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ABSTRACT. Let {Br}re1, {Xk}rZ; all be independent random variables.
Assume that {Bx}p2; are {0,1}-valued Bernoulli random variables sat-
isfying By st Ber(px), with Y 72, pr = oo, and assume that {Xx}72;
satisfy Xy > 0 and pr = EXy < co. Let M,, = ZZ:1 DPklk, assume
that M, — oo and define the normalized sum of independent random
variables W,, = N%ﬂ > h_y BxXr. We give a general condition under
which W, dise ¢, for some ¢ € [0, 1], and a general condition under which
W, converges weakly to a distribution from a family of distributions
that includes the generalized Dickman distributions GD(6),6 > 0. In
particular, we obtain the following result, which reveals a strange do-
main of attraction to generalized Dickman distributions. Assume that
X, dist

limg 00 = 1. Let J,, J, be nonnegative integers, let c,,c, > 0 and

let
pin ~ cun® TT7%,1 (10g?) )7, pr ~ e (n0 [177, (log@ n)"7) ™", by, #0,
where log?) denotes the jth iterate of the logarithm.
If
i Jp < Jy;
i by =1, 0<5 < Jp
#i.a; =0, 0<j<Jp—1, and ay, >0,

then lim,, oo Wp st %GD(@), where 6 = 2

aj, :
Otherwise, limy, oo Wp dist dc, where ¢ € {0,1} depends on the above
parameters.
We also give an application to the statistics of the number of inversions

in certain random shuffling schemes.
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1. INTRODUCTION AND STATEMENT OF RESULTS

The Dickman function p; is the unique function, continuous on (0, c0),

and satisfying the differential-delay equation

IN

pr(z) =0, 2 < 0;

pi(x) =1, z € (0,1];

zpi(z) + p1(x—1)=0, z > 1.
This function has an interesting role in number theory and probability, which
we describe briefly in the final section of the paper. With a little work, one
can show that the Laplace transform of p; is given by fooo p1(x)e Mdr =

-

exp(y + f01 ¢ ;Ad:c), where 7 is Euler’s constant. (See, for example, [6]

or [9].) From this it follows that [ pi(z)dz = €7, and consequently, that
e 7p1 is a probability density on [0, 00). We will call this probability distri-
bution the Dickman distribution. We denote its density by p1(z) = e 7 p1(x),
and we denote by D a random variable distributed according to the Dick-
man distribution. Differentiating the Laplace transform FEexp(—AD;) =
exp( 01 eﬂ;_ldx) of Dy at A = 0 shows that ED; = 1. These distributions

decay very rapidly; indeed, it is not hard to show that p;(z) < F(%jl)’ x>0
[6].
In fact, for all 8 > 0, exp(6 fol E_A;_ldx) is the Laplace transform of a

probability distribution. (We will prove this directly; however, this fact
follows from the theory of infinitely divisible distributions, and shows that
the distribution in question is infinitely divisible.) This distribution has

density pg = % Py, where pg satisfies the differential-delay equation
po(x) =0, z <0;

(1.1) po(z) =21 0< <1,
zpy(z) + (1 — 0)pg(x) + Opg(z — 1) =0, = > 1.

We will call such distributions generalized Dickman distributions and denote
them by GD(#). We denote by Dy a random variable with the GD() distri-
bution. Differentiating its Laplace transform at A = 0 shows that EDy = 6.
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These distribution decays very rapidly; indeed, it is not hard to show that
po(x) < %,x > 1, for an appropriate constant Cp.

In fact, the scope of this paper leads us to consider a more general family
of distributions than the generalized Dickman distributions. Let X > 0 be a
random variable satisfying FX < 1. Then, as we shall see, for 8 > 0, there
exists a distribution whose Laplace transform is exp (0 fol de).
We will denote this distribution by GD*)(8) and we denote a random vari-
able with this distribution by Déx). (When X = 1, we revert to the previous
notation for generalized Dickman distributions.) Differentiating the Laplace
transform at A = 0 shows that ED(gX) =0FEX.

It is known that the generalized Dickman distribution GD(#) arises as
the limiting distribution of 2 >} | kYj,, where the {Y;}7°, are independent
random variables with Y; distributed according to the Poisson distribu-
tion with parameter % [1]. It is also known that the Dickman distribution
GD(1) arises as the limiting distribution of 1 "7 | kY as n — oo, where
the {Y3}72, are independent Bernoulli random variables satisfying P (Y} =
1) = 1 — P(Yy = 0) = 1. Such behavior is in distinct contrast to the law
of large numbers behavior of a “well-behaved” sequence of independent ran-
dom variables {Z}}7°, with finite first moments; namely, that ﬁn S 1 Zk
converges in distribution to 1 as n — oo, where M,, =Y | EZj.

