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1. Introduction and Statement of Results. In this paper, we investigate the
existence and nonexistence of nonnegative global solutions for the equation

(1.1)
ut = ∆u + a(x)up + λφ(x) in Rd, t ∈ (0, T )

u(x, 0) = f,

where 0 � a, φ ∈ Cα(Rd), a and φ grow no faster than polynomially, p > 1, λ > 0,
and f ≥ 0.

Under these conditions, it is well known [4] that there exists a unique, bounded,
nonnegative solution to (1.1), defined on a maximal time interval [0, T ∗), and that
if T ∗ < ∞, then limt→T∗ supx∈Rd u(x, t) = ∞.

In a recent paper [5], we studied the same question for the homogeneous equation
(λ = 0) with nonzero initial data (f  0). It was shown that if d ≥ 2 and a(x)
behaves on the order |x|m as |x| → ∞, then if 1 < p ≤ 1 + 2+m

d , every solution to
the homogeneous equation with nonzero initial data blows up in finite time, while if
p > 1 + (2+m)+

d , then for sufficiently small initial data, there exist global solutions.
(Results were also obtained in one dimension, but the formulas are a little different;
in particular, if d = 1 and 1 < p ≤ 2, then all solutions blow up in finite time even
if a has compact support.)

Our initial interest in (1.1) stemmed from its importance in the study of large
deviations for super Brownian motion in the case that p = 2, a(x) = 1, and φ has
compact support [2]. In any case, the study of (1.1) seems a natural follow-up to
the study of the homogeneous case described above.

Note that if u(x, t) solves (1.1), then by the maximum principle, for ε > 0,
the function v(x, t) ≡ u(x, t + ε) is larger than the solution to the homogeneous
equation with initial data u(x, ε) 	 0. Thus, if d, p, and m fall in the blowup
range for the homogeneous problem, they must also fall in the blowup range for the
inhomogeneous one, for any choice of φ and λ. We will prove the following theorem.

Theorem. a. Let d ≤ 2 or let d ≥ 3 and
∫

Rd

φ(y)
|y|d−2

dy = ∞.

Then for any a 	 0, any λ > 0, and any f ≥ 0, the solution to (1.1) blows up in
finite time.

b. Let d ≥ 3.
1-i. Assume that

a(x) ≥ c|x|m, for large |x| and c > 0,

that
φ(x) ≥ c|x|−q, for large |x| and c > 0, where q ∈ (2, d),

and that
1 < p < 1 +

2 + m

q − 2
.

Then for any λ > 0 and any f ≥ 0, the solution to (1.1) blows up in finite time.
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1-ii. Assume that

a(x) ≥ c|x|m, for large |x| and c > 0,

that
0 � φ(x) ≤ c|x|−d, for some c > 0,

and that
1 < p ≤ 1 +

2 + m

d− 2
.

Then for every λ > 0 and any f ≥ 0, the solution to (1.1) blows up in finite time.

2. Assume that

0 � a(x) ≤ c|x|m, for large |x| and c > 0,

that

(1.2) 0 � φ(x) ≤ c|x|−q, for large |x| and c > 0, where q ∈ (2, d],

and that

p > 1 +
(2 + m)+

q − 2
.

Then for sufficiently small λ > 0 and for sufficiently small f ≥ 0, the solution
to (1.1) exists for all time. More specifically, for sufficiently small λ > 0 and each
ε > 0, there exists a constant c > 0 such that if

(1.3) 0 ≤ f(x) ≤ c(1 + |x|)− (2+m)+

p−1 −ε,

then the solution to (1.1) exists for all time.
Futhermore, if f ≡ 0, then U(x) ≡ limt→∞ u(x, t) exists, U ∈ C2(Rd), and

∆U + a(x)Up + λφ(x) = 0 in Rd.

Remark 1. Note that if φ(x) ≤ c|x|−d and m > −2, then the critical case, p =
1 + 2+m

d−2 , belongs to the blow-up regime. However, when c1|x|−q ≤ φ(x) ≤ c2|x|−q,
for large |x|, with q ∈ (2, d), and m > −2, we have been unable to prove that
blow-up occurs in the critical case, p = 1 + 2+m

q−2 . We expect that blow-up does
occur in this case as we are unaware of examples where blow-up has been proven
not to occur in the critical case. [3].

