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Abstract. Let {Bk}∞k=1, {Xk}∞k=1 all be independent random variables.

Assume that {Bk}∞k=1 are {0, 1}-valued Bernoulli random variables sat-

isfying Bk
dist
= Ber(pk), with

∑∞
k=1 pk = ∞, and assume that {Xk}∞k=1

satisfy Xk > 0 and µk ≡ EXk < ∞. Let Mn =
∑n
k=1 pkµk, assume

that Mn → ∞ and define the normalized sum of independent random

variables Wn = 1
Mn

∑n
k=1BkXk. We give a general condition under

which Wn
dist→ c, for some c ∈ [0, 1], and a general condition under which

Wn converges weakly to a distribution from a family of distributions

that includes the generalized Dickman distributions GD(θ), θ > 0. In

particular, we obtain the following result, which reveals a strange do-

main of attraction to generalized Dickman distributions. Assume that

limk→∞
Xk
µk

dist
= 1. Let Jµ, Jp be nonnegative integers, let cµ, cp > 0 and

let

µn ∼ cµna0
∏Jµ
j=1(log(j) n)aj , pn ∼ cp

(
nb0

∏Jp
j=1(log(j) n)bj

)−1
, bJp 6= 0,

where log(j) denotes the jth iterate of the logarithm.

If
i. Jp ≤ Jµ;

ii. bj = 1, 0 ≤ j ≤ Jp;

iii. aj = 0, 0 ≤ j ≤ Jp − 1, and aJp > 0,

then limn→∞Wn
dist
= 1

θ
GD(θ), where θ =

cp
aJp

.

Otherwise, limn→∞Wn
dist
= δc, where c ∈ {0, 1} depends on the above

parameters.

We also give an application to the statistics of the number of inversions

in certain random shuffling schemes.
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1. Introduction and Statement of Results

The Dickman function ρ1 is the unique function, continuous on (0,∞),

and satisfying the differential-delay equation

ρ1(x) = 0, x ≤ 0;

ρ1(x) = 1, x ∈ (0, 1];

xρ′1(x) + ρ1(x− 1) = 0, x > 1.

This function has an interesting role in number theory and probability, which

we describe briefly in the final section of the paper. With a little work, one

can show that the Laplace transform of ρ1 is given by
∫∞

0 ρ1(x)e−λxdx =

exp(γ +
∫ 1

0
e−λx−1

x dx), where γ is Euler’s constant. (See, for example, [6]

or [9].) From this it follows that
∫∞

0 ρ1(x)dx = eγ , and consequently, that

e−γρ1 is a probability density on [0,∞). We will call this probability distri-

bution the Dickman distribution. We denote its density by p1(x) = e−γρ1(x),

and we denote by D1 a random variable distributed according to the Dick-

man distribution. Differentiating the Laplace transform E exp(−λD1) =

exp(
∫ 1

0
e−λx−1

x dx) of D1 at λ = 0 shows that ED1 = 1. These distributions

decay very rapidly; indeed, it is not hard to show that p1(x) ≤ e−γ

Γ(x+1) , x ≥ 0

[6].

In fact, for all θ > 0, exp(θ
∫ 1

0
e−λx−1

x dx) is the Laplace transform of a

probability distribution. (We will prove this directly; however, this fact

follows from the theory of infinitely divisible distributions, and shows that

the distribution in question is infinitely divisible.) This distribution has

density pθ = e−θγ

Γ(θ) ρθ, where ρθ satisfies the differential-delay equation

(1.1)

ρθ(x) = 0, x ≤ 0;

ρθ(x) = xθ−1, 0 < x ≤ 1;

xρ′θ(x) + (1− θ)ρθ(x) + θρθ(x− 1) = 0, x > 1.

We will call such distributions generalized Dickman distributions and denote

them by GD(θ). We denote by Dθ a random variable with the GD(θ) distri-

bution. Differentiating its Laplace transform at λ = 0 shows that EDθ = θ.
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These distribution decays very rapidly; indeed, it is not hard to show that

pθ(x) ≤ Cθ
Γ(x+1) , x ≥ 1, for an appropriate constant Cθ.

In fact, the scope of this paper leads us to consider a more general family

of distributions than the generalized Dickman distributions. Let X ≥ 0 be a

random variable satisfying EX ≤ 1. Then, as we shall see, for θ > 0, there

exists a distribution whose Laplace transform is exp
(
θ
∫ 1

0
E exp(−λxX )−1

x dx
)
.

We will denote this distribution by GD(X )(θ) and we denote a random vari-

able with this distribution by D
(X )
θ . (When X ≡ 1, we revert to the previous

notation for generalized Dickman distributions.) Differentiating the Laplace

transform at λ = 0 shows that ED
(X )
θ = θEX .

It is known that the generalized Dickman distribution GD(θ) arises as

the limiting distribution of 1
n

∑n
k=1 kYk, where the {Yk}∞k=1 are independent

random variables with Yk distributed according to the Poisson distribu-

tion with parameter θ
k [1]. It is also known that the Dickman distribution

GD(1) arises as the limiting distribution of 1
n

∑n
k=1 kYk as n → ∞, where

the {Yk}∞k=1 are independent Bernoulli random variables satisfying P (Yk =

1) = 1 − P (Yk = 0) = 1
k . Such behavior is in distinct contrast to the law

of large numbers behavior of a “well-behaved” sequence of independent ran-

dom variables {Zk}∞k=1 with finite first moments; namely, that 1
Mn

∑n
k=1 Zk

converges in distribution to 1 as n→∞, where Mn =
∑n

k=1EZk.

The purpose of this paper is to understand when the law of large numbers

fails and a distribution from the family GD(X )(θ) arises in its stead. From the

above examples, we see that generalized Dickman distributions sometimes

arise as limits of normalized sums from a sequence {Vk}∞k=1 of independent

random variables which are non-negative and satisfy the following three

conditions: (i) limk→∞ P (Vk = 0) = 1, (ii) limk→∞
Vk|Vk>0

E(Vk|Vk>0)

dist
= 1 and (iii)∑∞

k=1EVk =∞. (In the above examples, kYk plays the role of Vk.) It turns

out that these three conditions are very far from sufficient for a generalized

Dickman distribution to arise. In fact, as we shall see in Theorem 2 below,

such distributions arise only in a strange sequence of very narrow windows

of opportunity.
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In light of the above discussion, we will consider the following setting.