The purpose of this paper is to understand when the law of large numbers
fails and a distribution from the family GD(*)(6) arises in its stead. From the
above examples, we see that generalized Dickman distributions sometimes
arise as limits of normalized sums from a sequence {V}}7°, of independent
random variables which are non-negative and satisfy the following three
conditions: (i) limy oo P(Vx =0) =1, (ii) limg— 00 % 40 1 and (iii)
Y rey EVj, = 0o. (In the above examples, kY}, plays the role of Vj.) It turns
out that these three conditions are very far from sufficient for a generalized
Dickman distribution to arise. In fact, as we shall see in Theorem 2 below,

such distributions arise only in a strange sequence of very narrow windows

of opportunity.
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In light of the above discussion, we will consider the following setting.
Let {B}32 1, {Xkr}32,; be mutually independent sequences of independent
random variables. Assume that {B;}7°, are Bernoulli random variables

satisfying:
(1.2) P(By=1)=1-P(B, =0)=p; €[0,1),

and assume that {X}}72, satisfy:

(1.3) X >0, M = EX; < .
Let
(1.4) My = pritk;
k=1
and define
1 n
(1.5) W, = 7 ; B X

We will be interested in the limiting behavior of W,,. In order to avoid

trivialities, we will assume that

n—oo

o
(1.6) lim M, = oo and Zpk = 00,
k=1

since otherwise > > | By X}, is almost surely finite.

Note that for the example brought with the Pois(%)—distribution, we have
pe=1— e_%, X}, is distributed according to kY |{Ys > 0}, where Y}, has the
Pois(%) distribution, y, = —%— and M,, = nf. And for the example with

l—e &
the Ber(%)—distribution, we have pp = %, X = k deterministically, pp = k

and M, = n. In the first of these two examples, % dist 1, and in the second
one, % 1 for all k.

Our first theorem gives a general condition for W, dist o (which is the

law of large numbers if ¢ = 1), and a general condition for convergence to
a limiting distribution from the family of distributions GD*)(#). Using
this theorem, we can prove our second theorem, which reveals the strange

domain of attraction to generalized Dickman distributions. (Of course, we
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are using the term “domain of attraction” not in its classical sense, since
our sequence of random variables, although independent, are not identically

distributed.) Let d. denote the degenerate distribution at c.

Theorem 1. Let W,, be as in (1.5), where {B}32,, {Xk}32, and M, are
as in (1.2)-(1.4) and (1.6).

i. Assume that {%}Z‘;l is uniformly integrable (which occurs automatically
if im0 2k dsty).

a. Assume also that

. MaXy<k<n Mk
(L.7) AT,

0.

Then

lim W, %'

n—oo

b. Assume also that there exists a sequence {K,}5° | such that

(1.8) lim > pp =0,

n—oo
k=K,+1
and
. Maxi<p<K, Mk
(1.9) nh_)rgo A =0.
If
M
(1.10) c= lim =2 egists,
n—oo n
then

. dist
lim W,, = c.
n—oo

If (1.10) does not hold, then the distributions of {Wy}22, form a tight se-

quence whose set of accumulation points is {0. : ¢ € A}, where A denotes

MnOO

the set of accumulation points of the sequence { ]\/’[i -

1. Assume that there exists a random wvariable X such that

X .
(1.11) lim =k %
k—oo [

X.
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Assume also that {u}72 | is increasing, that limy_,oo pp = 0 and that there

exist 6, L € (0,00) such that

(1.12) lim — PR g pim R
k—oo k1 — Mk k—oo My,
Then
. dist (X)
lim W,, = LD/ (0),
n—oo

where DY) (0) is a random variable with the GD)(0) distribution.

Remark 1. In (1.12), necessarily L < %. Indeed, if {p;}32, and {u}32,
satisfy the conditions of part (ii), and we choose X}, = uy, then W, dist LDy.
Since EW,, = 1 and EDy = 0, it follows from Fatou’s lemma that L < %.
In most cases of interest, one has L = %.

Remark 2. By Fatou’s lemma, the random variable X" in part (ii) must
satisfy BFX < 1.

Remark 3. The uniform integrability of {%}z‘;l in part (i) occurs au-

X, dist

tomatically if limg_ oo = 1, because if a sequence {Y;}7°, of random

variables satisfies Y dist Y, and E|Y}| < oo, then E|Yy| — E|Y|is equivalent

to uniform integrability.
Remark 4. In the case that X = g, or more generally, if EX,? < C’,ui,
for all k and some C' > 0, then

N 2 n 2
Var(W,) < C' > k=1Pkly —-C 2 k1 Peb, < SUP1<<n ,Uk.

M2 (Ot Prte)? — M,

Thus, in this case part (i-a) follows directly from the second moment method.

Using Theorem 1, we can prove the following theorem that exhibits the
strange domain of attraction to generalized Dickman distributions. Let log(j )

denote the jth iterate of the logarithm, and make the convention H?:1 =1.

Theorem 2. Let W, be as in (1.5), where { By}, {Xk}32, and M, are as

in (1.2)-(1.4). Assume also that limy_, % Gty et Ju, Jp be nonnegative
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integers, let c,,,c, > 0 and define

Ju
p(z) = cpa® [ [ (log") 2)%,
j=1
JP
p(x) = cp(z® [J (log? 2)%) 7",
7j=1

with by, # 0. Assume that
p ~ k), pr ~ p(k);
firrr — e ~ ' (K).

Assume that the exponents {aj};-]io, {bj}‘j]io have been chosen so that (1.6)
holds. If
. Jp < J;
(1.13) i by =1, 0<j < Jp
ii. a; =0, 0<j < J,—1, and ay, >0,
then
dist 1 Cp

hm Wn = 5D97 wzth@z —

n—oo a’Jp

where Dy is a random variable with the GD(0) distribution.
Otherwise, lim,,_, o Wy, dist ¢, where ¢ € {0,1}. To determine c, let
(1.14)

ky =min{0 < j < J,:a; #0} and K, =min{0 < j < J,:b; # 1}.