Remark 2. Note that if p > 1 + (2+m)+

q−2 , then q− 2 > (2+m)+

p−1 ; thus, in particular,
global existence occurs in part (b-2) when λ > 0 and c > 0 are sufficiently small
and f(x) ≤ c(1 + |x|)2−q.

Remark 3. A referee has brought to my attention the paper [6] which includes
the result of this paper in the case that a(x) ≡ 1, φ(x) ≤ c|x|−d−ε, for large |x| and
some ε > 0, and f(x) ≤ c1(1 + |x|)−d−ε. More specifically, it is proved in [6] that
if φ and f satisfy the above bounds, and p > d

d−2 , then for sufficiently small λ > 0
and sufficiently small c1 > 0, the solution to (1.1) exists for all time, while if φ 	 0
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and p ≤ d
d−2 , then for all λ > 0 and all f ≥ 0, the solution to (1.1) blows up in

finite time.

In the sequel, we will use the notation P (t, x, y) = (4πt)−
d
2 exp(− |y−x|2

4t ).

2. Proof of Theorem. Proof of part a. Assume to the contrary that T ∗ = ∞.
Let w denote the solution to (1.1) when a(x) ≡ 0. By the maximum principle,
u(x, t) ≥ w(x, t) =

∫ t

0

∫
Rd P (s, x, y)φ(y)dyds. Thus, under the condition in (a), it

follows that

(2.1) lim
t→∞

u(x, t) = ∞, for all x ∈ Rd.

Choose a smooth bounded domain D ∈ Rd and a δ > 0 such that infx∈D a(x) ≥ δ.
Let µ > 0 denote the principal eigenvalue of −∆ in D, and let ψ, normalized by∫

D
ψ(x)dx = 1, denote the corresponding positive eigenfunction. Define

F (t) =
∫

D

u(x, t)ψ(x)dx.

Using (1.1), integrating by parts, and using Jensen’s inequality, we obtain

(2.2)
F ′(t) =

∫

D

ut(x, t)ψ(x)dx =
∫

D

(∆u(x, t) + a(x)up(x, t) + φ(x))ψ(x)dx

≥ −µF (t) + δF p(t) +
∫

D

φ(x)ψ(x)dx.

By (2.1), it follows that limt→∞ F (t) = ∞. Since the right hand side of (2.2) is
positive and increasing as a function of F for F > (µ

δ )
1

p−1 , it follows that F (t) blows
up in finite time, contradicting the assumption that T ∗ = ∞. ¤
Proof of part b-1.

We may assume that m > −2 since otherwise there is nothing to prove.
We begin with a very simple proof which works in the case that 1 < p < 1+ 2+m

q−2

and

(2.3) φ(x) ≥ c|x|−q, for large |x|, with q ∈ (2, d] and c > 0.

Assume to the contrary that T ∗ = ∞. Define Dn = {n < |x| < 2n}, let
µn > 0 denote the principal eigenvalue for −∆ in Dn, and let ψn, normalized
by

∫
Dn

ψn(x)dx = 1, denote the corresponding positive eigenfunction. Note that
by scaling, we have µn = µ1

n2 and ψn(x) = n−dψ1( x
n ). We will assume that n is

sufficently large so that a(x) ≥ c|x|m, for |x| ≥ n and some c > 0, and so that (2.3)
holds for |x| ≥ n. Define

Fn(t) =
∫

Dn

u(x, t)ψn(x)dx.