Let {Bk}∞k=1, {Xk}∞k=1 be mutually independent sequences of independent

random variables. Assume that {Bk}∞k=1 are Bernoulli random variables

satisfying:

(1.2) P (Bk = 1) = 1− P (Bk = 0) = pk ∈ [0, 1),

and assume that {Xk}∞k=1 satisfy:

(1.3) Xk > 0, µk ≡ EXk <∞.

Let

(1.4) Mn =

n∑
k=1

pkµk,

and define

(1.5) Wn =
1

Mn

n∑
k=1

BkXk.

We will be interested in the limiting behavior of Wn. In order to avoid

trivialities, we will assume that

(1.6) lim
n→∞

Mn =∞ and
∞∑
k=1

pk =∞,

since otherwise
∑∞

n=1BkXk is almost surely finite.

Note that for the example brought with the Pois( θk )-distribution, we have

pk = 1−e−
θ
k , Xk is distributed according to kYk|{Yk > 0}, where Yk has the

Pois( θk ) distribution, µk = θ

1−e−
θ
k

and Mn = nθ. And for the example with

the Ber( 1
k )-distribution, we have pk = 1

k , Xk = k deterministically, µk = k

and Mn = n. In the first of these two examples, Xkµk
dist→ 1, and in the second

one, Xk
µk

dist
= 1 for all k.

Our first theorem gives a general condition for Wn
dist→ c (which is the

law of large numbers if c = 1), and a general condition for convergence to

a limiting distribution from the family of distributions GD(X )(θ). Using

this theorem, we can prove our second theorem, which reveals the strange

domain of attraction to generalized Dickman distributions. (Of course, we
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are using the term “domain of attraction” not in its classical sense, since

our sequence of random variables, although independent, are not identically

distributed.) Let δc denote the degenerate distribution at c.

Theorem 1. Let Wn be as in (1.5), where {Bk}∞k=1, {Xk}∞k=1 and Mn are

as in (1.2)-(1.4) and (1.6).

i. Assume that {Xkµk }
∞
k=1 is uniformly integrable (which occurs automatically

if limk→∞
Xk
µk

dist
= 1).

a. Assume also that

(1.7) lim
n→∞

max1≤k≤n µk
Mn

= 0.

Then

lim
n→∞

Wn
dist
= 1.

b. Assume also that there exists a sequence {Kn}∞n=1 such that

(1.8) lim
n→∞

n∑
k=Kn+1

pk = 0,

and

(1.9) lim
n→∞

max1≤k≤Kn µk
Mn

= 0.

If

(1.10) c ≡ lim
n→∞

MKn

Mn
exists,

then

lim
n→∞

Wn
dist
= c.

If (1.10) does not hold, then the distributions of {Wn}∞n=1 form a tight se-

quence whose set of accumulation points is {δc : c ∈ A}, where A denotes

the set of accumulation points of the sequence {MKn
Mn
}∞n=1.

ii. Assume that there exists a random variable X such that

(1.11) lim
k→∞

Xk

µk

dist
= X .
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Assume also that {µk}∞k=1 is increasing, that limk→∞ pk = 0 and that there

exist θ, L ∈ (0,∞) such that

(1.12) lim
k→∞

pkµk
µk+1 − µk

= θ, lim
k→∞

µk
Mk

= L.

Then

lim
n→∞

Wn
dist
= LD(X )(θ),

where D(X )(θ) is a random variable with the GD(X )(θ) distribution.

Remark 1. In (1.12), necessarily L ≤ 1
θ . Indeed, if {pk}∞k=1 and {µk}∞k=1

satisfy the conditions of part (ii), and we choose Xk = µk, then Wn
dist→ LDθ.

Since EWn = 1 and EDθ = θ, it follows from Fatou’s lemma that L ≤ 1
θ .

In most cases of interest, one has L = 1
θ .

Remark 2. By Fatou’s lemma, the random variable X in part (ii) must

satisfy EX ≤ 1.

Remark 3. The uniform integrability of {Xkµk }
∞
k=1 in part (i) occurs au-

tomatically if limk→∞
Xk
µk

dist
= 1, because if a sequence {Yk}∞k=1 of random

variables satisfies Yk
dist→ Y , and E|Yk| <∞, then E|Yk| → E|Y | is equivalent

to uniform integrability.

Remark 4. In the case that Xk = µk, or more generally, if EX2
k ≤ Cµ2

k,

for all k and some C > 0, then

V ar(Wn) ≤
C
∑N

k=1 pkµ
2
k

M2
n

= C

∑n
k=1 pkµ

2
k

(
∑n

k=1 pkµk)
2
≤ C

sup1≤k≤n µk

Mn
.

Thus, in this case part (i-a) follows directly from the second moment method.

Using Theorem 1, we can prove the following theorem that exhibits the

strange domain of attraction to generalized Dickman distributions. Let log(j)

denote the jth iterate of the logarithm, and make the convention
∏0
j=1 = 1.

Theorem 2. Let Wn be as in (1.5), where {Bk}∞k=1, {Xk}∞k=1 and Mn are as

in (1.2)-(1.4). Assume also that limk→∞
Xk
µk

dist
= 1. Let Jµ, Jp be nonnegative
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integers, let cµ, cp > 0 and define

µ(x) = cµx
a0

Jµ∏
j=1

(log(j) x)aj ,

p(x) = cp
(
xb0

Jp∏
j=1

(log(j) x)bj
)−1

,

with bJp 6= 0. Assume that

µk ∼ µ(k), pk ∼ p(k);

µk+1 − µk ∼ µ′(k).

Assume that the exponents {aj}
Jµ
j=0, {bj}

Jp
j=0 have been chosen so that (1.6)

holds. If

(1.13)

i. Jp ≤ Jµ;

ii. bj = 1, 0 ≤ j ≤ Jp;

iii. aj = 0, 0 ≤ j ≤ Jp − 1, and aJp > 0,

then

lim
n→∞

Wn
dist
=

1

θ
Dθ, with θ =

cp
aJp

,

where Dθ is a random variable with the GD(θ) distribution.

