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Abstract. Let Ω ⊂ Rd be a bounded domain with smooth boundary and let A ⊂⊂
Ω be a smooth, compactly embedded subdomain. Consider the operator − 1

2
∆ in

Ω − Ā with the Dirichlet boundary condition at ∂A and the Neumann boundary
condition at ∂Ω, and let λ0(Ω, A) > 0 denote its principal eigenvalue. We discuss
the question of monotonicity of λ0(Ω, A) in its dependence on the domain Ω.

The main point of this note is to suggest an open problem that is in the spirit of

Chavel’s question concerning domain monotonicity for the Neumann heat kernal.

Let Ω ⊂ Rd be a bounded domain with smooth boundary and let A ⊂⊂ Ω be a

smooth, compactly embedded subdomain. Consider the operator − 1
2∆ in Ω − Ā

with the Dirichlet boundary condition at ∂A and the Neumann boundary condition

at ∂Ω, and let λ0(Ω, A) > 0 denote its principal eigenvalue. If instead of the

Neumann boundary condition, one imposes the Dirichlet boundary condition at

∂Ω, then it’s easy to see that λ0(Ω, A) is monotone decreasing in Ω and increasing

in A. Similarly, in the case at hand, it is clear that λ0(Ω, A) is monotone increasing

in A; however, the question of monotonicity in Ω is not easily resolved. The impetus

for studying this question arose in part from a recent paper [5] in which one can

find the asymptotic behavior of λ0(Ω, A) when A is a ball that shrinks to a point,
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and in part from the work of Chavel [2], Kendall [3] and Bass and Burdzy [1], where

a monotonicity property of the Neumann heat kernel was studied.

Let Bε(x) denote the ball of radius ε > 0 centered at x ∈ Ω, let |Ω| denote the

volume of Ω and let ωd denote the volume of the unit ball in Rd. In [5] it was shown

that

(1.1-a) lim
ε→0

ε2−dλ0(Ω, Bε(x)) =
d(d− 2)ωd

2|Ω| , if d ≥ 3,

and

(1.1-b) lim
ε→0

(− log ε)λ0(Ω, Bε(x)) =
π

|Ω| , if d = 2.

In particular then, we obtain from (1.1) the following proposition.

Proposition 1. If Ω1 ( Ω2, then for each x ∈ Ω1 there exists an ε0 = ε0(x) > 0

such that

λ0(Ω1, Bε(x)) > λ0(Ω2, Bε(x)), for ε ∈ (0, ε0).

Remark. A careful look at the proof of (1.1) shows that ε0(x) in Proposition 1

may be chosen uniformly for x away from ∂Ω1.

The question we pose here is this:

Question 1: Under what “generic” conditions on A, Ω1 and Ω2, satisfying A ⊂⊂
Ω1 ⊂ Ω2, is it true that λ0(Ω1, A) ≥ Ω0(Ω2, A)?

The following well-known probabilistic representation of λ0(Ω, A) gives some

useful intuition for the problem:

(1.2) lim
t→∞

1
t

log Px(τA > t) = −λ0(Ω, A),

where x ∈ Ω− Ā, and Px(τA > t) denotes the probability that a Brownian motion

starting from x ∈ Ω and normally reflected at the barrier ∂Ω will not reach the set

A by time t.

The following example shows that monotoncity in Ω does not hold in complete

generality, and that a certain convexity requirement is reasonable. Let Ω1 ⊂ R2
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be the skewed, barbell-shaped region pictured below and defined as follows: Ω1 =

B1((−2, 0))∪B1((2, 0))∪Tδ, where δ ∈ (0, 1
4 ) and Tδ is the cone-like region bounded

by the line connecting (− 3
2 ,

√
3
4 ) to (1 + δ,

√
1− (1− δ)2) and the line connecting

(− 3
2 ,−

√
3
4 ) to (1+ δ,−

√
1− (1− δ)2). Let Ω2 = B4((0, 0)) and let A = Bρ((0, 0)),

where ρ > 0 is chosen sufficiently small so that A ⊂⊂ Ω1 for every δ ∈ (0, 1
4 ). Then

λ0(Ω2, A) > 0 and doesn’t depend on δ, but as is easy to understand from (1.2)

and as is not hard to show rigorously, λ0(Ω1, A) approaches 0 as δ → 0.

We prove the following result.

