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Abstract.
Consider classical solutions u ∈ C2(Rn×(0,∞))∩C(Rn× [0,∞)) to the parabolic

reaction diffusion equation

ut = Lu + f(x, u), (x, t) ∈ Rn × (0,∞);

u(x, 0) = g(x) ≥ 0, x ∈ Rn;

u ≥ 0,

where

L =
n∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi

is a non-degenerate elliptic operator, g ∈ C(Rn) and the reaction term f converges
to −∞ at a super-linear rate as u →∞. The first result in this paper is a parabolic
Osserman-Keller type estimate. We give a sharp minimal growth condition on f ,
independent of L, in order that there exist a universal, a priori upper bound for all
solutions to the above Cauchy problem—that is, in order that there exist a finite
function M(x, t) on Rn × (0,∞) such that u(x, t) ≤ M(x, t), for all solutions to the
Cauchy problem. Assuming now in addition that f(x, 0) = 0, so that u ≡ 0 is a
solution to the Cauchy problem, we show that under a similar growth condition, an
intimate relationship exists between two seemingly disparate phenomena—namely,
uniqueness for the Cauchy problem with initial data g = 0 and the nonexistence of
unbounded, stationary solutions to the corresponding elliptic problem. We also give
a generic sufficient condition guaranteeing uniqueness for the Cauchy problem.
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1. Introduction and statement of results. Consider classical solutions u ∈
C2(Rn × (0,∞)) ∩ C(Rn × [0,∞)) to the parabolic reaction diffusion equation

(1.1)

ut = Lu + f(x, u), (x, t) ∈ Rn × (0,∞);

u(x, 0) = g(x) ≥ 0, x ∈ Rn;

u ≥ 0,

where

L =
n∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
,

with ai,j , bi ∈ Cα(Rn), α ∈ (0, 1], and {ai,j} strictly elliptic; that is,
∑n

i,j=1 ai,j(x)νiνj >

0, for all x ∈ Rn and ν ∈ Rn − {0}. We assume that g ∈ C(Rn). We require that

the reaction term f be locally Lipschitz in x and in u and converge to −∞ at a

super-linear rate as u →∞, for each x ∈ Rn. This latter requirement will be made

more precise below.

Our first result is a sharp minimal growth condition on f , independent of L,

in order that there exist a universal, a priori upper bound for all solutions to the

Cauchy problem (1.1)—that is, in order that there exist a finite function M(x, t)

on Rn × (0,∞) such that u(x, t) ≤ M(x, t), for all solutions to (1.1). This result

may be thought of as a parabolic counterpart to the celebrated Osserman-Keller

estimate for elliptic equations. (See Remark 1 following Example 1.) An estimate of

the above type guarantees the existence of a solution to (1.1) with initial condition

g ≡ ∞, as well as a solution to (1.1) in a ball (instead of Rn) with infinite Dirichlet

data on the boundary.

After this result, we will always assume that f(x, 0) = 0, so that u ≡ 0 is a solu-

tion to (1.1). We show that under a growth condition similar to the above one, an

intimate relationship exists between two seemingly disparate phenomena—namely,

uniqueness for the Cauchy problem (1.1) with initial data g = 0 and the nonex-

istence of unbounded, stationary solutions (or subsolutions) to the corresponding

elliptic problem. We also give a generic sufficient condition guaranteeing uniqueness

for the Cauchy problem.
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For R > 0, define

FR(u) = sup
|x|≤R

f(x, u).

We will always assume that

(F-1) sup
u>0

FR(u) < ∞, for all R > 0.

Theorem 1 and Example 1 below show that the following assumption on FR is a

sharp condition for the existence of such a universal a priori upper bound on all

solutions to (1.1). Let log(n) x denote the n-th iterate of log x so that log(1) x =

log x, log(2) x = log log x, etc.

(F-2)

For each R > 0, there exist an m ≥ 0 and an ε > 0 such that

lim
u→∞

FR(u)

u(
∏m

i=1 log(i) u)2(log(m+1) u)2+ε
= −∞,

where by convention,
∏0

i=1 log(i) = 1.

Remark. FR will satisfy (F-1) and (F-2) if, for instance, f(x, u) = V (x)u−γ(x)up,

for p > 1, or if f is appropriately defined for small u and satisfies f(x, u) =

V (x)u − γ(x)u(
∏m

i=1 log(i) u)2(log(m+1) u)2+ε, for large u, where V (x) is bounded

on compacts and γ is positive and bounded away from 0 on compacts.

Theorem 1. Assume that (F-1) and (F-2) hold. Then there exists a continuous

function M(x, t) on Rn × (0,∞) such that every solution u to the Cauchy problem

(1.1) satisfies u(x, t) ≤ M(x, t), for all x ∈ Rn and all t ≥ 0.

The following example shows that condition (F-2) is sharp.

Example 1. Let L = d2

dx2 and f(x, u) = −u
(
(log u)2 + log u

)
, for u ≥ 1. Then

for each l ∈ R, ul(x) = exp(exp(x + l)) solves (1.1) (as a stationary solution).

Since liml→∞ ul(x) = ∞, there is no universal a priori upper bound for all non-

negative solutions of (1.1) for this choice of f . Alternatively, if we let f(x, u) =

−u
(
(log u)2(log log u)2 + log u log log u

)
, for u ≥ e, then ul(x) = exp(exp(exp(x +

l))) solves (1.1). More generally, letting ul(x) denote the (m + 1)-th iterate of the
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exponent function with argument x + l, then Lul + f(ul) = 0, where the function

f satisfies f(u) < −u(
∏m

i=1 log(i) u)2, for large u

Remark 1. Under the condition

(1.2)
∫ ∞

(
∫ x

0

g(z)dz)−
1
2 < ∞,

the Osserman-Keller bound gives a precise universal, a priori upper bound on every

solution u to Lu + f(u) = 0 in a domain D ⊂ Rn, where −f(s) ≥ g(s), for large

s, and g > 0 is monotone nondecreasing. See [8] and [12] for the case L = ∆, and

see [1] for the case of general L. Condition (F-2) may be thought of as the “poor

man’s” version of the Osserman-Keller integral condition, which leads us to state

the following conjecture:

Conjecture. Theorem 1 holds under the Osserman-Keller integral condition (1.2).