Otherwise, limn→∞Wn
dist
= c, where c ∈ {0, 1}. To determine c, let

(1.14)

κµ = min{0 ≤ j ≤ Jµ : aj 6= 0} and κp = min{0 ≤ j ≤ Jp : bj 6= 1}.

If {0 ≤ j ≤ Jµ : aj 6= 0} is not empty, aκµ > 0 and either {0 ≤ j ≤ Jp :

bj 6= 1} is empty and κµ < Jp, or {0 ≤ j ≤ Jp : bj 6= 1} is not empty and

κµ < κp, then c = 0; otherwise, c = 1.

Remark 1. Note that if one chooses µk = µ(k) and pk = p(k), then the

condition µk+1 − µk ∼ µ′(k) is always satisfied.

Remark 2. Theorem 2 shows that to obtain a generalized Dickman distribu-

tion, {pk}∞k=1 in particular must be set in a very restricted fashion. For some

intuition regarding this phenomenon, take the situation where Xk = µk, and

consider the sequence {σ2(Wn)}∞n=1 of variances. This sequence converges
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to 0 in the cases where Wn converges to 1, converges to∞ in the cases where

Wn converges to 0, and converges to a positive number in the cases where

Wn converges to a generalized Dickman distribution.

We now state explicitly what Theorem 2 yields in the cases Jp = 0, 1.

Jp = 0. We have

pn ∼
cp
nb0

, b0 > 0, µn ∼ cµna0
Jµ∏
j=1

(log(j) n)aj .

In order that (1.6) hold, we require b0 ≤ 1. We also require either: a0−b0 >

−1; or a0 − b0 = −1 and a1 > −1; or a0 − b0 = a1 = −1 and a2 > −1; etc.

If b0 = 1 and a0 > 0, then

lim
n→∞

Wn
dist
=

1

θ
Dθ, where θ =

cp
a0
.

Otherwise, limn→∞Wn
dist
= 1.

Jp = 1. We have

pn ∼
cp

nb0(log n)b1
, b1 6= 0, µn ∼ cµna0

Jµ∏
j=1

(log(j) n)aj .

In order that (1.6) hold, we require either b0 = 0 and b1 > 0, or 0 < b0 < 1,

or b0 = 1 and b1 ≤ 1. We also require either: a0 − b0 > −1; or a0 − b0 = −1

and a1 − b1 > −1; or a0 − b0 = a1 − b1 = −1 and a2 > −1; etc.

If Jµ ≥ 1, b0 = b1 = 1, a0 = 0 and a1 > 0, then

lim
n→∞

Wn
dist
=

1

θ
Dθ, where θ =

cp
a1
.

If b0 = 1 and a0 > 0, then limn→∞Wn
dist
= 0.

Otherwise, limn→∞Wn
dist
= 1.

Remark. In [3] and [8], where the GD(1) distribution arises, one has Jp = 1

with b0 = b1 = 1, a0 = 0, a1 = 1, cp = cµ = 1.
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The organization of the rest of the paper is as follows. In section 2 we

use Theorems 1 and 2 to investigate a question raised in [5] concerning the

statistics of the number of inversions in certain random shuffling schemes.

In sections 3 and 4 respectively we prove Theorems 1 and 2. In section 5 we

prove a couple basic facts about generalized Dickman distributions. In par-

ticular, we provide a rather probabilistic proof that the distribution whose

Laplace transform is given by exp(θ
∫ 1

0
e−λx−1

x dx) possesses a density pθ of

the form pθ = cθρθ, where ρθ satisfies (1.1). We also give a reference for

the formula cθ = e−θγ

Γ(θ) . Finally, in section 6, we offer a little historical back-

ground concerning the Dickman function ρ1 and its connection to number

theory and probability.

2. An application to random permutations

We consider a setup that appeared in [5], and which in the terminology of

this paper can be described as follows. For each k ∈ N, let Ek ⊂ {1, . . . , k−

1}. Let Xk be uniformly distributed on Ek, and let Bk
dist
= Ber( |Ek|k ). So

µk =
1

|Ek|
∑
l∈Ek

l, pk =
|Ek|
k
.

Define

In =
n∑
k=1

BkXk.

We allow Ek = ∅, in which case Bk = 0 and Xk is not defined. In such a

case, we define BkXk = 0 and µk = 0. We always have E1 = ∅.

Consider first the case that Ek = {1, . . . , k − 1}. Then B1X1 = 0 and for

2 ≤ k ≤ n, BkXk is uniformly distributed over {0, 1 . . . , k− 1}. In this case,

In has the distribution of the number of inversions in a uniformly random

permutation from Sn. (The authors in [5] have a typo and wrote Ek =

{1, . . . , k} instead.) To see this, consider the following shuffling procedure

for n cards, numbered from 1 to n. The cards are to be inserted in a

row, one by one, in order of their numbers. At step one, card number 1 is

set down. The number of inversions created by this step is zero, which is

given by B1X1. At step k, for k ∈ {2, . . . , n}, card number k is randomly



10 ROSS G. PINSKY

inserted in the current row of cards, numbered 1 to k − 1. Thus, for any

j ∈ {0, 1, . . . , k− 1}, card number k has probability 1
k of being placed in the

position with j cards to its right (and k−1−j cards to its left), in which case

this step will have created j new inversions, and this is represented by BkXk.

It is clear from the construction that the random variables {BkXk}nk=1 are

independent. Thus, In indeed gives the number of inversions in a uniformly

random permutation from Sn. It is well-known that the law of large numbers

and the central limit theorem hold for In in this case. Indeed, using the

above representation, a direction calculation shows that EIn = n(n−1)
4 and

that Var(In) = O(n3); thus the central limit theorem follows from the second

moment method.

Consider now the general case that Ek ⊂ {1, . . . , k − 1}. Then In gives

the number of inversions in a random permutation created by a shuffling

procedure in the same spirit as the above one. At step k, with probability

1 − |Ek|k , card number k is inserted at the right end of the row, thereby

creating no new inversions, and for each j ∈ Ek, with probability 1
k it is

inserted in the position with j cards to its right, thereby creating j new

inversions.