Theorem 1. Let Ω1 ⊂ Rd be convex and let Br0(x0) ⊂⊂ Ω1. Let Ω2 satisfy the

following condition: there exists an R such that Ω1 ⊂ BR(x0) ⊂ Ω2. Then

λ0(Ω1, Br0(x0)) ≥ λ0(Ω2, Br0(x0)).

Remark. In words, the theorem indicates that monotonicity holds if the inner

domain A is a ball, and if it is possible to impose a ball which is concentric to A

between the two boundaries, ∂Ω1 and ∂Ω2.

The method of proof is similar to that used in [2] to prove a certain monotonicity

property of the Neumann heat kernel. Before giving the proof, we describe the

conjecture raised with regard to the Neumann heat kernel, the results from [2] and

[3], and the example constructed in [1].

Consider the operator − 1
2∆ in Ω with the Neumann boundary condition at ∂Ω.

Let pΩ(t, x, y) denote the corresponding heat kernel. As a function of y, pΩ(t, x, ·)
is the density of the probability distribution corresponding to the position at time

t of a Brownian motion starting from x and normally reflected at the barrier ∂Ω;

that is,

(1.3) pΩ(t, x, y) = Px(X(t) ∈ dy).
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It is well-known that limt→∞ pΩ(t, x, y) = 1
|Ω| . Thus, if Ω1 ( Ω2, it follows that for

each x, y ∈ Ω1, there exists a t0 = t0(x, y) such that pΩ1(t, x, y) > pΩ2(t, x, y), for

t > t0. We paraphrase the question posed in [2] as follows:

Question 2: Under what generic conditions on Ω1 and Ω2 satisfying Ω1 ⊂ Ω2 is

it true that pΩ1(t, x, y) ≥ pΩ2(t, x, y) for all t and all x, y ∈ Ω1?

It is easy to see that some convexity is needed. Indeed, consider the case that

Ω2 is a square and Ω1 is a very thin L-shaped subset of Ω2 running along the lower

and left boundaries of Ω2. Then the intuition gleaned from (1.3) suggests that for

fixed t and thin enough Ω1, the above inequality will be violated if x is chosen from

the lower right hand corner of the square and y is chosen from the upper left hand

corner.

Using a straightforward integration by parts, Chavel showed in [2] that

pΩ1(t, x, y) ≥ pΩ2(t, x, y) when Ω1 is a convex domain containing x and y, and

Ω2 is a ball centered at either x or y. Building on Chavel’s result, Kendall [3]

gave a nice argument using couplings of reflected Brownian motions to show that

pΩ1(t, x, y) ≥ pΩ2(t, x, y) when Ω1 is a convex domain containing x and y, and Ω2 is

such that one can fit a ball B, centered at either x or y, between the two domains;

that it, Ω1 ⊂ B ⊂ Ω2. Note that in their results, the conditions on the domains

depend on the points x, y.

What happens if one dispenses with Kendall’s assumption concerning the fitting

of a ball between Ω1 and Ω2? In [1], Bass and Burdzy gave an example showing that

the above inequality does not always hold if one only assumes that Ω1 is convex.

They obtained the reverse inequality for a certain pair of domains Ω1,Ω2 and for a

certain set of points t0, x0, y0. Bass and Burdzy used probabilistic methods starting

from (1.3).

Returning to the question in the present paper, we propose the following problem:

Open Problem. Give an example of a triple A,Ω1,Ω2 such that Ω1 is convex,

A ⊂⊂ Ω1 ⊂ Ω2 and λ0(Ω2, A) > λ0(Ω1, A), or alternatively, show that the reverse

inequality always holds.
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We suspect that the inequality λ0(Ω2, A) ≤ λ0(Ω1, A) does not always hold

when Ω1 is convex, but we also suspect that it is more difficult to find an example

here than it was for the Neumann heat kernel problem. Bass and Burdzy gave an

example for a specific (short) time t0. In the present situation, of course there is

no time parameter, and the eigenvalue depends on the entire infinite time interval

[0,∞).

Proof of Theorem 1. We will prove that

(1.4) λ0(Ω1, Br0(x0)) ≥ λ0(BR(x0), Br0(x0))

and that

(1.5) λ0(BR(x0), Br0(x0)) ≥ λ0(Ω2, Br0(x0)).

Without loss of generality, we will assume that x0 = 0.