If {0 < j < Jy:aj #0} is not empty, ax, > 0 and either {0 < j < J, :
bj # 1} is empty and Kk, < Jp, or {0 < j < J, : bj # 1} is not empty and

Ky < Kp, then ¢ = 0; otherwise, ¢ = 1.

Remark 1. Note that if one chooses ur = (k) and py = p(k), then the
condition pyy1 — pp ~ p'(k) is always satisfied.

Remark 2. Theorem 2 shows that to obtain a generalized Dickman distribu-
tion, {py}72, in particular must be set in a very restricted fashion. For some

intuition regarding this phenomenon, take the situation where X = ug, and

o0

o, of variances. This sequence converges

consider the sequence {o?(W,)
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to 0 in the cases where W,, converges to 1, converges to oo in the cases where
W,, converges to 0, and converges to a positive number in the cases where

W,, converges to a generalized Dickman distribution.
We now state explicitly what Theorem 2 yields in the cases J, = 0, 1.

Jp = 0. We have
Ju
Dp, ~ %, bo >0, i ~ c,n (log(j) n)%.
j=1
In order that (1.6) hold, we require by < 1. We also require either: ag—by >
—1;0r ag—byg=—1and a1 > —1; or ag — byp = a1 = —1 and ay > —1; etc.

If bg =1 and ag > 0, then

st 1
lim W, dist — Dy, where 0 = C—p.
n—o0 0 agp
. . dist
Otherwise, lim,_ oo W, = 1.
Jp = 1. We have
']l"
c ; .
Pn Wgn)bl’ bi#0,  pin ~ cun® [ [(logh? n)®.
j=1

In order that (1.6) hold, we require either bp = 0 and by > 0, or 0 < by < 1,
or bg = 1 and by < 1. We also require either: ag —bg > —1; or ag — by = —1
and a1 — by > —1;0r ag — bg = a1 — by = —1 and ay > —1; etc.

If J,>1,bp=b1 =1, ag =0 and a1 > 0, then

o 1
lim W, ' Dy where § = 2.
n—oo 0 CL]_

If by = 1 and ag > 0, then lim,_ oo Wy, dist 0.

Otherwise, lim,,_, o Wy, dist 1.

Remark. In [3] and [8], where the GD(1) distribution arises, one has J, =1

with bg = b1 = 1,00 =0,a1 = 1,¢, = ¢, = 1.
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The organization of the rest of the paper is as follows. In section 2 we
use Theorems 1 and 2 to investigate a question raised in [5] concerning the
statistics of the number of inversions in certain random shuffling schemes.
In sections 3 and 4 respectively we prove Theorems 1 and 2. In section 5 we
prove a couple basic facts about generalized Dickman distributions. In par-

ticular, we provide a rather probabilistic proof that the distribution whose

e M1
T

Laplace transform is given by exp(# fol dx) possesses a density py of
the form pg = C@pg, where pg satisfies (1.1). We also give a reference for
the formula ¢y = F(@) Finally, in section 6, we offer a little historical back-
ground concerning the Dickman function p; and its connection to number

theory and probability.

2. AN APPLICATION TO RANDOM PERMUTATIONS

We consider a setup that appeared in [5], and which in the terminology of
this paper can be described as follows. For each k € N, let Fy, C {1,...,k—

1}. Let X} be uniformly distributed on Ej, and let By, ' Be (lE’“|) So

|Ek:|
E { 1, 1=kl
leE

Define
n
I, = Z By Xy
k=1

We allow Ej, = (), in which case Bj, = 0 and X}, is not defined. In such a
case, we define B, Xy, = 0 and u; = 0. We always have F; = ().

Consider first the case that Ey, = {1,...,k —1}. Then B;X; = 0 and for
2 < k < n, BxX} is uniformly distributed over {0,1...,k—1}. In this case,
I, has the distribution of the number of inversions in a uniformly random
permutation from S,. (The authors in [5] have a typo and wrote Ej =
{1,...,k} instead.) To see this, consider the following shuffling procedure
for n cards, numbered from 1 to n. The cards are to be inserted in a
row, one by one, in order of their numbers. At step one, card number 1 is
set down. The number of inversions created by this step is zero, which is

given by B1X;. At step k, for k € {2,...,n}, card number k is randomly



10 ROSS G. PINSKY

inserted in the current row of cards, numbered 1 to kK — 1. Thus, for any
j€{0,1,...,k—1}, card number k has probability % of being placed in the
position with j cards to its right (and k—1—j cards to its left), in which case
this step will have created j new inversions, and this is represented by B X}.
It is clear from the construction that the random variables { By X} }}_, are
independent. Thus, I, indeed gives the number of inversions in a uniformly
random permutation from S,,. It is well-known that the law of large numbers
and the central limit theorem hold for I, in this case. Indeed, using the

Lngl) and

above representation, a direction calculation shows that EI,, =
that Var(I,,) = O(n3); thus the central limit theorem follows from the second
moment method.

Consider now the general case that Fy C {1,...,k — 1}. Then [, gives
the number of inversions in a random permutation created by a shuffling
procedure in the same spirit as the above one. At step k, with probability
1- |E—kf|, card number k is inserted at the right end of the row, thereby
creating no new inversions, and for each j € Ej, with probability % it is
inserted in the position with j cards to its right, thereby creating j new
inversions.