Remark 2. Consider the ordinary differential equation

(1.3) v′ = f(v), v(0) = c ≥ 0,

where f is a locally Lipschitz function satisfying f(0) = 0 and limu→∞ f(u) = −∞.

The unique solution vc to (1.3) satisfies vc ≥ 0 and is increasing as a function

of its initial condition c. It is well-known and straight forward to show that

limc→∞ vc(t) = ∞, if
∫∞ 1

−f(u)du = ∞, while v∞(t) ≡ limc→∞ uc(t) < ∞, for

t > 0, if
∫∞ 1

−f(u)du < ∞. Thus, if the above integral is finite, v∞ serves as a

universal a priori upper bound for all solutions to (1.3), while if the above integral

is infinite, there is no such finite function. In particular then, for the ordinary dif-

ferential equation (1.3), a universal a priori upper bound on solutions exists when

f(u) = −u(
∏m

i=1 log(i) u)(log(m+1) u)1+ε, but not when f(u) = −u(
∏m

i=1 log(i) u).

Comparing this with Theorem 1 and Example 1, one sees that the introduction of

spatial diffusion and drift slightly increases the minimal super-linearity threshold

for the existence of a universal a priori upper bound.
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Define now

F (u) = sup
x∈Rn

f(x, u),

and consider the spatially uniform versions of conditions (F-1) and (F-2):

(F -1′) sup
u>0

F (u) < ∞;

(F -2′)

lim
u→∞

F (u)

u(
∏m

i=1 log(i) u)2(log(m+1) u)2+ε
= −∞, for some m ≥ 0 and some ε > 0.

Consider also the following condition:

(F-3) f(x, 0) = 0 and F (u) is Lipschitz at u = 0.

Remark. F will satisfy (F-1′), (F-2′) and (F-3) if, for instance, f is as in the

remark following (F-2) with V bounded and γ positive and bounded away from 0.

The above conditions turn out to be critical for certain other important phenomena.

Consider the associated elliptic equation corresponding to stationary solutions of

(1.1):

(1.4)
LW + f(x,W ) = 0, x ∈ Rn;

W ≥ 0.

A function w will be called a stationary subsolution if

(1.5)
Lw + f(x,w) ≥ 0, x ∈ Rn;

w ≥ 0.

We will sometimes need one of the following two technical conditions on f :

(F-4a)
G(u) ≡ sup

x∈Rn

sup
v≥u

(f(x, v)− f(x, v − u)) is locally Lipschitz, is negative for large u

and satisfies
∫ ∞ 1

−G(u)
du < ∞.

(F-4b) H(u) ≡ sup
x∈Rn

sup
v≥0

(f(x, u + v)− f(x, v)) satisfies (F-1′) and (F-2′).
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Remark. Note that if f(x, ·) is concave for each x ∈ Rn and F satisfies (F-1′),

(F-2′) and (F-3), then both (F-4a) and (F-4b) hold. Indeed, by concavity, the

supremum over v is attained in (F-4a) at v = u and in (F-4b) at v = 0, giving

G(u) = H(u) = F (u)−F (0) = F (u). Furthermore, the integral condition in (F-4a)

holds for any function satisfying (F-2′).

Theorem 2. Assume that (F-1′), (F-2′), (F-3) and (F-4a) hold.

i. If the trivial solution u = 0 is the only solution to the Cauchy problem (1.1) with

initial data g = 0, then all stationary subsolutions w to (1.5) are bounded. More

specifically,

w(x) ≤ c0, for all x ∈ Rn,

where c0 is the largest root of the equation G(u) = 0, and G is as in (F-4a).

ii. Assume that G(u) < 0, for u > 0, where G is as in part (i). Then the trivial

solution u = 0 is the only solution to the Cauchy problem (1.1) with initial data

g = 0 if and only if there are no nontrivial solutions to the stationary equation

(1.4) (or equivalently, if and only if there are no nontrivial stationary subsolutions

to (1.5)).

In both parts of the theorem, if f(x, ·) is concave for each x, then (F-4a) is super-

fluous and G = F .

Remark. Note that if under the conditions in Theorem 2-i, one can exhibit an

unbounded stationary subsolution to (1.5), then Theorem 2-i guarantees the ex-

istence of a nontrivial solution to the Cauchy problem (1.1) with 0 initial data.

Examples 2 and 3 below are applications of this, as is Theorem 5-i at the end of

this section. Similarly, in the case that G(u) < 0, for u > 0, if one can exhibit a

nontrivial stationary subsolution to (1.5), then Theorem 2-ii guarantees the exis-

tence of a nontrivial solution to the Cauchy problem (1.1) with 0 initial data. An

application of this is given in the final sentence of the second paragraph after the

remark following the open problem that appears later in this section. These exam-
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ples illustrate the utility of Theorem 2—it is much easier to construct appropriate

stationary subsolutions to (1.5) than to construct a nontrivial solution to (1.1) with

initial data g = 0. By Theorem 2, with appropriate conditions on f , the existence

of the latter is guaranteed by the existence of the former.

The next result gives conditions for uniqueness of the Cauchy problem (1.1) with

initial data g = 0 and also for general initial data. Consider the following growth

assumption on the coefficients of L:

(L-1)

n∑

i,j=1

aij(x)νiνj ≤ C|ν|2(1 + |x|2)

|b(x)| ≤ C(1 + |x|),

for some C > 0.

Theorem 3. If (F-1′), (F-2′) (F-3) and (L-1) hold, then the trivial solution u ≡ 0

is the only solution to the Cauchy problem (1.1) with initial data g = 0. If in

addition, (F-4b) holds, then there is a unique solution to the Cauchy problem (1.1)

for each g ∈ C(Rn).

Remark 1. We emphasize that in the context of this paper, uniqueness for the

Cauchy problem (1.1) means uniqueness with regard to all classical, nonnegative

solutions. If one works only with, say, mild solutions, then the situation can be

quite different. For example, there is a unique mild solution for ut = ∆u− γ(x)up,

for p > 1 and bounded γ ≥ 0 [13]; yet if γ decays sufficiently rapidly, uniqueness

fails in the sense of all classical solutions. For details, see the next to the last

paragraph before Theorem 5. This example also shows that one can not replace

(F-2′) by (F-2) in Theorem 3.