We first consider (1.4). Let φ0,1, φ0,2 > 0 denote the principal eigenfunctions

corresponding respectively to λ0(Ω1, Br0(0)) and λ0(BR(0), Br0(0)). Using the fact

that 1
2∆φ0,1 = −λ0(Ω1, Br0(0))φ0,1 and 1

2∆φ0,2 = −λ0(BR(0), Br0(0))φ0,2 for the

first equality below, and using integration by parts, the fact that φ0,1, φ0,2 vanish

on ∂Br0(0), and the fact that ∇φ0,1 · n = 0 on ∂Ω1 for the second one, we have

(1.6)

(λ0(Ω1, Br0(0))− λ0(BR(0), Br0(0))
∫

Ω1−Br0 (0)

φ0,1φ0,2dx

=
1
2

∫

Ω1−Br0 (0)

(φ0,1∆φ0,2 − φ0,2∆φ0,1)dx =
1
2

∫

∂Ω1

φ0,1∇φ0,2 · n,

where n is the outward unit normal to Ω1 at ∂Ω1. In light of (1.6), to complete the

proof of (1.4) it suffices to show that ∇φ0,2 · n ≥ 0 on ∂Ω1.

By symmetry, φ0,2 depends only on |x|, so we will write φ0,2(r). By the convexity

of Ω1, in order to show that ∇φ0,2 ·n ≥ 0 on ∂Ω1, it suffices to show that φ0,2 is non-

decreasing in r. If the contrary were true, then there would exist an r1 ∈ (r0, R)

such that φ′0,2(r1) = 0. But then φ0,2 would constitute a positive eigenfunction

corresponding to a positive eigenvalue for the Neumann Laplacian in the annulus

BR(0) − B̄r0(0). However, this contradicts the fact that the only positive eigen-

functions for the Neumann Laplacian in the annulus are the constant functions,
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corresponding to the eigenvalue 0. Thus, we conclude that φ0,2 is nondecreasing in

r.

We now turn to (1.5). We could use Kendall’s construction, but there is no need;

(1.5) follows immediately from the variational formuala for λ0(·, ·). Indeed, we have

λ0(Ω, A) = inf
1
2

∫
Ω−A

|∇u|2dx∫
Ω−A

u2dx
,

where the infimum is over those 0 6= u ∈ C1(Ω̄ − A) satisfying u = 0 on ∂A. The

infimum is attained at u = u0 ≥ 0, where u0 is the eigenfunction corresponding

to λ0(Ω, A). In particular, when Ω = BR(0) and A = Br0(0), this eigenfunction is

radially symmetric and positive on the interior of its domain of definition, hence

equal to a positive constant c0 on ∂BR(0). Let

u1(x) =
{

u0(x), if x ∈ B̄R(0)−Br0(0))
c0, if x ∈ Ω2 −BR(0).

Then by variational formula,

λ0(Ω2, Br0(0)) = inf
1
2

∫
Ω2−Br0 (0))

|∇u|2dx
∫
Ω2−Br0 (0))

u2dx
≤

1
2

∫
Ω2−Br0 (0))

|∇u1|2dx
∫
Ω2−Br0 (0))

u2
1dx

≤
1
2

∫
BR(0)−Br0 (0))

|∇u0|2dx
∫

BR(0)−Br0 (0))
u2

0dx
= λ0(BR(0), Br0(0)).

¤

We conclude with an explicit sufficient condition for monotonicity in the case of

smooth, bounded two-dimensional , star-shaped domains. A bounded C1-domain

Ω ⊂ R2 is star-shaped with respect to the origin if and only if it can be represented

in polar coordinates in the form Ω = {(r, θ) : r < R(θ)}, where R > 0 is a C1

function on the circle.

Theorem 2. i. Let Ω1, Ω2 and A be two-dimensional, star-shaped C1-domains

with respect to the origin, satisfying A ⊂⊂ Ω1 ⊂ Ω2. Let Ωi = {(r, θ) : r < Ri(θ)},
i = 1, 2. Let

f =
R2

R1
.
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Assume that

(1.7)
(f ′)2

f
≤ (f − 1)2.

Then

λ0(Ω1, A) ≥ λ0(Ω2, A).

Furthermore, if the strict inequality R2 > R1 holds, then λ0(Ω1, A) > λ0(Ω2, A).

ii. Let A ⊂ R2 be a star-shaped C1-domain with respect to the origin and let

{Ωt, t ∈ [0, 1]} be a one-parameter family of star-shaped domains with respect to

the origin, satisfying A ⊂⊂ Ωs ⊂ Ωt, for s < t, and defined by Ωt = {(r, θ) : r <

R(θ, t)}, where R(θ, t) is a C2-function. If

|(Rt

R
)θ| ≤ Rt

R
,

then λ0(Ωt, A) is nonincreasing in t.