In particular, as a warmup consider the cases Ey = {1} and Ey, = {k—1},
2 < k < n. In each of these two cases, at step k, 2 < k < n, card number
k is inserted at the right end of the row with probability 1 — % In the first
case, with probability % card number k is inserted immediately to the left of
the right most card, thereby creating one new inversion, while in the second
case, with probability % card number k is inserted at the left end of the row,
thereby creating £ — 1 new inversions. In both cases % 1 for all n, and
in both cases, pr = % In the first case, pur = 1 while in the second case,
pi = k — 1. Thus, in the first case, M,, = > ;_; ppix ~ logn, and in the

second case, M, ~ n. Therefore, it follows from Theorem 1 or 2 that in

I, In
logn '

the first case converge in distribution to 1, while in the second case

converges in distribution to GD(1).
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The authors of [5] ask which choices of {Ej};2, lead to the Dickman
distribution and which choices lead to the central limit theorem. Of course,
the law of large numbers is a prerequisite for the central limit theorem. The
following theorem gives sufficient conditions for the law of large numbers
to hold and sufficient conditions for convergence to a distribution from the
family GD*)(6). In order to avoid trivialities, we need to assume that (1.6)
holds. Recalling that pur = 0 when |Ex| = 0, and that pug > 1 otherwise,
note that

M, = EI _kzl zkzk_;::

Thus, in the present context the requirement (1.6) is

(2.1) > ]‘Z’“' =
k=1

which holds in particular if Ej # () for all sufficiently large k.

Theorem 3. Assume that (2.1) holds.

i. Assume that at least one of the following conditions holds:

l’naxl<k<n HEk oo

o1

a. limg_ o0 |Eg| = 00 and { ° 1 is bounded;

maxjy<g<n Mk __ 0

7
PO »

b. lim,, o0
1, dist
Then TE 1.

ii. Assume that |Ex| = N > 1, for all large k, and that Xk dist

= X. Also as-
sume that py ~ (k) and pgr1—pk ~ @' (k), where p(z) = cy,xao H L(log®W) )25,
with ag > 0.

Then b:’}l digt ID(X), with 6 = %, where Déx) s a random variable with the
GDX)(0) distribution.

Remark 1. The condition on {y} in part (i-a) is just a very weak regularity
requirement on its growth rate (recall that 1 < pu < k — 1). The condition
in part (i-b) is fulfilled if pp ~ (k) and prr1 — pr ~ p'(k), where p(x) =
CuH L(logW) )% with .J, > 0.

Remark 2. Note that the random variable X" in part (ii) takes on no more

than N distinct values.
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Proof. Assume first that the condition in part (i-a) holds. We claim that

max)<k<n Hk Y co
>r) Hk n=1
tegers {vn}o2 satlsfylng lim;,, 00 7 = 00 and such that {

since { is bounded, there exists a sequence of positive in-

maxi<k<n Mk \ 0o
> PE Sn=1
k=yn+1 k

is also bounded. Indeed, assume to the contrary that the above sum is
unbounded for all such choices of {7} ;. Then necessarily, {j,}7>; is un-
bounded. (Indeed, since by assumption |Ey| > 1 for sufficiently large k, the

same is true for u, and thus, choosing, for example, 7, = [n%], it follows that

for sufficiently large n, ZZ:%H % > ZZ:%H % ~ %log n. Thus {pn}p2y

max . .
o tsksn k100 | s unbounded.) Also, since py, < k,

Zk n+1l k
we have > i B <y + 370 4 B, and it follows from the boundedness

max
and the unboundedness of {%ﬁz,ﬁ% o , that the un-
k="~
" max1<k<n Mk oo
n=1

must be unbounded if {

of (st
bounded sequence {max;<p<y i } e has the property that {

is bounded for all sequences {7}, satisfying lim, o v = 00, Wthh is

impossible.
Now let {7, }5°; be a sequence such that lim,,_,~ 7, = oo and {% o~

is bounded. Since

Ej, k
il > Guin 150D >

1 k="n

M=

M, =

T

maxj<k<n Mk \ oo
and { s Pk Jn=1
k=yn+1 k

that (1.7) holds.
Now assume that the condition in part (i-b) holds. Since M,, > "¢, &&,
it follows again that (1.7) holds.

is bounded, it follows from the first condition in (i-a)

Thus, assuming either (i-a) or (i-b), it follows from part (i-a) of Theorem
1, dist
Now assume that the condition in part (ii) holds. Then p; = %, for large

k, and py ~ c, k% H (log( )k‘)aﬂ', with ag > 0. Thus,

T o e

and limy 0 ]‘\‘T’Z = Q. Also, if the condition in part (ii) holds, then
Phkt1 — Mg ~ agc, k™ Hjil(log(j) k)% . Thus, limj_,oo 26 = N e

Hk+1—HEk ag
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conclude from part (ii) of Theorem 1 that é—}ln s %GD(X)(H), where 6 =

N O

ao

3. PROOF OF THEOREM 1

Since EW,, = 1, for all n, the distributions of {W,,}>°, are tight. Thus,
since the random variables are nonnegative, it suffices to show that their
Laplace transforms F exp(—AW,,) converge under the conditions of part (i)

to exp(—Ac), for the specified value of ¢, and under the conditions of part

(ii) to exp(f fl wdw) which is the Laplace transform of LD(¥)(6).