Remark 2. The first uniqueness result of the type considered in Theorem 3 goes

back to [4], where the case L = ∆ and f(u) = −up was studied. In the case of

general L and nonlinearity of the form f(u) = V (x)u− γ(x)up, p > 1, see [6].

As an immediate corollary of Theorems 2 and 3, we obtain the following theorem.
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Theorem 4. Assume that (F-1′), (F-2′), (F-3), (F-4a) and (L-1) hold.

i. All stationary subsolutions to (1.5) are bounded.

ii. Assume in addition that the function G from condition (F-4a) satisfies G(u) <

0, for u > 0 (which will occur in particular if f(x, ·) is concave for each x and

F (u) < 0, for u > 0). Then there are no nontrivial stationary subsolutions to

(1.5).

Remark. Example 1 above shows that condition (F-2′) is sharp for Theorem 4.

We elaborate now on Theorems 3 and 4. We begin with two examples which

demonstrate that condition (L-1) is sharp for both of these theorems, and demon-

strate the utility of Theorem 2 as well.

Example 2. When L = (1 + x2)1+ε d2

dx2 and f(x, u) = −2u1+ε, for some ε > 0,

then (1.4) possesses the unbounded solution u(x) = 1 + x2. By Theorem 2, it then

follows that there exists a nontrivial solution to (1.1) with initial data g = 0.

Example 3. When L = d2

dx2 +|x|1+2ε sgn(x) d
dx and f(x, u) = −u1+ε, for some ε > 0,

then (1.5) possesses the unbounded subsolution u(x) = λx2, for λ > 0 sufficiently

small. By Theorem 2, it then follows that there exists a nontrivial solution to (1.1)

with initial data g = 0.

Theorems 2-4 and Examples 2-3 suggest that under conditions (F-1′), (F-2′),

(F-3) and the technical condition (F-4a), which is always satisfied if f(x, ·) is con-

cave, there may well be an equivalence between uniqueness for the Cauchy problem

(1.1) with initial data g = 0 and nonexistence of unbounded solutions to the sta-

tionary equation (1.4). (Note that this equivalence (without the unboundedness

requirement) has been established in Theorem 2-ii under the additional condition

G(u) < 0, for u > 0.) We state this formally:

Open Problem. Under conditions (F-1′), (F-2′) and (F-3), and perhaps some

other technical conditions, is there an equivalence between uniqueness of the Cauchy
8



problem for (1.1) with initial data g = 0 and nonexistence of unbounded solutions

to the stationary equation (1.4)?

Remark. The growth condition (F-2′) seems to be necessary in order for the equiv-

alence alluded to above to have a chance of occurring. Indeed, on the one hand,

considering that uniqueness holds for positive solutions to the linear Cauchy prob-

lem ut = ∆u−u and, by Theorem 3, also for the Cauchy problem ut = ∆u + f(u),

when f approaches −∞ sufficiently fast so as to satisfy (F-2′), it seems extremely

likely that uniqueness also holds for ut = ∆u + f(u) when f approaches −∞ at a

super-linear rate that does not satisfy (F-2′). But on the other hand, Example 1

shows that there are unbounded stationary solutions to u′′ + f(u) = 0 for certain

super-linear f not satisfying (F-2′).

Regarding Theorem 4-ii, it follows in particular that if f(x, ·) is concave for each

x, F (u) < 0, for u > 0, F satisfies conditions (F-2′) and (F-3), and the operator L

satisfies condition (L-1), then there are no nontrivial solutions to (1.4). In general,

the question of existence/nonexistence for (1.4) is delicate and can hinge greatly on

the particular form of L and f . One generic result in the literature concerns the

case that f(·, u) and the coefficients of L are periodic in x. Assume that for some

M0 > 0, f(x, u) ≤ 0, for all x ∈ Rn and all u ≥ M0. Let λ0 denote the principal

eigenvalue for the operator L + ∂f
∂u (x, 0) with periodic boundary conditions. If

λ0 > 0, then (1.4) possesses a nontrivial periodic solution, while if λ0 ≤ 0 and
f(x,u)

u is decreasing in u for each x ∈ Rn, then (1.4) does not possess a nontrivial

bounded solution [3].

Consider now the well-studied case L = α(x)∆ and f(x, u) = −up, with p > 1.

If n ≥ 2, then (1.4) possesses a nontrivial solution if lim|x|→∞
α(x)

(1+|x|)2+ε > 0, for

some ε > 0, and does not possess a nontrivial solution if lim|x|→∞
α(x)

(1+|x|)2 < ∞. For

n = 1, the same result holds with the exponent 2 replaced by 1+ p. For n ≥ 3, this

result goes back to [9] and [11], and it is shown in [9] that in the case of existence

there are in fact an infinite number of bounded solutions. The n-dimensional analog
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of Example 2 above shows that there is also an unbounded solution. For n = 1, 2,

the above result were proven in [5] and later apppeared with a different proof in [6]

(which also re-derives the result for n ≥ 3). Note that by Theorem 2, nonexistence

of nontrivial solutions to (1.4) continues to hold for α in the above nonexistence

range when the nonlinearity −up is replaced by f(x, u) = −u(log(u + 1))2+ε or

f(x, u) = −u(log(u + 1))2(log log(u + e))2+ε, etc., for some ε > 0. Also, note that

when α is in the above existence range, then by Theorem 2, there is a nontrivial

solution to the Cauchy problem ut = α∆u− up with initial condition g = 0.

The combination of conditions (L-1) and (F-2′) in Theorem 3 raises an interesting

question. We recall that for the linear equation ut = Lu− u, uniqueness is known

to hold when b satisfies the condition in (L-1) and when a satisfies a two-sided

bound of the form c(1 + |x|γ)|ν|2 ≤ ∑n
i,j=1 aij(x)νiνj ≤ C(1 + |x|γ)|ν|2, for some

γ ∈ [0, 2]. It is not known whether uniqueness holds for the linear problem under

condition (L-1)! (For more about uniqueness in the linear case, see [7] and references

therein.) It would be interesting to understand the interplay between very weak

super-linearities (that is, those for which (F-2′) does not hold) and the condition

required on the coefficients of the elliptic operator L in order to insure uniqueness.