In particular, as a warmup consider the cases Ek = {1} and Ek = {k−1},

2 ≤ k ≤ n. In each of these two cases, at step k, 2 ≤ k ≤ n, card number

k is inserted at the right end of the row with probability 1− 1
k . In the first

case, with probability 1
k card number k is inserted immediately to the left of

the right most card, thereby creating one new inversion, while in the second

case, with probability 1
k card number k is inserted at the left end of the row,

thereby creating k − 1 new inversions. In both cases Xn
µn

dist
= 1 for all n, and

in both cases, pk = 1
k . In the first case, µk = 1 while in the second case,

µk = k − 1. Thus, in the first case, Mn =
∑n

k=1 pkµk ∼ log n, and in the

second case, Mn ∼ n. Therefore, it follows from Theorem 1 or 2 that in

the first case In
logn converge in distribution to 1, while in the second case, Inn

converges in distribution to GD(1).
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The authors of [5] ask which choices of {Ek}∞k=1 lead to the Dickman

distribution and which choices lead to the central limit theorem. Of course,

the law of large numbers is a prerequisite for the central limit theorem. The

following theorem gives sufficient conditions for the law of large numbers

to hold and sufficient conditions for convergence to a distribution from the

family GD(X )(θ). In order to avoid trivialities, we need to assume that (1.6)

holds. Recalling that µk = 0 when |Ek| = 0, and that µk ≥ 1 otherwise,

note that

Mn = EIn =
∞∑
k=1

|Ek|
k
µk ≥

∞∑
k=1

|Ek|
k

=
∞∑
k=1

pk.

Thus, in the present context the requirement (1.6) is

(2.1)
∞∑
k=1

|Ek|
k

=∞,

which holds in particular if Ek 6= ∅ for all sufficiently large k.

Theorem 3. Assume that (2.1) holds.

i. Assume that at least one of the following conditions holds:

a. limk→∞ |Ek| =∞ and {max1≤k≤n µk∑n
k=1

µk
k

}∞n=1 is bounded;

b. limn→∞
max1≤k≤n µk∑n

k=1
µk
k

= 0.

Then In
EIn

dist→ 1.

ii. Assume that |Ek| = N ≥ 1, for all large k, and that Xk
µk

dist→ X . Also as-

sume that µk ∼ µ(k) and µk+1−µk ∼ µ′(k), where µ(x) = cµx
a0
∏Jµ
j=1(log(j) x)aj ,

with a0 > 0.

Then In
EIn

dist→ 1
θD

(X )
θ , with θ = N

a0
, where D

(X )
θ is a random variable with the

GD(X )(θ) distribution.

Remark 1. The condition on {µk} in part (i-a) is just a very weak regularity

requirement on its growth rate (recall that 1 ≤ µk < k − 1). The condition

in part (i-b) is fulfilled if µk ∼ µ(k) and µk+1 − µk ∼ µ′(k), where µ(x) =

cµ
∏Jµ
j=1(log(j) x)aj with Jµ ≥ 0.

Remark 2. Note that the random variable X in part (ii) takes on no more

than N distinct values.
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Proof. Assume first that the condition in part (i-a) holds. We claim that

since {max1≤k≤n µk∑n
k=1

µk
k

}∞n=1 is bounded, there exists a sequence of positive in-

tegers {γn}∞n=1 satisfying limn→∞ γn = ∞ and such that {max1≤k≤n µk∑n
k=γn+1

µk
k

}∞n=1

is also bounded. Indeed, assume to the contrary that the above sum is

unbounded for all such choices of {γn}∞n=1. Then necessarily, {µn}∞n=1 is un-

bounded. (Indeed, since by assumption |Ek| ≥ 1 for sufficiently large k, the

same is true for µk, and thus, choosing, for example, γn = [n
1
2 ], it follows that

for sufficiently large n,
∑n

k=γn+1
µk
k ≥

∑n
k=γn+1

1
k ∼

1
2 log n. Thus {µn}∞n=1

must be unbounded if {max1≤k≤n µk∑n
k=γn+1

µk
k

}∞n=1 is unbounded.) Also, since µk < k,

we have
∑n

k=1
µk
k < γn +

∑n
k=γn+1

µk
k , and it follows from the boundedness

of {max1≤k≤n µk∑n
k=1

µk
k

}∞n=1 and the unboundedness of {max1≤k≤n µk∑n
k=γn

µk
k

}∞n=1 that the un-

bounded sequence {max1≤k≤n µk}∞n=1 has the property that {max1≤k≤n µk
γn

}∞n=1

is bounded for all sequences {γn}∞n=1 satisfying limn→∞ γn = ∞, which is

impossible.

Now let {γn}∞n=1 be a sequence such that limn→∞ γn =∞ and {max1≤k≤n µk∑n
k=γn+1

µk
k

}∞n=1

is bounded. Since

Mn =
n∑
k=1

|Ek|
k
µk ≥ (min

k>γn
|Ek|)

n∑
k=γn

µk
k

and {max1≤k≤n µk∑n
k=γn+1

µk
k

}∞n=1 is bounded, it follows from the first condition in (i-a)

that (1.7) holds.

Now assume that the condition in part (i-b) holds. Since Mn ≥
∑n

k=1
µk
k ,

it follows again that (1.7) holds.

Thus, assuming either (i-a) or (i-b), it follows from part (i-a) of Theorem

1 that In
EIn

dist→ 1.

Now assume that the condition in part (ii) holds. Then pk = N
k , for large

k, and µk ∼ cµka0
∏Jµ
j=1(log(j) k)aj , with a0 > 0. Thus,

Mn =
n∑
k=1

|Ek|
k
µk ∼

Ncµ
a0

na0
Jµ∏
j=1

(log(j) n)aj ,

and limk→∞
µk
Mk

= a0
N . Also, if the condition in part (ii) holds, then

µk+1 − µk ∼ a0cµk
a0−1

∏Jµ
j=1(log(j) k)aj . Thus, limk→∞

pkµk
µk+1−µk = N

a0
. We
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conclude from part (ii) of Theorem 1 that In
EIn

dist→ 1
θGD(X )(θ), where θ =

N
a0

. �

3. Proof of Theorem 1

Since EWn = 1, for all n, the distributions of {Wn}∞n=1 are tight. Thus,

since the random variables are nonnegative, it suffices to show that their

Laplace transforms E exp(−λWn) converge under the conditions of part (i)

to exp(−λc), for the specified value of c, and under the conditions of part

(ii) to exp(θ
∫ 1

0
Ee−LλxX−1

x dx), which is the Laplace transform of LD(X )(θ).