Using (1.1), integrating by parts, and using Jensen’s inequality, we obtain

(2.4) F ′n(t) ≥ −µ1

n2
Fn(t) + c1n

mF p
n(t) +

∫

D

φ(x)ψn(x)dx,
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where c1 > 0. By elementary calculus, we have

(2.5) −µ1

n2
Fn(t) + c1n

mF p(t) ≥ −γn
−m−2p

p−1 , t ≥ 0,

for some γ > 0. Also, by (2.3), we have

(2.6)
∫

Dn

φ(x)ψn(x)dx =
∫

D1

φ(nx)ψ1(x)dx ≥ c2n
−q,

for some c2 > 0. By assumption, p < 1+ 2+m
q−2 , or equivalently, −q > −m−2p

p−1 . Thus,
it follows from (2.4), (2.5) and (2.6) that for sufficiently large n, the right hand side
of (2.4) is positive and bounded away from 0 in t. Consequently, it follows that
Fn(t) blows up in finite time, contradicting the assumption that T ∗ = ∞.

We now turn to a more involved proof which works in all cases under consider-
ation in the theorem. In the sequel, c will denote a positive constant whose value
may change from expression to expression. We assume to the contrary that T ∗ = ∞
and define Fn as above. Ignoring the last term on the right hand side of (2.4), we
have

(2.7) F ′n(t) ≥ −µ1

n2
Fn(t) + c1n

mF p
n(t).

The function g(z) = −µ1
n2 z + c1n

mzp is positive and increasing for z > cn
−2−m

p−1 , for
an appropriate c > 0. Therefore, if for large n, we find a tn and a γn satisfying

(2.8) Fn(tn) ≥ γnn
−2−m

p−1 and lim
n→∞

γn = ∞,

it will follow from (2.7) that for n sufficiently large, Fn(t) blows up in finite time,
contradicting the assumption that T ∗ = ∞. Thus, to complete the proof, it remains
to demonstrate (2.8).

We begin with two lemmas.

Lemma 1. i. Let φ(x) ≥ c|x|−q, for large |x| and some c > 0, where q < d. Then
for any r ≥ 0, there exists a c1 > 0 such that

∫

|x|≥r

P (t, 0, x)φ(x)dx ≥ c1(1 + t)−
q
2 .

ii. Let φ(x) ≥ c|x|−d for large |x| and some c > 0. Then for any r ≥ 0, there exists
a c1 > 0 such that

∫

|x|≥r

P (t, 0, x)φ(x)dx ≥ c1(1 + t)−
d
2 log(2 + t).

iii. Let φ(x) 	 0. Then for any r ≥ 0, there exists a c1 > 0 such that
∫

|x|≥r

P (t, 0, x)φ(x)dx ≥ c1(1 + t)−
d
2 .

Proof. We leave this exercise in advanced calculus to the reader. ¤.
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Lemma 2. i. Let φ(x) ≥ c|x|−q for large |x| and some c > 0, where q ∈ (2, d).
Then there exists a c1 > 0 such that

∫ t

0

∫

Rd

P (s, x, y)φ(y)dyds ≥ c1|x|2−q exp(−|x|
2

t
), for |x| ≥ 1 and t ≥ 2.

ii. Let φ(x) 	 0. Then there exists a c1 > 0 such that

∫ t

0

∫

Rd

P (s, x, y)φ(y)dyds ≥ c1|x|2−d exp(−|x|
2

t
), for |x| ≥ 1 and t ≥ 2.

Proof. Define

(2.9)
γ = q, if φ satisfies the condition in part (i) of Lemma 2

γ = d, if φ satisfies the condition in part (ii) of the Lemma 2.

Using Lemma 1 and the fact that P (s, x, y) ≥ c exp(− |x|2
2s )P ( s

2 , 0, y), we have

∫ t

0

∫

Rd

P (s, x, y)φ(y)dyds ≥ c

∫ t

0

ds exp(−|x|
2

2s
)
∫

Rd

P (
s

2
, 0, y)φ(y)dy

≥ c

∫ t

0

exp(−|x|
2

2s
)(1 + s)−

γ
2 ds.

Making the change of variables, r = |x|2
s , on the right hand side above, we obtain

(2.10)
∫ t

0

∫

Rd

P (s, x, y)φ(y)dyds ≥ c|x|2
∫ ∞

|x|2
t

exp(−r

2
)(r + |x|2)− γ

2 r
γ
2−2dr.