We wish to emphasize an important point with regard to the connection between

non-existence of unbounded solutions to (1.4) and uniqueness for the Cauchy prob-

lem (1.1) with initial condition g = 0. If one takes a scalar function α(x) > 0

and replaces L and f by αL and αf respectively, then of course (1.4) remains un-

changed. However, making the same change in the parabolic equation (1.1) can

affect the question of uniqueness. Indeed, in [6], it was shown that if L = ∆ and

f(x, u) = 1
αup with p > 1, then there exists a nontrivial solution to (1.1) with

initial data g = 0 if α(x) ≥ C exp(|x|2+ε), for some ε > 0 and C > 0, and there

doesn’t exist such a solution if α(x) ≤ C exp(|x|2), for some C > 0. (This is

the example alluded to in Remark 1 after Theorem 3.) On the other hand, for

L = α∆ and f(x, u) = up, it follows from Theorem 3 and from the final sentence
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in the second paragraph after the remark following the open question that the ex-

istence of a nontrivial solution to (1.1) with initial data g = 0 depends on whether

α(x) ≥ C(1 + |x|)l+ε or α(x) ≤ C(1 + |x|)l, where l = 2, if n ≥ 2, and l = 1 + p, if

n = 1. What allows for the connection between uniqueness for the Cauchy problem

(1.1) with initial condition g = 0 and nonexistence of solutions to the stationary

equation (1.4) is the assumption (F-2′) on F (u) = supx∈Rn f(x, u). In the above

example, this assumption requires one to consider L = α∆ and f(x, u) = up, rather

than L = ∆ and f(x, u) = 1
αup.

We conclude this section with another application of Theorem 2, this time when

the domain is the punctured space. Consider the following semilinear equation in

the punctured space Rd − {0}:

(1.6)

ut = ∆u− up in (Rd − {0})× (0,∞);

u(x, 0) = 0 in Rd − {0};

u ≥ 0 in (Rd − {0})× [0,∞).

Theorem 5. Let p > 1 and d ≥ 2.

i. If d < 2p
p−1 , then there exists a nontrivial solution to (1.6).

ii. If d ≥ 2p
p−1 , then there is no nontrivial solution to (1.6).

Remark. Theorem 5 actually follows from a much more general result in [2], with

a much more sophisticated proof.

The proof of Theorem 5-i is a simple consequence of Theorem 2.

Proof of Theorem 5-i. Since the problem is radially symmetric, it suffices to

show that uniqueness fails for the radially symmetric equation

(1.7)

ut = urr +
d− 1

r
ur − up, r ∈ (0,∞), t > 0;

u(r, 0) = 0, r ∈ (0,∞);

u ≥ 0, r ∈ (0,∞), t ≥ 0.

By assumption, we have d < 2p
p−1 . Thus, the function W (r) = Cr−

2
p−1 , where

Cp−1 = 2
p−1 ( 2p

p−1 − d), is a positive, stationary solution of the parabolic equation
11



ut = urr + d−1
r ur − up in (0,∞). Now Theorem 2 was stated for equations with

domain Rd, d ≥ 1, whereas the domain here is (0,∞). One can check that the proof

also holds in a half space, or alternatively, one can make the change of variables

z = 1
x − x, which converts the problem to all of R. Thus, by Theorem 2-ii, the

fact that there exists a nontrivial, positive, stationary solution guarantees that

uniqueness does not hold for (1.7) ¤

For completeness, in section five we give a direct proof of Theorem 5-(ii), using

the technique of super solutions. The proof is rather delicate. Theorems 1 and 3

are also proved by constructing appropriate super solutions, the proof of Theorem

3 being the much more delicate of the two. The proofs of Theorems 1 and 3 are

given in sections two and three respectively. The proof of Theorem 2 uses a gamut

of techniques and is given in section four.

2. Proof of Theorem 1. We begin with a standard maximum principle.

Proposition 1. Let D ⊂ Rn be a bounded domain and let 0 ≤ u1, u2 ∈ C2,1(D ×
(0,∞)) ∩ C(D̄ × [0,∞)) satisfy

Lu1 + f(x, u1)− ∂u1

∂t
≤ Lu2 + f(x, u2)− ∂u2

∂t
, for (x, t) ∈ D × (0,∞),

u1(x, t) ≥ u2(x, t), for (x, t) ∈ ∂D × (0,∞)

and

u1(x, 0) ≥ u2(x, 0), for x ∈ D.

Then u1 ≥ u2 in D × (0,∞).

Proof. Let W = u1−u2 and define V (x, t) = f(x,u1(x,t))−f(x,u2(x,t))
W (x,t) , if W (x, t) 6= 0,

and V (x, t) = 0 otherwise. Since f is locally Lipschitz in u, V is bounded in

D× [0, T ], for any T > 0. We have LW +V W − ∂W
∂t ≤ 0 in D× (0,∞), W (x, 0) ≥ 0

in D, and W (x, t) ≥ 0 on ∂D × (0,∞). Thus, by the standard linear parabolic

maximum principle, u1 ≥ u2. ¤

We record the following result, mentioned in Remark 2 after Example 1.
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Lemma 1. Let G(u) be locally Lipschitz and satisfy limu→∞G(u) = −∞. For

c ≥ 0, let vc(t) denote the solution to

(2.1)
v′ = G(v), t > 0;

v(0) = c.

i. If
∫∞ 1

−G(u)du < ∞, then v∞(t) ≡ limc→∞ vc(t) < ∞, for all t > 0, and v∞

solves (2.1) with c = ∞.

ii. If
∫∞ 1

−G(u)du = ∞, then limc→∞ vc(t) = ∞, for all t ≥ 0.

Proof. We omit the straight forward proof of this standard result. ¤

We now give the proof of Theorem 1. It suffices to show that for some T0 > 0

and each R > 0, there exists a continuous function MR(x, t) on {|x| < R} × (0, T0]

such that every solution u to (1.1) satisfies u(x, t) ≤ MR(x, t) < ∞, for |x| < R and

t ∈ (0, T0]. The reason it is enough to consider only t ∈ (0, T0] is that if u(x, t) is a

solution to (1.1), then u(x, T0 + t) is a solution to (1.1) with the initial condition

g(·) replaced by u(·, T0).

