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Abstract. LetX(·) be a non-degenerate, positive recurrent one-dimensional

diffusion process on R with invariant probability density µ(x), and let

τy = inf{t ≥ 0 : X(t) = y} denote the first hitting time of y. Let X

be a random variable independent of the diffusion process X(·) and dis-

tributed according to the process’s invariant probability measure µ(x)dx.

Denote by Eµ the expectation with respect to X . Consider the expres-

sion

EµExτX =

∫ ∞
−∞

(Exτy)µ(y)dy, x ∈ R.

In words, this expression is the expected hitting time of the diffusion

starting from x of a point chosen randomly according to the diffusion’s

invariant distribution. We show that this expression is constant in x,

and that it is finite if and only if ±∞ are entrance boundaries for the

diffusion. This result generalizes to diffusion processes the corresponding

result in the setting of finite Markov chains, where the constant value is

known as Kemeny’s constant.

1. Introduction and Statement of Results

Let {Xn}∞n=0 be an irreducible, discrete time Markov chain on a finite

state space S, and denote it’s invariant probability measure by µ. For j ∈ S,

let τ̂j = inf{n ≥ 1 : Xn = j} denote the first passage time to j. Denoting

expectations for the process starting from i ∈ S by Ei, consider the quantity∑
j∈S µjEiτ̂j . In their book on Markov chains [4], Kemeny and Snell showed

that the above quantity is independent of the initial state i, and this quantity
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has become known as Kemeny’s constant, which we denote by K. Let

τj = inf{n ≥ 0 : Xn = j} denote the first hitting time of j. We note

that
∑

j∈S µjEiτj is also independent of i, and is equal to K − 1. This

follows from the well-known fact that Eiτ̂i = 1
µi

[2].

In [1], the authors analysed the Kemeny constant phenomenon for positive

recurrent, discrete time and continuous time Markov chains on a denumer-

ably infinite state space S. They showed that the quantity
∑

j∈S µjEiτ̂j

is either infinite for all i ∈ S, or else is finite and independent of i. They

conjectured that this quantity is always infinite in the discrete time setting,

and they proved this in the case of discrete time birth and death chains

on {0, 1, · · · }. In the case of continuous time birth and death chains on

{0, 1, · · · }, they proved that the Kemeny constant is finite if and only if +∞

is an entrance boundary for the process.

In this paper, we consider the corresponding problem in the context of

one-dimensional diffusion processes on R. Consider a non-degenerate one-

dimensional diffusion process X(·) on R generated by

L =
1

2
a(x)

d2

dx2
+ b(x)

d

dx
.

We assume that a is continuous and positive, and that b is locally bounded

and measurable. Denote probabilities and expectations for the Markov pro-

cess X(·) starting from x ∈ R by Px and Ex. For y ∈ R, let τy = inf{t ≥ 0 :

X(t) = y} denote the first hitting time of y. It is well-known [5] that the

following conditions are equivalent:

(1.1)

i. Exτy <∞, for all x, y ∈ R;

ii.

∫ ∞
−∞

1

a(x)
exp

(
2

∫ x

0

b(t)

a(t)
dt
)
dx <∞;

iii. There exists an invariant probability density µ(x) for the process X(·).
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If these conditions hold, we say that the process is positive recurrent. In fact

then, one has

(1.2) µ(x) =
c0
a(x)

exp(2

∫ x

0

b(t)

a(t)
)dt,

for a normalizing constant c0 > 0.

From now on we assume that the diffusion is positive recurrent; that is,

we assume that

(1.3)

∫ ∞
−∞

1

a(x)
exp

(
2

∫ x

0

b(t)

a(t)
dt
)
dx <∞.

Let X be a random variable independent of the diffusion process X(·) and

distributed according to the process’s invariant probability measure µ(x)dx.

Denote by Eµ the expectation with respect to X . We consider the expression

EµExτX =

∫ ∞
−∞

(Exτy)µ(y)dy, x ∈ R.