Proof of part (i). Note that part (i-a) is the particular case of part (i-b) in

which one can choose Kn = n, and then (1.10) holds with c = 1. Thus, it

suffices to consider part (i-b). We have for λ > 0,

(3.1)

E exp(−λWn) =

=

n∏
k=1

E exp(− λ

Mn
BkXk) =

n∏
k=1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
=

Kn∏
k=1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

)) n∏
k=Kn+1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
.

Since

n∏
k=Kn+1

(1− pk) ≤
n∏

k=Kn+1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤ 1,

it follows from assumption (1.8) that

(3.2) lim
n→∞

n∏
k=Kn+1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
= 1.

Applying the mean value theorem to E exp(− λ
Mn

Xk) as a function of λ,

and recalling that µk = EXk, we have

(3.3)
λ

Mn
EXk exp(− λ

Mn
Xk) ≤ 1− E exp(− λ

Mn
Xk) ≤ λ

µk
Mn

.
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The assumption that {Xkµk }
∞
k=1 is uniformly integrable means that

limN→∞ sup1≤k<∞E(Xkµk 1Xk
µk
>N

) = 0. Thus, in light of (1.9) and the uni-

form integrability assumption, it follows that for all ε > 0, there exists an

nε such that

(3.4)
λ

Mn
EXk exp(− λ

Mn
Xk) = λ

µk
Mn

E
Xk

µk
exp(−λ µk

Mn

Xk

µk
) ≥ (1− ε)λ µk

Mn
,

1 ≤ k ≤ Kn, n ≥ nε.

Thus, (3.3) and (3.4) yield

(3.5) (1− ε)λ µk
Mn
≤ 1− E exp(− λ

Mn
Xk) ≤ λ

µk
Mn

, 1 ≤ k ≤ Kn, n ≥ nε.

Since for any ε > 0, there exists an xε > 0 such that −(1+ε)x ≤ log(1−x) ≤

−x, for 0 < x < xε, it follows from (3.5) and (1.9) that there exists an n′ε

such that

(3.6)

− (1 + ε)λpk
µk
Mn
≤ log

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤ −(1− ε)λpk

µk
Mn

,

1 ≤ k ≤ Kn, n ≥ n′ε.

From (3.6) we have

(3.7)

− (1 + ε)λ

∑Kn
k=kε

pkµk

Mn
≤ log

Kn∏
k=1

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤

− (1− ε)λ
∑Kn

k=kε
pkµk

Mn
, n ≥ n′ε.

If

(3.8) c ≡ lim
n→∞

MKn

Mn
= lim

n→∞

∑Kn
k=1 pkµk
Mn

exists, then from (3.1), (3.2), (3.7) and (3.8), along with the fact that ε > 0

is arbitrary, we conclude that

lim
n→∞

E exp(−λWn) = exp(−λc),

which proves that limn→∞Wn
dist
= c. The rest of the results in part (i-b),

concerning accumulation points, follow in the same manner.
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Proof of part (ii). From (3.1), we have

(3.9) logE exp(−λWn) =

n∑
k=1

log
(

1− pk
(
1− E exp(− λ

Mn
Xk)

))
.

Since by assumption limk→∞ pk = 0, for any ε > 0 there exists a kε such

that

(3.10)

− (1 + ε)pk
(
1− E exp(− λ

Mn
Xk)

)
≤ log

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤

− pk
(
1− E exp(− λ

Mn
Xk)

)
, k ≥ kε.

We now show that for any ε > 0 there exists a k′ε such that

(3.11)

(1−ε)E exp(−λ µk
Mn
X ) ≤ E exp(− λ

Mn
Xk) ≤ (1+ε)E exp(−λ µk

Mn
X ), k ≥ k′ε.

By assumption (1.12) and the assumption that {µn}∞n=1 is increasing, there

exists a C such that µk
Mn
≤ C, for 1 ≤ k ≤ n and n ≥ 1. By assumption,

Xk
µk

dist→ X . Without loss of generality, we assume that all of these random

variables are defined on the same space and that Xk
µk
→ X a.s. For δ > 0,

let

Ak;δ = {sup
l≥k
|Xl

µl
−X| ≤ δ}.

Then Ak;δ is increasing in k and limk→∞ P (Ak;δ) = 1. We have

(3.12)

∫
Ack;δ

exp(− λ

Mn
Xk)dP ≤ P (Ack;δ),

and

(3.13)

exp(−λCδ)
∫
Ak;δ

exp(−λ µk
Mn
X )dP ≤

∫
Ak;δ

exp(−λ µk
Mn

Xk

µk
)dP ≤

exp(λCδ)

∫
Ak;δ

exp(−λ µk
Mn
X )dP.

Now (3.11) follows from (3.12) and (3.13).
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Letting k
′′
ε = max(kε, k

′
ε), it follows from (3.10) and (3.11) that

(3.14)

− (1 + ε)pk

(
1− (1− ε)E exp(−λ µk

Mn
X )
)
≤ log

(
1− pk

(
1− E exp(− λ

Mn
Xk)

))
≤

− pk
(

1− (1 + ε)E exp(−λ µk
Mn
X )
)
, k ≥ k′′ε .

From (3.9) and (3.14) we have

(3.15)

−
n∑

k=k′′ε

pk(1 + ε)
(

1− (1− ε)E exp(−λ µk
Mn
X )
)

+ o(1) ≤ logE exp(−λWn) ≤

−
n∑

k=k′′ε

pk

(
1− (1 + ε)E exp(−λ µk

Mn
X )
)
, as n→∞.

Define x
(n)
k = µk

Mn
, k
′′
ε ≤ k ≤ n, and ∆

(n)
k = x

(n)
k+1 − x

(n)
k =

µk+1−µk
Mn

,

k
′′
ε ≤ k ≤ n− 1. Then we have

(3.16)

n∑
k=k′′ε

pk

(
1− (1± ε)E exp(−λ µk

Mn
X )
)

=

n∑
k=k′′ε

1− (1± ε)E exp(−λx(n)
k X )

x
(n)
k

∆
(n)
k

(
pk

µk
µk+1 − µk

)
.