We will assume that FR satisfies (F-2) with m = 0. At the end of the proof, we

describe the simple change needed in the case that m ≥ 1. In particular then, there

exist an ε > 0 and a u0 > 1 such that

(2.2) FR(u) ≤ −u(log u)2+ε ≡ Q(u), for u ≥ u0.

Since
∫∞ 1

−Q(u)du < ∞, it follows from Lemma 1 that there exists a T0 > 0 and a

function v∞(t) satisfying

(2.3)

v′∞ = Q(v∞), t ∈ (0, T0];

v∞(0) = ∞;

v∞(t) > 1, t ∈ (0, T0].

Define

φR(x) = exp((R2 − |x|2)−l),
13



with l satisfying lε > 2. Finally, choose K so that exp(K) > u0 and define

MR(x, t) = exp((K(t + 1))φR(x) + v∞(t).

Since MR(x, t) > u0, it follows from (2.2) that f(x,MR) ≤ FR(MR) ≤ Q(MR).

Since Q(u) is concave for u ≥ 1 and Q(1) = 0, it follows from the mean value

theorem that Q(b + a) − Q(b) < Q(a) for 1 ≤ a ≤ b. Thus, since exp((K(t +

1))φR(x), v∞(t) > 1, we have Q(MR(x, t)) < Q(exp(K(t + 1))φR(x)) + Q(v∞(t)).

Using these facts along with (2.3), we obtain

(2.4)
LMR + f(x,MR)− (MR)t ≤ exp(K(t + 1))LφR + Q(exp(K(t + 1))φR) + Q(v∞)

−K exp(K(t + 1))φR − v′∞ =

exp(K(t + 1))LφR + Q(exp(K(t + 1))φR)−K exp(K(t + 1))φR <

exp(K(t + 1))
(
LφR − (R2 − |x|2)−(2+ε)lφR −KφR

)
, for |x| < R and t ∈ (0, T0].

We have

(2.5)

LφR(x)
φR(x)

=
(
4l2(R2 − |x|2)−2l−2 + 4l(l + 1)(R2 − |x|2)−l−2

) n∑

i,j=1

ai,j(x)xixj

+ 2nl(R2 − |x|2)−l−1 + 2l(R2 − |x|2)−l−1
n∑

i=1

xibi(x).

The right hand side of (2.5) is bounded for |x| in any ball of radius less than R.

Furthermore, on the right hand side of (2.5), the dominating term as |x| → R is

4l2(R2−|x|2)−2l−2. Thus, since lε > 2, it follows that the right hand side of (2.4) is

negative if K is chosen sufficiently large. Using this with Proposition 1 and the fact

that MR(x, 0) = ∞ and MR(x, t) = ∞, for |x| = R, we conclude that any solution

u to (1.1) satisfies u(x, t) ≤ MR(x, t), for |x| < R and t ∈ (0, T0]. This completes

the proof of the theorem under the assumption that m = 0 in (F-2).

When m > 0 one simply replaces the test function φR(x) as above by φR(x) =

exp(m+1)((R2 − |x|2)−l), where exp(j) denotes the j-th iterate of the exponential

function. Everything goes through in a similar fashion.
14
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3. Proof of Theorem 3. By assumption, F (u) = supx∈Rn f(x, u) satisfies (F-2′).

As we did in the proof of Theorem 1, we will assume that m = 0 in (F-2′). At the

appropriate point in the proof, we describe the simple change needed in the case

that m ≥ 1.

We first consider the case with initial condition g = 0. By conditions (F-2′) and

(F-3), it follows that there exist C0, ε > 0 and M0 > 1 such that

(3.1)
f(x, u) ≤ F (u) ≤ C0u, for u ≤ M0;

f(x, u) ≤ F (u) ≤ −u(log u)2+ε, for u ≥ M0.

Fix R > 1 and T ∈ (0,∞). Define

φR(x) = exp((
1 + |x|2

R2 − |x|2 )l),

with l satisfying lε > 2, and define

ψR(x, t) = (φR(x)− 1) exp(K(t + 1)),

with K > 0. A direct calculation reveals that

(3.2) LψR = exp(K(t + 1))φR(x) [W1 + W2 + W3 + W4 + W5] ,

where

W1 = 4l2(1 + |x|2)2l−2(R2 − |x|2)−2l−2(R2 + 1)2
n∑

i,j=1

ai,j(x)xixj ;

W2 = 4l(l − 1)(1 + |x|2)l−2(R2 − |x|2)−l−2(R2 + 1)2
n∑

i,j=1

ai,j(x)xixj ;

W3 = 4l(1 + |x|2)l−1(R2 − |x|2)−l−2(R2 + 1)
n∑

i,j=1

ai,j(x)xixj ;

W4 = 2nl(1 + |x|2)l−1(R2 − |x|2)−l−1(R2 + 1);

W5 = 2l(1 + |x|2)l−1(R2 − |x|2)−l−1(R2 + 1)
n∑

i=1

xibi.
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We also have

(3.3)
∂ψR

∂t
= KψR(x).

We claim that for K sufficiently large and independent of R (but not independent

of T in (3.4-b))

(3.4-a)
exp(K(t + 1))φR(x)Wi − 1

5
(K − C0)ψR(x, t) ≤ 0,

if ψR(x, t) ≤ M0, for |x| < R and t ∈ (0, T ];

(3.4-b)
exp(K(t + 1))φR(x)Wi − 1

5
KψR(x, t)− 1

5
ψR(x, t)(log ψR(x, t))2+ε ≤ 0,

if ψR(x, t) ≥ M0, for |x| < R and t ∈ (0, T ],

for i = 1, 2, 3, 4, 5

From (3.1)-(3.4), it follows that for sufficiently large K, independent of R,

(3.5) LψR − ∂ψR

∂t
+ f(x, ψR) ≤ 0, for |x| < R and t ∈ (0, T ].

Since ψR(x, 0) ≥ 0 and lim|x|→R ψR(x, t) = ∞, it follows from (3.5) and the max-

imum principle in Proposition 1 that any solution u to (1.1) with initial condition

g = 0 must satisfy the bound

(3.6) u(x, t) ≤ (exp((
1 + |x|2

R2 − |x|2 )l)− 1) exp(K(t + 1)), for |x| < R and t ∈ (0, T ].