Proof of part (i). Note that part (i-a) is the particular case of part (i-b) in
which one can choose K, = n, and then (1.10) holds with ¢ = 1. Thus, it
suffices to consider part (i-b). We have for A > 0,

(3.1)
Eexp(—AW,,) =
HEexp ——Bka H <1 —pk 1 —Eexp(—MiXk)»
(1 — pk(l — Eexp(—ﬁXk)D H (1 —pk(l — Eexp(—ﬁXk)))
k=1 n k=Kn+1 n
Since

n

II a-m)< H (1—}% 1—EGXP(—MLXIC)))_17

k=Kn+1 =K,+1 n

it follows from assumption (1.8) that
(3.2) lim f[ (1 —pe(1- Eexp(—ixk))) =1
M,

n—oo
k=K, +1 n

Applying the mean value theorem to E exp(—MinX k) as a function of A,

and recalling that pui = F X}, we have

A A A

n n n n
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The assumption that {%}i‘;l is uniformly integrable means that

limy 00 SUP) << oo E(%1%>N) = 0. Thus, in light of (1.9) and the uni-
form integrability assumption, it follows that for all ¢ > 0, there exists an
ne such that

(3.4)

A A pr Xk pr Xk Ik
— EXpexp(——Xi) = A—FE—exp(-A——) > (1 —e)\—,
o EXpexp(— 1 Xe) = M B exp( a0k > (1

1<k< K, n>ne.
Thus, (3.3) and (3.4) yield

Hi A ke
. l—eA\~<1—-F — X)) < A2 1<Ek<K, > ne.
(35) (1 rjf <1-Bep(—37Xe) SAfE 1<k< Ky n>n

Since for any € > 0, there exists an z. > 0 such that —(1+¢€)z <log(l—z) <
—x, for 0 < z < xz, it follows from (3.5) and (1.9) that there exists an n.

such that
(3.6)
A
-1+ G)Apk]\l% < log (1 —pr(1— EeXP(—EXk)D < —(1- 6)/\2919%,
1<k < Kn n>ng
From (3.6) we have
Ky Kn
-1+ 6))\2162]\]25%{ < log H (1 —pe(1— Eexp(—MiXk)» <
(3.7) " k=1 "
>tk Phi
—(1- 6))\%, n>nl.
If
Kn
(3.8) o= tim MHu _ pypy 2k PhitE

exists, then from (3.1), (3.2), (3.7) and (3.8), along with the fact that ¢ > 0
is arbitrary, we conclude that

lim Eexp(—AW,) = exp(—Ac),

n—oo

which proves that lim,_.. W, 4t . The rest of the results in part (i-b),

concerning accumulation points, follow in the same manner.
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Proof of part (ii). From (3.1), we have

- A

. IE—n:I(l— 1-E ——X).
(3.9) og E exp(—=AW,) ; og pie( exp( A k)
Since by assumption limy_,o, pr = 0, for any € > 0 there exists a k. such
that
(3.10)

A A
—(1+ e)pk(l — Eexp(—ﬁXk)) <log (1 — pk(l — Eexp(—ﬁXk)» <

n n

A
—pk(l — Eexp(—ﬁXk)), k> ke.

We now show that for any e > 0 there exists a k. such that
(3.11)
(1—€)E8Xp(—)\&.)() < Eexp(—iXk) < (1+6)Eexp(—/\&2€) k> kK.
M, - M, - M, 7T

n n n

By assumption (1.12) and the assumption that {yu, }5° ; is increasing, there

exists a C such that ]’\‘T’; < C, for 1 <k <nandn > 1 By assumption,
1k
variables are defined on the same space and that % — X a.s. For d > 0,

X. Without loss of generality, we assume that all of these random

let

X,
Ap:s = {sup |—l — X| <0}
>k Ml

Then Ay is increasing in k and limy_, P(Ag;5) = 1. We have

A
(3.12) [ el X0aP < Plagy)
Az;zS Mn 7
and
X
exp(—)\C(S)/ exp(—)\&X)dP S/ exp(—)\&—k)dP <
; M, ; My, ik
Ag.s Ag;s
(3.13) | |

exp(/\Cé)/ exp(—/\%/\,’)dP.

Ak;5 n

Now (3.11) follows from (3.12) and (3.13).
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Letting k. = max(k, k.), it follows from (3.10) and (3.11) that
(3.14)

1+ e)pk(l —(1-eE exp(—)\%/\f)) < log (1 — (1 - Eexp(—MiXk)D <

n n

— Dk (1 —(1+¢FE exp(—)\%/l’)), k> k. .

n

From (3.9) and (3.14) we have

(3.15)
- Z pr(1+e€) (1 —(1—-¢e)E exp(—A%X)) +0(1) <log E exp(—AW,,) <
K=k "

NE

Dk (1 —(1+e)E exp(—)\%é’()), as n — oo.

n

k

[
B

s

Define x,(:) = i k. < k < n, and A,(fn) = x,(:gl - x,in) = w
k‘;’ <k <n—1. Then we have

n

3 (1= Gz aBeot-xEn) =

)