Remark. Note that in contrast to Theorem 1, no condition is imposed on A in

Theorem 2 beyond its being star-shaped and smooth.

Example. Let R, R̄ > 0 be C1 functions. Define Ω0 = {(r, θ) : r < R(θ)} and

Ωt = {(r, θ) : r < R(θ) + tR̄(θ)}, t > 0. Let A ⊂⊂ Ω0 be star-shaped with respect

to the origin and C1. From Theorem 2-ii it follows that λ0(Ωt, A) is nonincreasing

in t if | R̄′
R̄
− R′

R | ≤ 1. A particular case of this is when R̄ = R, so that the Ωt’s all

have the same shape, differing only in magnification.

Proof. i. Assume for now that R2 > R1. Let A = {(r, θ) : r < a(θ)}. Let φ ≥ 0

denote the eigenfunction corresponding to λ0(Ω1, A). Of course, φ = 0 on ∂A.

Extend φ to all of Ω1 by defining φ(x) = 0 for x ∈ A. Let

u(r, θ) =
{

φ(R1
R2

(θ)r, θ), if (R1
R2

(θ)r, θ) ∈ Ω̄1 −A

0, otherwise.

Since φ(r, θ) = 0 for r ≤ a(θ), it follows that u(r, θ) = 0 for r ≤ R2(θ)
R1(θ)a(θ). Thus,

since R2 > R1, we have u = 0 on Ā. Note that u cannot be the eigenfunction

corresponding to λ0(Ω2, A) because it vanishes at all points in Ω2 − A which are
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sufficiently close to A, whereas the eigenfunction is strictly positive in Ω2−Ā. Since

the right hand side of (1.6) is attained only when u is equal to the eigenfunction,

it then follows from the variational formula (1.6) that

(1.8) λ0(Ω2, A) <
1
2

∫
Ω2−A

|∇u|2(r, θ)drdθ∫
Ω2−A

u2(r, θ)drdθ
.

We have

|∇u|2(r, θ) = u2
r(r, θ) +

1
r2

u2
θ(r, θ) =

φ2
r(

R1

R2
(θ)r, θ)(

R1

R2
(θ))2 +

1
r2

(
φr(

R1

R2
(θ)r, θ)r(

R1

R2
(θ))′ + φθ(

R1

R2
(θ)r, θ)

)2

.

Thus, making the change of variables s = R1
R2

(θ)r, we obtain

(1.9)

∫

Ω2−A

|∇u|2(r, θ)drdθ =
∫ 2π

0

dθ

∫ R2(θ)

R2(θ)
R1(θ) a(θ)

dr (u2
r +

1
r2

u2
θ)(r, θ) =

∫ 2π

0

dθ

∫ R1(θ)

a(θ)

dr [φ2
r(s, θ)

R1

R2
(θ) + φ2

r(s, θ)((
R1

R2
(θ))′)2

R2

R1
(θ)+

1
s2

φ2
θ(s, θ)

R1

R2
(θ) +

2
s
φr(s, θ)φθ(s, θ)(

R1

R2
(θ))′].

Let δ(θ) > 0 be an as yet unspecified function. Using the inequality 2ab ≤ a2 + b2,

we have

(1.10)
2
s
φr(s, θ)φθ(s, θ)(

R1

R2
(θ))′ ≤ 1

δ(θ)
φ2

r(s, θ)((
R1

R2
(θ))′)2

R2

R1
(θ) +

1
s2

δ(θ)φ2
θ(s, θ)

R1

R2
(θ).

Substituting (1.10) in (1.9), we have

(1.11)∫

Ω2−A

|∇u|2(r, θ)drdθ ≤
∫ 2π

0

dθ

∫ R1(θ)

a(θ)

dr [φ2
r(s, θ)C(θ) +

1
s2

φ2
θ(s, θ)D(θ)],

where C(θ) =
R1

R2
(θ) + ((

R1

R2
(θ))′)2

R2

R1
(θ)(1 +

1
δ(θ)

) and D(θ) =
R1

R2
(θ)(1 + δ(θ)).