Since K doesn’t depend on R, letting R →∞ in (3.6) gives u(x, t) ≡ 0 for x ∈ Rn

and t ∈ (0, T ]. Now letting T → ∞ gives u(x, t) ≡ 0 in Rn × (0,∞), completing

the proof.

When m > 0, one replaces the test function φR(x) as above by φR(x) =

exp(m+1)(( 1+|x|2
R2−|x|2 )l), where exp(j) denotes the j-th iterate of the exponential func-

tion, and then, in the definition of ψR(x, t), one replaces φR(x) − 1 by φR(x) −
exp(m+1)(0). The resulting calculations are similar to the present case.

It thus remains to prove (3.4) for K independent of R. We will prove (3.4) for

W1. The proofs for Wi, i ≥ 2, are similar. Consider first (3.4-a). We will always
16



assume that K ≥ C0. Recall the definitions of φR and ψR. If ψR(x, t) ≤ M0, then

a fortiori φR(x) ≤ M0 + 1 and ( 1+|x|2
R2−|x|2 )l ≤ log(M0 + 1) ≡ Ll

0. Also, we have

ψR(x, t) ≥ φR(x) − 1 ≥ ( 1+|x|2
R2−|x|2 )l. In light of these observations, it follows that

(3.4-a) will hold if

(M0 + 1)W1 − 1
5
(K − C0)(

1 + |x|2
R2 − |x|2 )l ≤ 0, whenever

1 + |x|2
R2 − |x|2 ≤ L0.

Or equivalently, if

(3.7) K ≥ C0 + 5(
R2 − |x|2
1 + |x|2 )l(M0 + 1)W1, whenever

1 + |x|2
R2 − |x|2 ≤ L0.

Thus, we must show that the right hand side of (3.7) is bounded in R and x under

the constraint 1+|x|2
R2−|x|2 ≤ L0. Substituting for W1 in the right hand side of (3.7)

and using the assumption that
∑n

i,j=1 ai,j(x)xixj ≤ C(1 + |x|2)|x|2, one finds that

it is enough to show that ( 1+|x|2
R2−|x|2 )l−1 (R2+1)2|x|2

(R2−|x|2)3 is bounded in R and x under

the above constraint. Since ( 1+|x|2
R2−|x|2 )l−1 is trivially bounded under the constraint,

it remains only to consider (R2+1)2|x|2
(R2−|x|2)3 . The constraint above is equivalent to the

constraint |x|2 ≤ L0R2−1
L0+1 . From this it is clear that under the constraint, (R2+1)2|x|2

(R2−|x|2)3

is bounded in R and x.

We now turn to (3.4-b). The constraint ψR(x, t) ≥ M0 along with the condition

t ≤ T guarantee the existence of a c0 ∈ (0, 1) such that φR(x) − 1 ≥ c0φR(x).

Note that c0 depends on T , but not on R. Thus, under the constraint, we have

ψ(x, t) = (φR(x)−1) exp(K(t+1)) ≥ c0φR(x) exp(K(t+1)). Therefore (3.4-b) will

hold if we show that K can be picked independent of R and such that W1− 1
5c0K−

1
5c0 (log φR + log c0 + K(t + 1))2+ε ≤ 0 holds under the constraint. We will always

assume that K ≥ − log c0. Thus it suffices to show that W1 − 1
5c0(log φR)2+ε is

bounded from above under the constraint, independent of R. Substituting for φR

and W1 and using the assumption
∑n

i,j=1 ai,j(x)xixj ≤ C(1+|x|2)|x|2, it is sufficient

to show that 4l2C(1 + |x|2)2l−1(R2 − |x|2)−2l−2(R2 + 1)2|x|2 − 1
5c0

(
1+|x|2

R2−|x|2
)(2+ε)l

17



is bounded from above under the constraint, or equivalently, that

(3.8)

(
1 + |x|2

R2 − |x|2
)(2+ε)l

(
4l2C

(R2 + 1)2|x|2
(1 + |x|2)3

(
R2 − |x|2
1 + |x|2

)lε−2

− c0

5

)

is bounded from above under the constraint.

We may assume that 4l2C (R2+1)2|x|2
(1+|x|2)3

(
R2−|x|2
1+|x|2

)lε−2

≥ c0
5 , since otherwise it is clear

that (3.8) holds. From this inequality and the assumption that lε > 2, it follows

that

(3.9)
1 + |x|2

R2 − |x|2 ≤
(

20l2C

c0

(R2 + 1)2|x|2
(1 + |x|2)3

) 1
lε−2

.

Furthermore, the constraint ψR ≥ M0 guarantees that

(3.10)
1 + |x|2

R2 − |x|2 ≥ (log(1 + M0 exp(−K(T + 1))))
1
l ≡ γ0 > 0,

which can be written in the form

(3.11) |x|2 ≥ γ0R
2 − 1

γ0 + 1
.

If |x| satisfies (3.11), then the right hand side of (3.9) is bounded. Therefore, in

(3.8), the terms ( 1+|x|2
R2−|x|2 )(2+ε)l and (R2+1)2|x|2

(1+|x|2)3 are bounded. And by (3.10), the

term (R2−|x|2
1+|x|2 )lε−2 is also bounded. This completes the proof of (3.8).

We now turn to the case that the initial condition g is not equal to 0. We assume

now in addition that condition (F-4b) is in effect. Fix R > 1 and T ∈ (0,∞).

Let ψR(x, t) be as in the proof above for the case g = 0, but corresponding to

the function H appearing in condition (F-4b), rather than corresponding to the

function F . (That is, the parameter K appearing in the definition of ψR is chosen

sufficiently large so that (3.5) holds with f(x, ψR) replaced by H(ψR).)

In [6], for the case f(x, u) = V (x)u − γ(x)up, we showed that there exists a

minimal solution ug to (1.1); that is, a solution ug with the property that ug(x, t) ≤
u(x, t), for any solution u to (1.1) with initial data g. In fact, the proofs there go

through for general locally Lipschitz continuous f as long as a universal a priori
18



upper bound exists. Thus, in light of Theorem 1, there exists a minimal solution ug.

(In fact, ug is obtained by taking the solution of (4.1) below and letting m →∞.)

Now define ψ̂R(x, t) = ψR(x, t) + ug. Then

(3.12)
Lψ̂R + f(x, ψ̂R)− ∂ψ̂R

∂t
= (LψR + H(ψR)− ∂ψR

∂t
)

+ (Lug + f(x, ug)− ∂ug

∂t
) + (f(x, ψR + ug)− f(x, ug)−H(ψR)).