By assumption, {µk}∞k=1 is increasing; thus {x(n)
k }

n
k=k′′ε

is a partition of

[
µ
k
′′
ε

Mn
, µnMn

]. By assumption, limn→∞
µ
k
′′
ε

Mn
= 0 and limn→∞

µn
Mn

= L. We

now show that the mesh, maxk′′ε ≤k≤n−1 ∆
(n)
k , of the partition converges to 0

as n→∞. Let ∆
(n)
jn

= maxk′′ε ≤k≤n−1 ∆
(n)
k , where k

′′
ε ≤ jn ≤ n. Without loss

of generality, assume either that {jn} is bounded or that limn→∞ jn =∞. In

the former case it is clear that maxk′′ε ≤k≤n−1 ∆
(n)
k = ∆

(n)
jn

=
µjn+1−µjn

Mn

n→∞→

0. Now consider the latter case. From assumption (1.12) and the assump-

tion that limk→∞ pk = 0, it follows that limn→∞
µn+1−µn

Mn
= 0. Then we

have

max
k′′ε ≤k≤n−1

∆
(n)
k = ∆

(n)
jn

=
µjn+1 − µjn

Mn
=
µjn+1 − µjn

Mjn

Mjn

Mn
≤ µjn+1 − µjn

Mjn

n→∞→ 0.

Finally, we note that from (1.12) we have limk→∞ pk
µk

µk+1−µk = θ. In light

of these facts, along with (3.15), (3.16) and the fact that ε > 0 is arbitrary,



STRANGE DOMAIN OF ATTRACTION TO DICKMAN DISTRIBUTIONS 17

it follows that

(3.17)

lim
n→∞

logE exp(−λWn) = θ

∫ L

0

E exp(−λxX )− 1

x
dx = θ

∫ 1

0

E exp(−λLxX )− 1

x
dx,

�

4. Proof of Theorem 2

We will assume that Jp, Jµ ≥ 1 so that we can use a uniform notation,

leaving it to the reader to verify that the proof also goes through if Jp or Jµ

is equal to zero.

First assume that (1.13) holds. Then by the assumptions in the theorem,

1 ≤ Jp ≤ Jµ;

µk ∼ cµ
Jµ∏
j=Jp

(log(j) k)aj , aJp > 0;

pk ∼ cp
(
j

Jp∏
j=1

log(j) k
)−1

;

µk+1 − µk ∼ cµaJP
(log(JP ) k)aJp−1

j
∏Jp−1
j=1 log(j) k

Jµ∏
j=Jp+1

(log(j) k)aj .

Thus,

Mn =
n∑
k=1

pkµk ∼ cµcp
(log(Jp) n)aJp

aJp

Jµ∏
j=Jp+1

(log(j) n)aj .

Consequently,

(4.1) lim
k→∞

µk
Mk

=
aJp
cp

and lim
k→∞

pkµk
µk+1 − µk

=
cp
aJp

.

Thus, from part (ii) of Theorem 1 it follows that limn→∞Wn
dist
= 1

θDθ, where

θ =
cp
aJp

.

Now assume that (1.13) does not hold. We need to show that {Kn}∞n=1

can be defined so that (1.8) and (1.9) hold, and so that (1.10) holds with

c ∈ {0, 1}. We also have to show when c = 0 and when c = 1. Recall the

definitions in (1.14). If {0 ≤ j ≤ Jµ : aj 6= 0} is empty, or if it is not empty

and aκµ < 0, then {µk}∞k=1 is bounded. Therefore, (1.8) and (1.9) hold with
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Kn = n and it follows from part (i-a) of Theorem 1 that limn→∞Wn
dist
= 1.

Thus, from now on we assume that {0 ≤ j ≤ Jµ : aj 6= 0} is not empty and

that aκµ > 0. In order to use uniform notation, we will assume that κµ > 0,

leaving the reader to verify that the proof goes through if κµ = 0. Thus, we

have

(4.2) µk ∼
Jµ∏
j=κµ

(log(j) k)aj , κµ ≥ 1, aκµ > 0.

In order to simplify notation, for the rest of this proof, we will let Ll(k)

denote a positive constant multiplied by a product of powers (possibly of

varying sign) of iterated logarithms log(j) k, where the smallest j is strictly

larger than l. The exact form of this expression may vary from line to line.

Sometimes we will need to distinguish between two such expressions in the

same formula, in which case we will use the notation L(1)
l (k),L(2)

l (k). Thus,

we rewrite (4.2) as

(4.3) µk ∼ (log(κµ) k)aκµLκµ(k), κµ ≥ 1, aκµ > 0.

If {0 ≤ j ≤ Jp : bj 6= 1} is empty, then the second condition in (1.13) is

fulfilled and we have

(4.4) pk ∼ cp
(
j

Jp∏
j=1

log(j) k
)−1

.

Since we are assuming that (1.13) does not hold, at least one of the other

two conditions in (1.13) must fail. This forces κµ 6= Jp. (Recall that we are

assuming that {0 ≤ j ≤ Jµ : aj 6= 0} is not empty and that aκµ > 0.)

Consider first the case that κµ > Jp. Then from (4.3) and (4.4) we have

(4.5)

Mn =

n∑
k=1

pkµk ∼ (log(Jp+1) n)(log(κµ) n)aκµLκµ(n), where κµ ≥ Jp + 1.

From (4.3) and (4.5) it follows that (1.8) and (1.9) hold by choosing Kn = n.

Thus, from part (i-a) of Theorem 1, limn→∞Wn
dist
= 1.
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Now consider the case κµ < Jp. Then from (4.3) and (4.4) we have

(4.6) Mn =
n∑
k=1

pkµk ∼ (log(κµ) n)aκµLκµ(n), where κµ ≤ Jp − 1,

and for any Kn satisfying Kn →∞ and Kn ≤ n, we have

(4.7)

n∑
k=Kn

pk ∼ cp
(

log(Jp+1) n− log(Jp+1)Kn

)
= cp log

log(Jp) n

log(Jp)Kn

.