(3.16)

n (n)
1-—(1xe)Fexp(—Ax;. 'X)  (n
3 (1+e) (n)( k )22)(pk Y
" xk Hik+1 — Mk

€

k=k

By assumption, {u;}22, is increasing; thus {xl(j)}zzk,, is a partition of

o1 oo
ke p : : [ : Pn
[M; , M—’;] By assumption, lim, o 5~ = 0 and lim, o 47~ = L. We

now show that the mesh, max,»_, ., A,g"), of the partition converges to 0
(n) o

asn — oo. Let A7 = maxyr o, A,in), where k. < j, < n. Without loss

of generality, assume either that {j,} is bounded or that lim,, o j, = c0. In
o . (n) _ A(m) _ pjp+1—Hj4, n—00
the former case it is clear that max, ., A7 = Ajn = HlndrFin T

0. Now consider the latter case. From assumption (1.12) and the assump-
tion that limy_,oo pr = 0, it follows that lim,_, % = 0. Then we
have

(n) () _ Mjat1 = B Bl = Hj M, 41 — Mg, nooo
max A7 =AY = = < =0 0.
k! <k<n—1 In M, M; M, M;

Finally, we note that from (1.12) we have limg_,o pg ukﬁk—uk = 6. In light

of these facts, along with (3.15), (3.16) and the fact that e > 0 is arbitrary,
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it follows that
(3.17)

L
B
lim log E exp(—AW,,) = 9/ P

— — 1 — —
(—=\zX) 1d$ _ 0/ Eexp(—ALzX) 1d$’
0

x x
]

4. PROOF OF THEOREM 2

We will assume that Jp,J, > 1 so that we can use a uniform notation,
leaving it to the reader to verify that the proof also goes through if J, or J,
is equal to zero.

First assume that (1.13) holds. Then by the assumptions in the theorem,

1<J, < Jy;
Ju
i~ cu [ ] (log? k)%, ay, > 0;
Jj=Jp
Jp
pi ~ cp(j [[ log® k) 7
j=1
(log"? Ryt P
M1 — Mk ~ Culjp — Jp_ll Ok H (log") k)%
J Hj:l 0g j=Jp+1
Thus,
n J,
log(/») 1))p a - .
MTL = Zpk:)u’k ~ Cﬂcp(ga) (10g(]) n)a’J.
k=1 v j=Jpt1
Consequently,
(4.1) lim 2% = %% and fim PR _ %P
k—o0 Mk Cp k—oo k1 — Uk ag,

Thus, from part (ii) of Theorem 1 it follows that lim,, . W), dist %D@, where

— ©p

ajp'

Now assume that (1.13) does not hold. We need to show that {K,}>°
can be defined so that (1.8) and (1.9) hold, and so that (1.10) holds with
c € {0,1}. We also have to show when ¢ = 0 and when ¢ = 1. Recall the
definitions in (1.14). If {0 < j < J, : a; # 0} is empty, or if it is not empty
and a,, <0, then {u}72, is bounded. Therefore, (1.8) and (1.9) hold with
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K, = n and it follows from part (i-a) of Theorem 1 that lim, . W, dist

Thus, from now on we assume that {0 < j < J, : aj # 0} is not empty and
that a,, > 0. In order to use uniform notation, we will assume that x, > 0,
leaving the reader to verify that the proof goes through if x, = 0. Thus, we

have

J,
(4.2) [ ~ ﬁ (logW k)4, Ky > 1, ag, > 0.
J=rp
In order to simplify notation, for the rest of this proof, we will let £;(k)
denote a positive constant multiplied by a product of powers (possibly of
varying sign) of iterated logarithms log(j ) k, where the smallest j is strictly
larger than /. The exact form of this expression may vary from line to line.
Sometimes we will need to distinguish between two such expressions in the
same formula, in which case we will use the notation El(l)(k), EI(Q)(IC). Thus,

we rewrite (4.2) as
(4.3) pi ~ (log(w) k)u Lo, (K), Ky > 1, ag, > 0.

If {0 <j<J,:b; # 1} is empty, then the second condition in (1.13) is
fulfilled and we have

J,
(4.4) pr~cp(J 1_”[ log™) k:)_l.

j=1
Since we are assuming that (1.13) does not hold, at least one of the other
two conditions in (1.13) must fail. This forces x, # Jp. (Recall that we are
assuming that {0 < j < J, : a; # 0} is not empty and that a., > 0.)

Consider first the case that s, > J,. Then from (4.3) and (4.4) we have

(4.5)

n
My, = " pppr ~  (log"7 ) n)(log ") n)*=u L, (n), where ry, > Jp + 1.
k=1

From (4.3) and (4.5) it follows that (1.8) and (1.9) hold by choosing K, = n.

Thus, from part (i-a) of Theorem 1, lim, o, W, dist 4
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Now consider the case x, < Jp. Then from (4.3) and (4.4) we have

n
(4.6) M, = Zpk,uk ~  (log") p)asu Ly, (n), where r, < J, — 1,
k=1

and for any K, satisfying K,, — oo and K, < n, we have

(4.7) Z DE ~ cp(log(JP+1) n — log!/»*1) Kn) = ¢plog
k=Kn

From (4.3) and (4.6) we have

1 (“M)Kn Qr ﬁl({l) K,
’uK”N<Og )“ i ( ),mM<Jp—1,a,§H>O;

wy MmNl o) T
4.8
(5 K\ any £ (K
MKn N (log Iz Kn> w #2( n)’ - < Jp_]-a i, > 0;
Mn 10g(“{ll«) n EEQZM) (n)