As in the statement of the lemma, we assume that |x| ≥ 1 and t ≥ 2. If in addition,
|x|2

t ≤ 1, then from (2.10), it is clear that the statement of the lemma holds. Now

consider the case that |x|2
t ≥ 1. Since r

γ
2−2 exp(− r

2 ) ≥ c exp(− 2r
3 ), for r ≥ 1, we

have

∫ t

0

∫

Rd

p(s, x, y)φ(y)dyds ≥ c|x|2
∫ 3|x|2

2t

|x|2
t

exp(−2r

3
)(r+|x|2)− γ

2 dr ≥ c|x|2−γ exp(−|x|
2

t
).

¤
As is well known, the solution u(x, t) to (1.1) may be obtained as the pointwise

limit of successive iterations {un(x, t)}∞n=0, where u0 = 0 and

(2.11) un+1(x, t) =
∫ t

0

∫

Rd

P (t− s, x, y) (a(y)up
n(y, s) + λφ(y)) dyds.

By construction, the sequence {un}∞n=0 is nondecreasing; thus, in particular,

(2.12) u(x, t) ≥ u2(x, t).
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Also, by Lemma 2,

(2.13) u1(x, t) ≥ c1|x|2−γ exp(−|x|
2

t
), for |x| ≥ 1 and t ≥ 2,

where γ is as in (2.9).
By assumption, we can choose an r ≥ 1 and a c > 0 such that a(y) ≥ c|y|m, for

|y| ≥ r. Using this, and substituting (2.13) into (2.11), we obtain

(2.14) u2(x, t) ≥ c

∫ t

2

∫

|y|≥r

P (t− s, x, y)|y|p(2−γ)+m exp(−p|y|2
s

)dyds, for t > 2.

We have
(2.15)

P (t− s, x, y) exp(−p|y|2
s

) ≥ c(t− s)−
d
2 exp(− |x|2

2(t− s)
) exp(− (s + 2p(t− s)

2s(t− s)
|y|2)

= c(t− s)−
d
2 (

s(t− s)
s + 2p(t− s)

)
d
2 exp(− |x|2

2(t− s)
)P (

s(t− s)
2(s + 2p(t− s))

, 0, y).

Recall that we are assuming that either γ = q ∈ (2, d) and 1 < p < 1 + 2+m
q−2 , or

that γ = d and 1 < p ≤ 1 + 2+m
d−2 . It then follows that the exponent p(2 − γ) + m

appearing in (2.14) satisfies p(2−γ)+m > −d, except when γ = d and p = 1+ 2+m
d−2 ,

in which case p(2− γ)+m = −d. Substituting (2.15) into (2.14) and using Lemma
1 along with the above observation concerning the exponent p(2−γ)+m, we obtain
(2.16)

u2(x, t) ≥ c

∫ t

2

exp(− |x|2
2(t− s)

)(t− s)−
d
2

(
s(t− s)

s + 2p(t− s)

) d
2 + p

2 (2−γ)+ m
2

ds, for t > 2,

if γ = q ∈ (2, d) and 1 < p < 1 +
2 + m

q − 2
, or if γ = d and 1 < p < 1 +

2 + m

d− 2
,

and

(2.17)
u2(x, t) ≥ c

∫ t

2

exp(− |x|2
2(t− s)

)(t− s)−
d
2 log(

s(t− s)
s + 2p(t− s)

)ds, for t > 2,

if q = d and p = 1 +
2 + m

d− 2
.

Substituting s = ut in (2.16) and integrating up to t
2 instead of up to t in order to

replace the term exp(− |x|2
2(t−s) ) by exp(− |x|2

t ), we obtain
(2.18)

u2(x, t) ≥ ct
p
2 (2−γ)+ m

2 +1 exp(−|x|
2

t
), for t > 5,

if γ = q ∈ (2, d) and 1 < p < 1 +
2 + m

q − 2
, or if γ = d and 1 < p < 1 +

2 + m

d− 2
.