From (4.3) and (4.6) we have

(4.8)

µKn
Mn

∼
( log(κµ)Kn

log(κµ) n

)aκµ L(1)
κµ (Kn)

L(2)
κµ (n)

, κµ ≤ Jp − 1, aκµ > 0;

MKn

Mn
∼
( log(κµ)Kn

log(κµ) n

)aκµ L(1)
κµ (Kn)

L(2)
κµ (n)

, κµ ≤ Jp − 1, aκµ > 0;

As we explain in some detail below, since κµ < Jp, we can choose {Kn}∞n=1

so that

(4.9) lim
n→∞

log(Jp)Kn

log(Jp) n
= 1 and lim

n→∞

( log(κµ)Kn

log(κµ) n

)aκµ L(1)
κµ (Kn)

L(2)
κµ (n)

= 0.

From (4.3) and (4.7)-(4.9), we conclude that {Kn} can be defined so that

(1.8) and (1.9) hold, and so that (1.10) holds with c = 0. This proves that

limn→∞Wn
dist
= 0.

To explain (4.9), note that
L(1)κµ (Kn)

L(2)κµ (n)
≤ (log(κµ+1) n)A, for some A > 0 and

all large n. (Recall that the powers of the iterated logarithms in L(2)
kµ

can

be negative.) Thus, in place of the second limit in (4.9), it suffices to show

that δn ≡
(

log(κµ)Kn
log(κµ) n

)aκµ
(log(κµ+1) n)A

n→∞→ 0. We have

log(κµ)Kn = (δn)
1

aκµ (log(κµ+1) n)
− A
aκµ log(κµ) n;

thus,

(4.10)
log(κµ+1)Kn

log(κµ+1) n
=

log δn

aκµ log(κµ+1) n
− A log(κµ+2) n

aκµ log(κµ+1) n
+ 1.

Defining Kn by choosing δn = (log(κµ+1) n)−1, it follows from (4.10) and the

fact that Jp ≥ κµ + 1 that the two equalities in (4.9) hold.
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We now consider the case that {0 ≤ j ≤ Jp : bj 6= 1} is not empty. Then

in order to fulfill the second condition in (1.6), we have bκp < 1. We write

(4.11) pk ∼ cp
(
j

κp−1∏
j=1

log(j) k
)−1(

log(κp) k
)−bκp( Jp∏

j=κp+1

log(j) k
)−bj .

From (4.3) and (4.11) it follows that Mn =
∑n

k=1 pkµk satisfies

(4.12) Mn ∼


(log(κµ) n)aκµ Lκµ(n), κµ < κp;

(log(κp) n)aκp−bκp+1 Lκp(n), κµ = κp;

(log(κp) n)1−bκp Lκp(n), κµ > κp,

and from (4.11) it follows that for any Kn satisfying Kn →∞ and Kn ≤ n,

(4.13)
n∑

k=Kn

pk ∼

cp
1− bκp

[(
log(κp) n

)1−bκp( Jp∏
j=κp+1

log(j) n
)−bj − ( log(κp)Kn

)1−bκp( Jp∏
j=κp+1

log(j)Kn

)−bj].
From (4.3) and (4.12) we have

(4.14)
µKn
Mn

∼



( log(κµ)Kn
log(κµ) n

)aκµ L(1)κµ (Kn)

L(2)κµ (n)
, κµ < κp;(

log(κp)Kn)
aκp

(log(κp) n
)aκp−bκp+1

L(1)κp (Kn)

L(2)κp (n)
, κµ = κp;(

log(κµ)Kn
)aκµ(

log(κp) n
)1−bκp L(1)κµ (Kn)

L(2)κp (n)
, κµ > κp.

It is immediate (4.3) and (4.14) that if κµ ≥ κp, then (1.8) and (1.9) hold

by choosing Kn = n. (For the case κµ = κp, recall that bκp ∈ (0, 1).) Thus,

from part (i-a) of Theorem 1, limn→∞Wn
dist
= 1.

Now consider the case κµ < κp. For simplicity, we will assume that

the higher order iterated logarithmic terms do not appear; that is, we will
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assume from (4.12)-(4.14) that

(4.15)

n∑
k=Kn

pk ∼
cp

1− bκp

[(
log(κp) n

)1−bκp − ( log(κp)Kn

)1−bκp];
µKn
Mn

∼
( log(κµ)Kn

log(κµ) n

)aκµ ;

MKn

Mn
∼
( log(κµ)Kn

log(κµ) n

)aκµ .
The additional logarithmic terms can be dealt with similarly to the way

they were dealt with for (4.9), as explained in the paragraph following (4.9).

Applying the mean value theorem to the function x1−bκp , we obtain

(4.16)
(

log(κp) n
)1−bκp − ( log(κp)Kn

)1−bκp =
(1− bκp) log(κp) n

Kn

(log(κp) n∗)bκp
,

where n∗ ∈ (Kn, n). Since κµ < κp, we can choose Kn → ∞ such that

limn→∞
log(κµ)Kn
log(κµ) n

= 0, but limn→∞ log(κp) Kn
n = 1. For such a choice of

{Kn}, it follows from (4.3), (4.15) and (4.16) that (1.8) and (1.9) hold, and

that (1.10) holds with c = 0; thus, limn→∞Wn
dist
= 0. �

5. Basic Facts Concerning Generalized Dickman Distributions

We proved in Theorem 1 that exp(θ
∫ 1

0
e−λx−1

x dx) is the Laplace transform

of a probability distribution, which we have denoted by GD(θ).

Proposition 1. Let Dθ ∼GD(θ). Then

(5.1) Dθ
dist
= U

1
θ (Dθ + 1),

where U is distributed according to the uniform distribution on [0, 1], and U

and Dθ on the right hand side above are independent.

Remark 1. From (5.1) it is immediate that

Dθ
dist
= U

1
θ

1 + (U1U2)
1
θ + (U1U2U3)

1
θ + · · · ,

where {Un}∞n=1 are IID random variables distributed according to the uni-

form distribution on [0, 1].
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Remark 2. Our proof of the proposition is rather probabilistic; a more

analytic proof can be found in [7].