- . . 0o
As we explain in some detail below, since ,, < J,, we can choose {K,}52,

so that
(Jp) (k) 1¢ N an, L9 (K
(49)  tim 2 En g nd gim (log . K") g ”2( n) _
n—o00 ]Og( p)n n—o00 log('ﬂu)n ﬁl(w)(n)

From (4.3) and (4.7)-(4.9), we conclude that {K,} can be defined so that
(1.8) and (1.9) hold, and so that (1.10) holds with ¢ = 0. This proves that

limy, o0 Wy 210
. Ly (Kn) 1) )4
To explain (4.9), note that Lé)( : < (log"= 1) n)A for some A > 0 and
m n

all large n. (Recall that the powers of the iterated logarithms in ﬁ,(i) can
be negative.) Thus, in place of the second limit in (4.9), it suffices to show

K (75
that 6, = log"i) Ky ) v (log{Fu 1) )4 "2 0. We have
log(#1) n

1 __A
log"™) K, = (8,) s (log!"™ 1) )~ logle) s

thus,

1 (kp+1) K log & Al (kp+2)
(4'10) % (kp+1) - = Og(rthrl) o % (k +1)n + 1.
log\®*+T*/'n a, log™ ™ na, log™ T n

Defining K, by choosing 8, = (log*»*1) n)~1 it follows from (4.10) and the
fact that J, > k, + 1 that the two equalities in (4.9) hold.
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We now consider the case that {0 < j < J, : b; # 1} is not empty. Then

in order to fulfill the second condition in (1.6), we have b., < 1. We write

Kp—1 JIp
(4.11) pr~ ¢p(d H log™) k:)_l(log(”P) k) _b””( H log?) k) b,
J=1 J=rp+1

From (4.3) and (4.11) it follows that M, = >"}_, pru satisfies

(]Og(fw) n) 5 Lon(n), Ky < kp;
A1) M ] (g e £ ), =

(10g(ﬁp) n)libﬁp ‘clip (n)’ Ru > Kp;

and from (4.11) it follows that for any K, satisfying K, — oo and K,, < n,

(4.13)
> ke
k=K,
“ log(fp) 1)) 1 0mp ) log™ n) 7% _ (1oe(rp) g\ bre ¥ log@ & )b
[ (1og® ) ™" ( TT 1089 n) ™ — (log® £6,) " (T 10g? K) 7).
Kp j=kp+1 J=rp+l

From (4.3) and (4.12) we have

(1)
log("l‘) Kn\asy ﬁn#(Kn) .
( log(®1) n ) E,(iz(n) y By < Kpj
log("p) Kp)*  £3)(K,)
(4.14) Bin (< N eRp by T Eé) » Fp = Rp;
M, (log"») n) wp (1)
ak
(1ogt) k)™ £0) (k) -
= K Kp.
(logwl’)n)1 o E'%)(”) T P

It is immediate (4.3) and (4.14) that if x, > &, then (1.8) and (1.9) hold
by choosing K, = n. (For the case r, = kp, recall that b,, € (0,1).) Thus,
from part (i-a) of Theorem 1, lim, oo W, dist

Now consider the case x, < kp. For simplicity, we will assume that

the higher order iterated logarithmic terms do not appear; that is, we will



STRANGE DOMAIN OF ATTRACTION TO DICKMAN DISTRIBUTIONS 21

assume from (4.12)-(4.14) that

Z D ~ ‘p [(]og(”p) n)lfb“p _ (log(ﬁp) Kn)lfb”p:|;

oy 1— by,
@15) M. (log(“”) Fon o,
M, log(#s) n ’

Mg,  Jog"™w) K,
M, log"») n

)"

The additional logarithmic terms can be dealt with similarly to the way

they were dealt with for (4.9), as explained in the paragraph following (4.9).

1-b

Applying the mean value theorem to the function x*~’#», we obtain

- _ (1 — bn )log(’ip) n._
4.16 lo (kp) n 1=brp _ lo (kp) K, 1=bip _ p K. 7
( ) ( g ) ( g ) (log(/ip) n*)bﬁp

where n* € (K,,n). Since k, < kp, we can choose K, — oo such that
= 0, but lim,_, log(”P) % = 1. For such a choice of
{K,}, it follows from (4.3), (4.15) and (4.16) that (1.8) and (1.9) hold, and

that (1.10) holds with ¢ = 0; thus, limy,_oc W, = 0. O

5. BAsIC FACTS CONCERNING GENERALIZED DICKMAN DISTRIBUTIONS

We proved in Theorem 1 that exp(6 fol e—*;q dr) is the Laplace transform

of a probability distribution, which we have denoted by GD(#).

Proposition 1. Let Dy ~GD(0). Then

(5.1) Dy ' UT(Dp + 1),

where U is distributed according to the uniform distribution on [0, 1], and U

and Dg on the right hand side above are independent.

Remark 1. From (5.1) it is immediate that

: 1
Do ' UP + (U1Us) 0 + (U UsUs)7 + -+ -

where {U, }°2, are IID random variables distributed according to the uni-

form distribution on [0, 1].
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Remark 2. Our proof of the proposition is rather probabilistic; a more

analytic proof can be found in [7].