Applying this same procedure to (2.17) gives

(2.19)
u2(x, t) ≥ ct−

d
2 +1(log t) exp(−|x|

2

t
), for t > 5,

if γ = d and p = 1 +
2 + m

d− 2
.
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From (2.9), (2.12), (2.18), and (2.19), we conclude that
(2.20)

u(x, n2) ≥ cnp(2−q)+m+2, for |x| ≤ n, if φ satisfies the condition in Lemma 2-i

or if φ satisfies the condition in Lemma 2-ii and 1 < p < 1 +
2 + m

d− 2
,

and that
(2.21)

u(x, n2) ≥ cn−d+2 log n for |x| ≤ n, if φ satisfies the condition in Lemma 2-ii

and p = 1 +
2 + m

d− 2
.

With the estimates (2.20) and (2.21), we can verify (2.8) and thereby conclude
the proof. If φ, p, d, and m satisfy the conditions of (2.20), then letting tn = n2,
we have Fn(tn) ≥ cnp(2−q)+m+2. The condition on p, d, q and m in (2.20) insures
that p(2 − q) + m + 2 > −2−m

p−1 ; therefore (2.8) holds. If φ, p, d, and m satisfy the
conditions of (2.21), then letting tn = n2, we have Fn(tn) ≥ cn−d+2 log n. The
condition on p, d, q and m in (2.21) gives −2−m

p−1 = −d + 2; therefore (2.8) holds.
This completes the proof of part b-1. ¤

Proof of part b-2. We employ a technique used in [2] for the case p = 2 and
a(x) = 1. We will prove that the following inequality holds: there exists a c1 > 0
and for all δ > 0, a Cδ > 0 such that

(2.22) c1(1 + |x|)2−q ≤
∫

Rd

(1 + |y|)−q

|x− y|d−2
dy ≤ Cδ(1 + |x|)2−q+δ, where q ∈ (2, d].

We will now use (2.22) to prove global existence. Then we will return to prove
(2.22). Let

(2.23) v(x, t) ≡ v(x) = µ

∫

Rd

(1 + |y|)−q

|x− y|d−2
dy, where µ > 0.

Since a(x) ≤ c1(1 + |x|)m and φ(x) ≤ c2(1 + |x|)−q, for some q ∈ (2, d], where
c1, c2 > 0, and since the Green’s function for −∆ on Rd satisfies G(x, y) = γd

|x−y|d−2 ,
for an appropriate constant γd > 0, it follows from (2.23), from the right hand
inequality in (2.22), and from the fact that p > 1 + (2+m)+

q−2 , that there exists an
δ > 0 such that

(2.24) ∆v − vt + a(x)vp + λφ ≤
(
− µ

γd
+ c1c

pµp + λCδ

)
(1 + |x|)−q.

By first choosing µ sufficiently small so that c1c
pµp ≤ 1

2
µ
γd

, and then choosing λ

sufficiently small, we can make the right hand side of (2.24) negative. Thus, by
the maximum principle and by the left hand inequality in (2.22), it follows that for
sufficiently small λ > 0 and for sufficiently small c > 0, the solution u(x, t) to (1.1)
with f(x) ≤ c(1 + |x|)2−q satisfies

(2.25) u(x, t) ≤ v(x),
7



and is thus a global solution. We will now show how to increase the exponent (2−q)
appearing in the bound for f above to the exponent (2+m)+

p−1 appearing in (1.3) in
the statement of the theorem.

We argue as follows. By assumption, p > 1 + (2+m)+

q−2 = q+max(m,−2)
q−2 . Note that

the right hand side of the above inequality is decreasing for q ∈ (2, d]. Define q0 < q

by p = q0+max(m,−2)
q0−2 . Then

(2.26) 2− q0 = − (2 + m)+

p− 1
.