In words, this expression is the expected hitting time of the diffusion starting

from x of a point chosen randomly according to the diffusion’s invariant

distribution.

There immediately arises the question of whether or not this expression

is finite. Note the following tradeoff: On the one hand, the more negative

(positive) the drift is in a neighborhood of +∞ (−∞), the faster is the decay

of the invariant density µ(y) at +∞ (−∞). However on the other hand,

the more negative (positive) the drift is in a neighborhood of +∞ (−∞), the

larger Exτy will be in a neighborhood of +∞ (−∞).

It turns out that the finiteness or infiniteness of the expression depends

on whether or not ±∞ are entrance boundaries for the process. We recall

that +∞ is called an entrance boundary if limx→∞ Px(τy < t) > 0, for

some y ∈ R and some t > 0. Similarly, −∞ is called an entrance boundary

if limx→−∞ Px(τy < t) > 0, for some y ∈ R and some t > 0. (Actually,

equivalently, “some y ∈ R and some t > 0” can be replaced by “all y ∈ R

and all t > 0.”) Given that the process is positive recurrent, that is, given
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that (1.3) holds, here is the criterion for an entrance boundary at +∞:

(1.4)

∫ ∞
dx

1

a(x)
exp

(
2

∫ x

0

b(s)

a(s)
ds
) ∫ x

0
dy exp

(
− 2

∫ y

0

b(s)

a(s)
ds
)
<∞.

See [5, chapter 8], where the term “explosion inward from infinity” is used in-

stead of entrance boundary. The condition (1.4) appears as (iv) in Theorem

4.1 in chapter 8. In that theorem, which does not assume positive recur-

rence, an additional requirement, denoted as (iii), is also stated; namely,∫∞
exp

(
− 2

∫ x
0
b(s)
a(s)ds

)
dx = ∞. However, an application of the Cauchy-

Schwarz inequality shows that this condition holds automatically if (1.3)

holds. Similarly, given that the process is positive recurrent, here is the

criterion for an entrance boundary at −∞:

(1.5)

∫
−∞

dx
1

a(x)
exp

(
2

∫ x

0

b(s)

a(s)
ds
) ∫ 0

x
dy exp

(
− 2

∫ y

0

b(s)

a(s)
ds
)
<∞.

We will prove the following theorem. Let µ denote the probability measure

with density µ(x)dx.

Theorem 1. Assume that the diffusion is positive recurrent; that is, assume

that (1.3) holds. If ±∞ are both entrance boundaries for the diffusion, that

is, if (1.4) and (1.5) both hold, then EµExτX =
∫∞
−∞(Exτy)µ(y)dy is finite

and independent of x ∈ R. Two alternative expressions for the value of this

constant are

(1.6)

2

∫ ∞
−∞

dy µ(y)

∫ ∞
y

dz
µ([z,∞))

µ(z)a(z)
and 2

∫ ∞
−∞

dy µ(y)

∫ y

−∞
dz
µ((−∞, z])
µ(z)a(z)

.

If at least one of ±∞ is not an entrance boundary, that is if at least one of

(1.4) and (1.5) does not hold, then

(1.7) EµExτX =

∫ ∞
−∞

(Exτy)µ(y)dy =∞, for all x ∈ R.

Remark 1. Given a continuously differentiable, strictly positive probability

density µ and given a continuously differentiable diffusion matrix a, if one

chooses the drift b(x) = 1
2

(
a(x)µ

′(x)
µ(x) +a′(x)

)
, then the diffusion process with

generator L will have invariant probability density µ. Thus, given such a
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density µ, the diffusion processes for which µ is the invariant density can

be indexed by their diffusion matrices a. From (1.6) we see that given the

invariant density µ, the expression EµExτX is monotone decreasing as a

function of the diffusion matrix a. Furthermore, we see that for sufficiently

large a it will be finite and for sufficiently small a it will be infinite. In

particular then, given µ we can find a diffusion with invariant density µ

for which ±∞ are entrance boundaries and we can find such a diffusion for

which ±∞ are not entrance boundaries.