The first of the three terms on the right hand side of (3.12) is non-positive by (3.5),

the second term is non-positive because ug is a solution to (1.1), and the third

term is non-positive by the definition of H in (F-4b). The argument used above in

the paragraph in which (3.5) appears then shows that any solution u to (1.1) must

satisfy u(x, t) ≤ ug(x, t) + ψR(x, t), for |x| < R and t ∈ (0, T ]. Letting R →∞ and

then T →∞ as before shows that u = ug. ¤

4. Proof of Theorem 2. i. We need to utilize certain constructions that were

carried out in [6, section 2] for the case that f(x, u) = V (x)− γ(x)up. These con-

structions are based on results in [10], and hold with the same proofs for general

locally Lipschitz continuous f as long as a universal a priori upper bound on so-

lutions exists. Thus, in light of Theorem 1, they hold for f satisfying (F-1) and

(F-2).

Let Bm ⊂ Rn denote the open ball of radius m centered at the origin. There

exists a solution u ∈ C2,1(Bm × (0,∞))∩C(Bm × [0,∞))∩C(B̄m × (0,∞)) to the

equation

(4.1)

ut = Lu + f(x, u), (x, t) ∈ Bm × (0,∞);

u(x, 0) = g(x), x ∈ Bm;

u(x, t) = 0, (x, t) ∈ ∂Bm × (0,∞),

for any 0 ≤ g ∈ C(B̄m). (See the beginning of the proof of Theorem 1 in [6], where

the above construction is first made in the case that g is compactly supported in

Bm, and then extended to the case that g ∈ C(B̄m).)
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Now let W be an arbitrary subsolution to (1.5). For m > 0 and a positive integer

k, let ψm,k ∈ C∞(Rn) satisfy

ψm,k(x) = 0, |x| ≤ m and |x| > 2m + 1

ψm,k(x) = k, m + 1 ≤ |x| ≤ 2m

0 ≤ ψm,k ≤ k.

There exists a nonnegative solution Um,k ∈ C2,1(B2m × (0,∞))∩C(B̄2m × (0,∞))

to the equation

(4.2)

ut = Lu + f(x, u) + ψm,k, (x, t) ∈ B2m × (0,∞);

u(x, 0) = gm, x ∈ B2m;

u(x, t) = 0, (x, t) ∈ ∂B2m × (0,∞),

where gm ≥ 0 is continuous and satisfies

gm(x) =
{

0, for x ∈ Bm

m2W, for x ∈ B2m −Bm+1

.

(This construction is similar to the one in [6, equation (2.5)].) Also,

(4.3)

U(x, t) ≡ lim
m→∞

lim
k→∞

Um,k(x, t) is a solution to (1.1) with initial condition g = 0.

(See the two full paragraphs after equation (2.5) in [6], ignoring equation (2.6) and

the concept of a maximal solution that appears there.)

Consider (4.1) with m replaced by 2m, with the nonlinearity f replaced by G as

in condition (F-4a), and with g = W . Denote the solution to this equation by um.

We will show below that

(4.4) W − um ≤ Um,k, in B 3m
2
× [0,∞), for k sufficiently large, depending on m.

Let v∞ denote the solution to v′ = G(v) with v∞(0) = ∞, as in Lemma 1-i

(note that by condition (F-4a), G satisfies the requirement in Lemma 1-i). Since
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f(x, u) ≤ G(u), we have f(x, v∞) − v′∞ ≤ G(v∞) − v′∞ = 0. Also, since G is

Lipschitz, it follows from the uniqueness theorem for ordinary differential equations

that v∞(t) > 0, for all t ≥ 0. Using these facts along with the fact that um = 0

on ∂B2m and the fact that v∞(0) = ∞, it follows from the maximum principle in

Proposition 1 that

(4.5) um(x, t) ≤ v∞(t) in B2m × (0,∞).

Letting k →∞ and then letting m →∞, it follows from (4.3) that the right hand

side of (4.4) converges to a solution U of (1.1) with initial data g = 0. By the

uniqueness assumption, U = 0. Using this with (4.5) then gives

(4.6) W (x) ≤ v∞(t) in Rn × (0,∞).

We now show that

(4.7) lim
t→∞

v∞(t) = c0, where c0 is the largest root of G(u) = 0.

To see this, let vc be as in Lemma 1. Integrating, changing variables and letting

c →∞, we obtain

(4.8)
∫ ∞

v∞(t)

1
−G(u)

du = t.

Letting t → ∞ in (4.8) and using the fact that G is locally Lipschitz proves (4.7).

The theorem now follows from (4.6) and (4.7).

It remains to prove (4.4). Let D2m = {(x, t) ∈ B2m× (0,∞) : um(x, t) ≤ W (x)}.
Since Um,k ≥ 0, it suffices to prove (4.4) in

(
B 3m

2
× [0,∞)

)
∩D2m. Let V = W−um.

We have

(4.9)

LV + f(x, V )− Vt = (LW + f(x, W ))− (Lum + G(um)− (um)t)+

f(x,W − um)− f(x,W ) + G(um) ≥

f(x,W − um)− f(x,W ) + G(um) ≥ 0 in (B2m × (0,∞)) ∩D2m,
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where the first inequality follows from the definitions of W and um, and the second

inequality follows from the definition of G. On the other hand, we have

(4.10) LUm,k + f(x,Um,k)− (Um,k)t = −ψm,k ≤ 0 in B2m × (0,∞).

We now show that for sufficiently large k, depending on m,

(4.11) V (x, t) ≤ Um,k(x, t), on
(
∂B 3m

2
× [0,∞)

)
∩D2m.

Define Q(x) =
(
l2 − (m + 1 + l − |x|)2) W (x), where l = 1

2 (m−1). Note that Q > 0

in the annulus Am+1,2m ≡ {m+1 < |x| < 2m} and vanishes on ∂Am+1,2m. Clearly

LQ+f(x, Q) is bounded in Am+1,2m× [0,∞). Thus for k sufficiently large, we have

LQ + f(x,Q) ≥ −ψm,k in Am+1,2m × [0, T ]. Since Q(x) ≤ l2W (x) < m2W (x) =

gm(x) = Um,k(x, 0) on Am+1,2m, and since Q vanishes on ∂Am+1,2m, it follows by

the maximum principle in Proposition 1 that Um,k ≥ Q in Am+1,2m × [0,∞), for

k sufficiently large. Substituting |x| = 3m
2 in Q, we conclude that for m ≥ 4 and

sufficiently large k, Um,k(x, t) ≥ Q(x) = (l2 − 1
4 )W (x) > W (x) on ∂B 3m

2
× [0,∞).