Let q1 ∈ (q0, q) and note that q1 satisfies p > 1 + (2+m)+

q1−2 . Thus, by the above
results, it follows that if φ(x) ≤ c|x|−q1 , for large |x| and some c > 0, then for
sufficiently small λ > 0 and sufficiently small c1 > 0, the solution to (1.1) with
f(x) ≤ c1(1 + |x|)2−q1 is global. But then, by the maximum principal, the same
holds true if we decrease φ so that it satisfies the original bound, φ(x) ≤ c|x|−q.
Thus we have proven that (1.1) possesses a global solution if λ > 0 and c1 > 0 are
sufficiently small and f(x) ≤ c1(1 + |x|)2−q1 . Since q1 can be chosen arbitrarily
close to q0, it follows from (2.26) that a global solution exists if f(x) ≤ c1(1 +

|x|)− (2+m)+

p−1 −ε, for some ε > 0 and for c1 > 0 sufficiently small. This completes the
proof of global existence.

We now return to prove (2.22). We emphasize that c will denote a positive
constant whose value may change from expression to expression. For the right
hand inequality, we will show that for any δ ∈ (0, q − 2),

∫

Rd

(1 + |x|)q−2−δ

|x− y|d−2(1 + |y|)q
dy

is bounded in x. We split the integral into three parts. Let D1 = {y ∈ Rd : |x−y| <
|x|
2 }, D2 = {y ∈ Rd : |x − y| > |x|

2 , |x − y| < |y|
2 }, and D3 = {y ∈ Rd : |x − y| >

|x|
2 , |x− y| > |y|

2 }. We have

∫

D1

(1 + |x|)q−2−δ

|x− y|d−2(1 + |y|)q
dy ≤ c(1+|x|)−2−δ

∫

D1

|x−y|2−ddy ≤ c(1+|x|)−2−δ|x|2 ≤ c,

where the first inequality uses the fact that |y| ≥ |x|
2 on D1. Also,

∫

D2

(1 + |x|)q−2−δ

|x− y|d−2(1 + |y|)q
dy ≤ c

∫

D2

|x− y|−d−δdy ≤ c.

Finally, we consider
∫

D3

(1+|x|)q−2−δ

|x−y|d−2(1+|y|)q dy. It is clear that

∫

D3∩{|x−y|≤1}

(1 + |x|)q−2−δ

|x− y|d−2(1 + |y|)q
dy ≤ c.

Letting D4 = D3 ∩ {|x− y| > 1}, and noting that q − d− δ < 0, we have
∫

D4

(1 + |x|)q−2−δ

|x− y|d−2(1 + |y|)q
dy ≤ c

∫

D4

|x− y|q−d−δ

(1 + |y|)q
dy ≤ c

∫

D4

|y|q−d−δ

(1 + |y|)q
dy ≤ c.
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We now prove the left hand inequality in (2.22). Since |y| < 3
2 |x| on D1, we have

(2.27)
∫

Rd

(1 + |y|)−q

|x− y|d−2
dy ≥ c(1 + |x|)−q

∫

D1

(|x− y|2−ddy ≥ c(1 + |x|)−q|x|2.

Since it is clear that
∫

Rd

(1+|y|)−q

|x−y|d−2 dy is bounded away from zero on {|x| < 1}, the
left hand inequality in (2.22) follows from (2.27)

It remains to prove the final statement of the theorem. Since the initial condition
in (1.1) is 0, it follows by comparison that u(x, t) is monotone in t. Thus U(x) ≡
limt→∞ u(x, t) exists. By (2.22), (2.23), and (2.25), it follows that for any δ > 0,
U(x) ≤ Cδ(1 + |x|)2−q+δ. Using the integral equation for u(x, t), namely (2.11)
with un and un+1 replaced by u, and letting t →∞, gives

U(x) =
∫

Rd

G(x, y)(aUp + λφ)(y)dy,

where G(x, y) = γd
1

|y−x|d−2 is the Green’s function for ∆ on Rd. Note that from the
above bound on U , along with the conditions on a, φ, and q, and the assumption
that p > 1+ (2+m)+

q−2 , it follows that (aUp +λφ)(y) ≤ c(1+ |y|)−q, and q > 2. It then
follows from standard theory [1] that U ∈ C2(Rd) and ∆U + a(x)Up + λφ(x) = 0
in Rd.

¤
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