Proof. The proof of Theorem 1 showed in particular that if we let X =
pur = k and pg = %, in which case My, = > }_, priux = On, then
n

= 1 is
(5.2) Wo=0W, =~ > kB % Dy,
=1

n

dist

where Dy ~ GD(6). Let
Jt = max{k <n: By # 0},

with max @ = 0. We write

T-1
1 Jr-1, 1 % JF
(5.3) W= =3 kB = (J+_1 ) k:Bk)+7,
n=1 n k=1

where the first of the two summands on the right hand side above is inter-

preted as equal to 0 if J < 1. We have

JF u 9 0
(5.4) P(-<a)= [ -7 ~a’ ze(0)
k=[zn+1]

Also, by the independence of {By}7°,, we have

Ji-1 ko—1
1 dist 1 A
. kB Tk = —— kB, = 1, ko> 2.
(65 7 ; k| {7 = kol k0_1; b= Wi, ko >

Letting n — oo in (5.3) and using (5.2), (5.4) and (5.5), we conclude that
(5.1) holds, where U is distributed according to the uniform distribution on
[0,1], Dy dist GD(#) and U and Dy on the right hand side are independent.

O

Proposition 2. The GD(0) distribution has a density function py satisfying

Py = copo, for some cg > 0, where py satisfies (1.1).

Remark. For a derivation of the formula ¢y = %, see [1].
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Proof. Let Fy(x) = P(Dy < x) denote the distribution function for the
GD(0) distribution. Then from (5.1) we have
(5.6)

Fy(z) = P(Dy < z) = P(U(Dg + 1) < z) = /01 P(Dg+ 1<y o)dy =

1 1
/ Fo(zy~ o — 1)dy.
0

For z > 0, making the change of variables, v = :Uy_é — 1, we can rewrite

(5.6) as

(5.7) Fy(x) = eg:"/ Fp,(w)(14+v) v, x> 0.

z—1
From (5.7) and the fact that Fp(z) = 0, for x < 0, it follows that Fjp is
continuous on R. Also, since Fy(x) = 0, for < 0, we have

/ Fp,(v)(1 +v) v = / Fp,(0)(1 +v) v, z < 1.
x—1 0

Consequently, it follows from (5.7) that Fy(x) = Cpa?, for z € [0, 1], where
Cop =0 [,° Fp,(v)(1+ v)"'%dv. From this and (5.7) it follows that F is

differentiable on (0,1) and on (1,00), and that, letting pg = Fy,

oo
(5.8) po=coz’ ™ 0<w <1, cp= 92/ Fp,(v)(1+v) " dv,
0

and

o) = 0% [ Fp,(0)(1+ 0) P — 0 Byl — 1) =
G9) -1

;(Fe(x) — Fy(x — 1)), = > 1.

From (5.9), it follows that py is differentiable on z > 1, and that (xpy(x)) =
Q(pg(ac) —pox — 1)), for z > 1, or equivalently,

(5.10) xpy(x) + (1 — 0)pe(z) + Opg(z — 1) =0, = > 1.

From (5.8) and (5.10) we conclude that pg(x) = cgpp, where py satisfies
(1.1). Integrating by parts in the formula for ¢y in (5.8) shows that

cp = 9/ (1 +v)pg(v)dv = 0E(1 4+ Dy)~".
0
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6. THE DICKMAN FUNCTION IN NUMBER THEORY AND PROBABILITY

The Dickman function p = p; arises in probabilistic number theory in the
context of so-called smooth numbers; that is, numbers all of whose prime
divisors are “small.” Let W(z,y) denote the number of positive integers
less than or equal to x with no prime divisors greater than y. Numbers
with no prime divisors greater than y are called y-smooth numbers. Then
for s > 1, \II(N,N%) ~ Np(s), as N — oo. This result was first proved by
Dickman in 1930 [4], whence the name of the function, with later refinements
by de Bruijn [2]. See also [6] or [9]. Let [n] = {1,...,n} and let pT(n)

denote the largest prime divisor of n. Then Dickman’s result states that

log p* (4)
logn

the random variable ,J € [n], on the probability space [n] with the

uniform distribution converges in distribution as n — oo to the distribution
Py
z2

whose distribution function is p(1), € [0, 1], and whose density is —

p(£-1)

, € [0,1]. It is easy to see that an equivalent statement of Dickman’s

i
result is that the random variable %

[n] with the uniform distribution converges in distribution as n — oo to the

, J € [n], on the probability space

distribution whose distribution function is p(2), = € [0,1], We note that
the length of the longest cycle of a uniformly random permutation of [n],
normalized by dividing by n, also converges to a limiting distribution whose
distribution function is p(2). If instead of using the uniform measure on S,,,
the set of permutations of [n], one uses the Ewens sampling distribution on
Sn, obtained by giving each permutation o € S, the probability proportional
to #°(@) where C(o) denotes the number of cycles in &, then the length of the
longest cycle of such a random permutation of [n], normalized by dividing by
n, converges to a limiting distribution whose distribution function is pg(%),
x € [0, 1]. This distribution is also the distribution of the first coordinate of
the Poisson-Dirichlet distribution PD(0) (see [1]).

The examples in the above paragraph lead to limiting distributions where
the Dickman function arises as a distribution function, not as a density as

is the case with the GD() distributions discussed in this paper. The GD(0)
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tribution arises as a normalized limit in the context of certain natural

probability measures that one can place on N; see [3], [8].

1

2l

B8l

(4]

(5]

(7]

(8]

(9]
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