/2, π − p/2] and that the jump measures are µ− p

2
= δ p

2
and µπ− p

2
= δq− p

2
.

Any eigenfunction of 1
2

d2

dx2 is of the form u(x) = Aeikx + Be−ikx for some com-
plex constants A, B, k. Such a function will be an eigenfunction for L if and
only if

u(−p/2) = u(p/2), u(q − p/2) = u(π − p/2). (3.1)

The corresponding eigenvalue is then −1
2
k2.

Let z = e−ikp/2. The first boundary condition in (3.1) may be written as
Az + Bz−1 = Az−1 + Bz. Therefore, (A− B)z2 + (B − A) = 0. Thus, z2 = 1
or A = B. We split into cases:

(1) z2 = 1. Here kp/2 = πl, for some l ∈ Z; therefore k = 2πl
p

. Let a = eik(q−p/2)−
eik(π−p/2). Since k is real, the second boundary condition in (3.1) then reads
Aa + Ba = 0. Therefore,
• if a 6= 0, then A = −a

a
B;

• if a = 0, then A and B be can be arbitrarily chosen, as long as they are
not both 0. Note that a = 0 if and only if k(π − q) is an integer multiple
of 2π. Thus, a = 0 if and only if k = 0 or l π−q

p
is an integer. When k = 0,

the corresponding eigenspace is spanned by the constant function 1. When
k 6= 0, the eigenspace is two dimensional and is spanned by eikx and e−ikx.

(2) A = B. There is not loss of generality assuming that A = 1. In order to
find the possible choices for k, let z = eik(q−p/2) and let z′ = eik(π−p/2). The
second boundary condition in (3.1) may be written as z + 1

z
= z′ + 1

z′ . Hence,

z − z′ = 1
z′ − 1

z
= z−z′

zz′ . As a result, either z = z′ or zz′ = 1. Thus, either
eik(q−p/2) = eik(π−p/2) or eik(q−p/2)eik(π−p/2) = 1. In the former case, k(π − q) =
2πl for some l ∈ Z, hence k = 2πl

π−q
. In the latter case, k(π + q − p) = 2πl for

some l ∈ Z, hence k = 2πl
π+q−p

.
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Summarizing the discussion, we have shown that u is an eigenfunction for L
if and only if

k ∈ {2πl

p
,

2πl

π − q
,

2πl

π + q − p
, l ∈ Z}. (3.2)

We have also shown that all eigenvalues are simple, except for the case where
π−q

p
= m

n
, for some m,n ∈ N, where all k of the form 2πnl

p
, for some l ∈ Z,

correspond to eigenvalues of multiplicity 2.

We now prove the formula for the invariant density. We return to the original
notation on the interval [0, π]. The boundary process {Θn : n ∈ N} is a
Markov chain on the state space {0, π}. Its transition function, H̃, satisfies
H̃(0, 0) = Pp(X(τ1) = 0) = π−p

π
and H̃(π, 0) = Pq(X(τ1) = 0) = π−q

π
. Thus H̃

can be represented by the matrix




π−p
π

p
π

π−q
π

q
π


 .

A straightforward calculation shows that m, the invariant probability for H̃,
satisfies

m(0) =
π − q

π + p− q
, m(π) =

p

π + p− q
.

We recall that G, the Green’s function for pD(t, x, y), is given by

G(x, y) =





2
π
(π − x)y y ≤ x;

2
π
(π − y)x y > x.

(3.3)

By Proposition 1, µ(y) = G(ν, y), where ν = m(0)δp + m(π)δq. The result
follows by direct substitution. ¤
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