Remark 2. Let µ be a continuously differentiable, strictly positive proba-

bility density as in Remark 1. Since the two expressions in (1.6) must be

both finite or both infinite, it is easy to see that in the case of constant

diffusion coefficient, a ≡ const., the expression EµExτX is finite if and only

if

(1.8)

∫ ∞
−∞

µ([y,∞))

µ(y)
dy <∞.

In particular, if µ(x) ∼ const.e−k|x|
l
, for k, l > 0, then (1.8) holds if and only

if l > 2,

Remark 3. Pat Fitzsimmons [3] has a somewhat different proof that EµExτX
is independent of x, which involves converting the diffusion to natural scale

and using a time change. He obtained the expression E|s(X) − s(Y )| for

the constant, where X and Y are independent random variables distributed

according to µ, and s(x) =
∫ x
0 dy exp(−2

∫ y
0
b(t)
a(t)dt) is the scale function for

the diffusion. It is not hard to show that this expression is finite if and only

if (1.4) and (1.5) hold, and that if they hold then this expression coincides

with (1.6).

2. Proof of Theorem 1

We first proof that
∫∞
−∞(Exτy)µ(y)dy < ∞ if and only if (1.4) and (1.5)

hold. We have the following explicit expression for the expected hitting
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time:

(2.1)

ExTy =

2
∫ x
y dz exp(−2

∫ z
0
b(t)
a(t)dt)

∫∞
z dw 1

a(w) exp(2
∫ w
0

b(t)
a(t)dt), −∞ < y < x;

2
∫ y
x dz exp(−2

∫ z
0
b(t)
a(t)dt)

∫ z
−∞ dw

1
a(w) exp(2

∫ w
0

b(t)
a(t)dt), x < y <∞.

For a derivation, see for example the proof of Proposition 2 in [6] (where

a(x) is a constant and denoted by D). Using this with (1.2)–(1.5), it is easy

to see that (1.4) and (1.5) constitute necessary and sufficient conditions for

the finiteness of
∫∞
−∞(Exτy)µ(y)dy. Indeed, from (2.1) and (1.2), we have

(2.2)∫ ∞
x

(Exτy)µ(y)dy =

2

∫ ∞
x

dy
c0
a(y)

exp
(
2

∫ y

0

b(t)

a(t)
dt
) ∫ y

x
dz exp(−2

∫ z

0

b(t)

a(t)
dt)

∫ z

−∞
dw

1

a(w)
exp(2

∫ w

0

b(t)

a(t)
dt).

By (1.2), the right hand side of (2.2) is finite if and only if∫ ∞
x

dy
c0
a(y)

exp
(
2

∫ y

0

b(t)

a(t)
dt
) ∫ y

x
dz exp(−2

∫ z

0

b(t)

a(t)
dt) <∞,

and this latter expression is finite if and only if (1.4) holds. Thus,
∫∞
x (Exτy)µ(y)dy <

∞ if and only if (1.4) holds. A similar analysis shows that
∫ x
−∞(Exτy)µ(y)dy <

∞ if and only if (1.5) holds.

We now show that if (1.4) and (1.5) hold, then
∫∞
−∞(Exτy)µ(y)dy is in-

dependent of x ∈ R. For y ∈ R, define uy,+(x) = Exτy, for x ≥ y, and

uy,−(x) = Exτy, for x ≤ y. (Of course, uy,+(x) and uy,−(x) respectively are

equal to the first and second lines on the right hand side of (2.1).) As is

well-know, it follows from an application of Ito’s formula that

(2.3)
Luy,+ = −1 in (y,∞); uy,+(y) = 0;

Luy,− = −1 in (−∞, y); uy,−(y) = 0.