Proof. The proof of Theorem 1 showed in particular that if we let Xk =

µk = k and pk = θ
k , in which case Mn =

∑n
k=1 pkµk = θn, then

(5.2) Ŵn ≡ θWn =
1

n

n∑
k=1

kBk
dist→ Dθ,

where Dθ
dist∼ GD(θ). Let

J+
n = max{k ≤ n : Bk 6= 0},

with max ∅ ≡ 0. We write

(5.3) Ŵn ≡
1

n

n∑
n=1

kBk =
J+
n − 1

n

( 1

J+
n − 1

J+
n −1∑
k=1

kBk

)
+
J+
n

n
,

where the first of the two summands on the right hand side above is inter-

preted as equal to 0 if J+
n ≤ 1. We have

(5.4) P (
J+
n

n
≤ x) =

n∏
k=[xn+1]

(1− θ

k
) ∼ xθ, x ∈ (0, 1).

Also, by the independence of {Bk}∞k=1, we have

(5.5)
1

J+
n − 1

J+
n −1∑
k=1

kBk | {J+
n = k0}

dist
=

1

k0 − 1

k0−1∑
k=1

kBk = Ŵk0−1, k0 ≥ 2.

Letting n → ∞ in (5.3) and using (5.2), (5.4) and (5.5), we conclude that

(5.1) holds, where U is distributed according to the uniform distribution on

[0, 1], Dθ
dist∼ GD(θ) and U and Dθ on the right hand side are independent.

�

Proposition 2. The GD(θ) distribution has a density function pθ satisfying

pθ = cθρθ, for some cθ > 0, where ρθ satisfies (1.1).

Remark. For a derivation of the formula cθ = e−θγ

Γ(θ) , see [1].



STRANGE DOMAIN OF ATTRACTION TO DICKMAN DISTRIBUTIONS 23

Proof. Let Fθ(x) = P (Dθ ≤ x) denote the distribution function for the

GD(θ) distribution. Then from (5.1) we have

(5.6)

Fθ(x) = P (Dθ ≤ x) = P (U
1
θ (Dθ + 1) ≤ x) =

∫ 1

0
P (Dθ + 1 ≤ xy−

1
θ )dy =∫ 1

0
Fθ(xy

− 1
θ − 1)dy.

For x > 0, making the change of variables, v = xy−
1
θ − 1, we can rewrite

(5.6) as

(5.7) Fθ(x) = θxθ
∫ ∞
x−1

FDθ(v)(1 + v)−1−θdv, x > 0.

From (5.7) and the fact that Fθ(x) = 0, for x ≤ 0, it follows that Fθ is

continuous on R. Also, since Fθ(x) = 0, for x ≤ 0, we have∫ ∞
x−1

FDθ(v)(1 + v)−1−θdv =

∫ ∞
0

FDθ(v)(1 + v)−1−θdv, x ≤ 1.

Consequently, it follows from (5.7) that Fθ(x) = Cθx
θ, for x ∈ [0, 1], where

Cθ = θ
∫∞

0 FDθ(v)(1 + v)−1−θdv. From this and (5.7) it follows that F is

differentiable on (0, 1) and on (1,∞), and that, letting pθ = F ′θ,

(5.8) pθ = cθx
θ−1, 0 < x < 1, cθ = θ2

∫ ∞
0

FDθ(v)(1 + v)−1−θdv,

and

(5.9)

pθ(x) = θ2xθ−1

∫ ∞
x−1

FDθ(v)(1 + v)−1−θdv − θx−1Fθ(x− 1) =

θ

x
(Fθ(x)− Fθ(x− 1)), x > 1.

From (5.9), it follows that pθ is differentiable on x > 1, and that (xpθ(x))′ =

θ
(
pθ(x)− pθ(x− 1)

)
, for x > 1, or equivalently,

(5.10) xp′θ(x) + (1− θ)pθ(x) + θpθ(x− 1) = 0, x > 1.

From (5.8) and (5.10) we conclude that pθ(x) = cθρθ, where ρθ satisfies

(1.1). Integrating by parts in the formula for cθ in (5.8) shows that

cθ = θ

∫ ∞
0

(1 + v)−θpθ(v)dv = θE(1 +Dθ)
−θ.

�
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6. The Dickman function in number theory and probability

The Dickman function ρ ≡ ρ1 arises in probabilistic number theory in the

context of so-called smooth numbers; that is, numbers all of whose prime

divisors are “small.” Let Ψ(x, y) denote the number of positive integers

less than or equal to x with no prime divisors greater than y. Numbers

with no prime divisors greater than y are called y-smooth numbers. Then

for s ≥ 1, Ψ(N,N
1
s ) ∼ Nρ(s), as N → ∞. This result was first proved by

Dickman in 1930 [4], whence the name of the function, with later refinements

by de Bruijn [2]. See also [6] or [9]. Let [n] = {1, . . . , n} and let p+(n)

denote the largest prime divisor of n. Then Dickman’s result states that

the random variable log p+(j)
logn , j ∈ [n], on the probability space [n] with the

uniform distribution converges in distribution as n→∞ to the distribution

whose distribution function is ρ( 1
x), x ∈ [0, 1], and whose density is −ρ′( 1

x
)

x2
=

ρ( 1
x
−1)

x , x ∈ [0, 1]. It is easy to see that an equivalent statement of Dickman’s

result is that the random variable log p+(j)
log j , j ∈ [n], on the probability space

[n] with the uniform distribution converges in distribution as n→∞ to the

distribution whose distribution function is ρ( 1
x), x ∈ [0, 1], We note that

the length of the longest cycle of a uniformly random permutation of [n],

normalized by dividing by n, also converges to a limiting distribution whose

distribution function is ρ( 1
x). If instead of using the uniform measure on Sn,

the set of permutations of [n], one uses the Ewens sampling distribution on

Sn, obtained by giving each permutation σ ∈ Sn the probability proportional

to θC(σ), where C(σ) denotes the number of cycles in σ, then the length of the

longest cycle of such a random permutation of [n], normalized by dividing by

n, converges to a limiting distribution whose distribution function is ρθ(
1
x),

x ∈ [0, 1]. This distribution is also the distribution of the first coordinate of

the Poisson-Dirichlet distribution PD(θ) (see [1]).

The examples in the above paragraph lead to limiting distributions where

the Dickman function arises as a distribution function, not as a density as

is the case with the GD(θ) distributions discussed in this paper. The GD(θ)
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distribution arises as a normalized limit in the context of certain natural

probability measures that one can place on N; see [3], [8].
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