From (1.11), we conclude that

(1.12)
∫

Ω2−A

|∇u|2(r, θ)drdθ ≤
∫

Ω1−A

|∇φ|2(r, θ)drdθ, if C(θ), D(θ) ≤ 1.

The same change of variables also shows that

(1.13)

∫

Ω2−A

u2(r, θ)drdθ =
∫ 2π

0

dθ

∫ R1(θ)

a(θ)

dr φ2(s, θ)
R2

R1
(θ) ≥

∫ 2π

0

dθ

∫ R1(θ)

a(θ)

dr φ2(s, θ) =
∫

Ω1−A

φ2drdθ.
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Since λ0(Ω1, A) =
1
2

∫
Ω1−A

|∇φ|2(r,θ)drdθ∫
Ω1−A

φ2(r,θ)drdθ
, it follows from (1.8), (1.12) and (1.13) that

λ0(Ω1, A) > λ0(Ω2, A), if C(θ), D(θ) ≤ 1. To obtain D(θ) ≤ 1, we need

(1.14) δ(θ) ≤ R2

R1
(θ)− 1.

Doing a little algebra, we conclude that to obtain C(θ) ≤ 1, we need

δ(θ) ≥ ((R1
R2

(θ))′)2

R1
R2

(θ)− (R1
R2

(θ))2 − ((R1
R2

(θ))′)2
;(1.15-a)

R1

R2
(θ)− (

R1

R2
(θ))2 − ((

R1

R2
(θ))′)2 > 0.(1.15-b)

Recall that by assumption, R1 is strictly smaller than R2. Thus, in order that there

exist a function δ > 0 satisfying (1.14) and (1.15-a), it is necessary and sufficient

that

(1.16)
((R1

R2
(θ))′)2

R1
R2

(θ)− (R1
R2

(θ))2 − ((R1
R2

(θ))′)2
≤ R2

R1
(θ)− 1.

After a little algebra, one finds that (1.15-b) and (1.16) together are equivalent to

(1.15-b) and the inequality

(1.17) ((
R1

R2
)′)2 + 2(

R1

R2
)2 ≤ R1

R2
+ (

R1

R2
)3.

It is easy to see that if (1.15-b) does not hold, then (1.17) does not hold. Thus,

(1.17) is necessary and sufficient to guarantee the existence of a δ(θ) > 0 such that

C(θ), D(θ) ≤ 1. Note that (1.17) is equivalent to (1.7) with f replaced by g ≡ 1
f . It

is easy to see that (1.7) holds for f if and only if it holds for g = 1
f . This completes

the proof in the case that R1 < R2.

Now assume that R1 ≤ R2. Let R2,δ = R2 + δ, for δ > 0, and let Ω2,δ denote

the corresponding domain. Using the variational formula (1.6), it is easy to see

that λ0(Ω2,δ, A) is lower semicontinuous in δ > 0. Since R2,δ > R1, we have

λ0(Ω1, A) > λ0(Ω2,δ, A), and thus λ0(Ω1, A) ≥ λ0(Ω2, A).

ii. It suffices to show that for each t ∈ [0, 1), there exists an ε0 = ε0(t) > 0 such

that

λ0(Ωs, A) ≤ λ0(Ωt, A), for s ∈ (t, t + ε0].
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For ε > 0, we write

(1.18) R(θ, t + ε) = R(θ, t) + Rt(θ, t)ε +
1
2
Rtt(θ, t)ε2 + o(ε2), as ε → 0.

The assumption that R is C2 guarantees that the term o(ε2) in (1.18) is uniform

in t and θ. We now apply the result in part (i) with R1 replaced by R(·, t) and R2

replaced by R(·, t + ε), for ε > 0. The function denoted by f in the statement of

part (i) is given in the present context by fε(θ) = R(θ,t+ε)
R(θ,t) . Thus, from (1.18), we

have

(1.19) fε(θ) = 1 +
Rt(θ, t)
R(θ, t)

ε +
1
2

Rtt(θ, t)
R(·, t) ε2 + o(ε2), as ε → 0.

Substituting fε for f in (1.7) and equating powers of ε, one finds that the leading

order non-vanishing term is ε2 and that (1.7) will hold for sufficiently small ε > 0

if ((Rt

R )θ)2 < (Rt

R )2, or equivalently, if |(Rt

R )θ)| < Rt

R . The limiting case, |(Rt

R )θ)| ≤
Rt

R , is treated as in part (i). ¤
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