(Indeed, it is from this that the formulas in (2.1) were derived.) Define

F (x) =
∫∞
−∞(Exτy)µ(y)dy. Then we have

F (x) =

∫ x

−∞
uy,+(x)µ(y)dy +

∫ ∞
x

uy,−(x)µ(y)dy.
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In light of the fact that uy,+(x) and uy,−(x) are given by (2.1), as well as

the fact that (1.3)– (1.5) hold, we can differentiate freely under the integral.

Using the boundary condition in (2.3), we have

(2.4) F ′(x) =

∫ x

−∞
u′y,+(x)µ(y)dy +

∫ ∞
x

u′y,−(x)µ(y)dy,

and differentiating again gives

(2.5)

F ′′(x) =

∫ x

−∞
u′′y,+(x)µ(y)dy+

∫ ∞
x

u′′y,−(x)µ(y)dy+µ(x)
(
u′x,+(x)−u′x,−(x)

)
.

From (2.4) and (2.5) we obtain

(2.6)

LF (x) =

∫ x

−∞
µ(y)Luy,+(x)dy+

∫ ∞
x

µ(y)Luy,−(x)dy+
1

2
a(x)µ(x)

(
u′x,+(x)−u′x,−(x)

)
.

From (2.3) we have

(2.7)

∫ x

−∞
µ(y)Luy,+(x)dy +

∫ ∞
x

µ(y)Luy,−(x)dy = −
∫ ∞
−∞

µ(y)dy = −1.

Using the formulas for uy,+(x) and uy,−(x) as given by the two lines on the

right hand side of (2.1), and recalling (1.2), we have

u′x,+(x)− u′x,−(x) = 2 exp(−2

∫ x

0

b(t)

a(t)
dt)

∫ ∞
x

dw
1

a(w)
exp(2

∫ w

0

b(t)

a(t)
dt)−

2 exp(−2

∫ x

0

b(t)

a(t)
dt)

∫ x

−∞
dw

1

a(w)
exp(2

∫ w

0

b(t)

a(t)
dt) =

2 exp(−2

∫ x

0

b(t)

a(t)
dt)

∫ ∞
−∞

dw
1

a(w)
exp(2

∫ w

0

b(t)

a(t)
dt) =

2

c0
exp(−2

∫ x

0

b(t)

a(t)
dt).

Thus,

(2.8)
1

2
a(x)µ(x)

(
u′x,+(x)−u′x,−(x)

)
=
c0
2

exp(2

∫ x

0

b(t)

a(t)
dt)× 2

c0
exp(−2

∫ x

0

b(t)

a(t)
dt) = 1.

From (2.6)–(2.8), we conclude that LF = 0; that is, F is L-harmonic.

Since L is a recurrent diffusion generator, it has no nonconstant posi-

tive harmonic functions [5, p.457]. Consequently, we conclude that F (x) =∫∞
−∞(Exτy)µ(y)dy is constant in x.
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It remains to prove (1.6). From (2.2) and the corresponding formula for∫ x
−∞(Exτy)µ(y)dy, we have

(2.9)

F (x) =

∫ ∞
−∞

(Exτy)µ(y)dy =

2

∫ ∞
x

dy µ(y)

∫ y

x
dz exp(−2

∫ z

0

b(t)

a(t)
dt)

∫ z

−∞
dw

1

a(w)
exp(2

∫ w

0

b(t)

a(t)
dt)+

2

∫ x

−∞
dy µ(y)

∫ x

y
dz exp(−2

∫ z

0

b(t)

a(t)
dt)

∫ ∞
z

dw
1

a(w)
exp(2

∫ w

0

b(t)

a(t)
dt).

Letting x → ∞ in (2.9) and using (1.2) to write everything in terms of a

and µ gives the first alternative in (1.6). Similarly, letting x → −∞ gives

the second alternative in (1.6). �
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