This proves (4.11) since V ≤ W on D2m. In light of (4.9)-(4.11), the fact that

0 = V ≤ Um,k on ∂D2m and the fact that V (x, 0) = 0, (4.4) now follows from the

maximum principle in Proposition 1.

ii. Since the largest root c0 of the equation G(u) = 0 is c0 = 0, one direction follows

from part (i). The proof of the other direction is essentially the same as the proof

of [6, Theorem 4-ii].

¤

5. Proof of Theorem 5-ii. For technical reasons, it will be necessary to treat the

cases d > 2p
p−1 and d = 2p

p−1 separately.

We first consider the case d > 2p
p−1 . For ε and R satisfying 0 < ε < 1 and R > 1,

and some l ∈ (0, 1], define

(5.1) φR,ε(x) = ((|x| − ε)(R− |x|))− 2
p−1 (1 + |x|) 2

p−1 (1 +
εl

|x|l R
2

p−1 ).
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Also, for R and ε as above, and some γ > 0, define

(5.2) ψR,ε(x, t) = φR,ε(x) exp(γ(t + 1)).

Note that ψR,ε(x, 0) > 0, for |x| ∈ (ε, R), and ψR,ε(x, t) = ∞, for |x| = ε or |x| = R.

We will show that for all sufficiently large R and all sufficiently small ε, and for γ

sufficiently large and l sufficiently small, independent of those R and ε, one has

(5.3) ∆ψR,ε − ψp
R,ε − (ψR,ε)t ≤ 0, for ε < |x| < R and t > 0.

It then follows from the maximum principle in Proposition 1 that every solution

u(x, t) to (1.6) satisfies

(5.4) u(x, t) ≤ ψR,ε(x, t), for ε < |x| < R and t ∈ [0,∞).

Substituting (5.1) and (5.2) in (5.4), letting ε → 0, and then letting R → ∞, one

concludes that u(x, t) ≡ 0. Thus, it remains to show (5.3).

From now on we will use radial coordinates, writing φ(r) for φ(x) with |x| = r,

and similarly for ψ. We have

(5.5)

exp(−γ(t + 1))(ψR,ε)r =

− (
2

p− 1
)((r − ε)(R− r))−

2
p−1−1(R + ε− 2r)(1 + r)

2
p−1 (1 +

εl

rl
R

2
p−1 )

+ (
2

p− 1
)((r − ε)(R− r))−

2
p−1 (1 + r)

2
p−1−1(1 +

εl

rl
R

2
p−1 )

− l((r − ε)(R− r))−
2

p−1 (1 + r)
2

p−1
εl

rl+1
R

2
p−1 ,
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and

(5.6)

exp(−γ(t + 1))
(
(r − ε)(R− r)

)− 2
p−1−2(ψR,ε)rr =

(
2

p− 1
)(

2
p− 1

+ 1)(R + ε− 2r)2(1 + r)
2

p−1 (1 +
εl

rl
R

2
p−1 )

+ 2(
2

p− 1
)(r − ε)(R− r)(1 + r)

2
p−1 (1 +

εl

rl
R

2
p−1 )

− 2(
2

p− 1
)2(r − ε)(R− r)(R + ε− 2r)(1 + r)

2
p−1−1(1 +

εl

rl
R

2
p−1 )

+ 2l(
2

p− 1
)(r − ε)(R− r)(R + ε− 2r)(1 + r)

2
p−1

εl

rl+1
R

2
p−1

+ (
2

p− 1
)(

2
p− 1

− 1)((r − ε)(R− r))2(1 + r)
2

p−1−2(1 +
εl

rl
R

2
p−1 )

− 2l(
2

p− 1
)((r − ε)(R− r))2(1 + r)

2
p−1−1 εl

rl+1
R

2
p−1

+ l(l + 1)((r − ε)(R− r))2(1 + r)
2

p−1
εl

rl+2
R

2
p−1 .

Using (5.1), (5.2), (5.5) and the fact that 2
p−1 + 2 = 2p

p−1 , we have

(5.7)

exp(−γ(t + 1))
(
(r − ε)(R− r)

)− 2
p−1−2

(d− 1
r

(ψR,ε)r − ψp
R,ε − (ψR,ε)t

)
=

− (
2

p− 1
)(

d− 1
r

)(r − ε)(R− r)(R + ε− 2r)(1 + r)
2

p−1 (1 +
εl

rl
R

2
p−1 )

+ (
2

p− 1
)(

d− 1
r

)((r − ε)(R− r))2(1 + r)
2

p−1−1(1 +
εl

rl
R

2
p−1 )

− l(
d− 1

r
)((r − ε)(R− r))2(1 + r)

2
p−1

εl

rl+1
R

2
p−1

− γ((r − ε)(R− r))2(1 + r)
2

p−1 (1 +
εl

rl
R

2
p−1 )

− (1 + r)
2p

p−1 (1 +
εl

rl
R

2
p−1 )p exp((p− 1)γ(t + 1)).

We will show that for all sufficiently large R and sufficiently small ε, and for γ

sufficiently large and l sufficiently small, independent of those R and ε, the sum of

the right hand sides of (5.6) and (5.7) is non-positive. This will prove (5.3).

We denote the seven terms on the right hand side of (5.6) by J1 − J7, and the

five terms on the right hand side of (5.7) by I1 − I5. Note that the terms that

are positive are J1, J2, J4, J5, J7 and I2. In what follows, M will denote a positive
24



number that can be made as large as one desires by choosing γ sufficiently large.

Consider first those r satisfying r ≥ cR, where c is a fixed positive number. For

r in this range, we have |I5| ≥ MR
2

p−1+2(1 + εlR
2

p−1−l). It is easy to see that

for M sufficiently large, |I5| dominates each of the positive terms, uniformly over

large R and small ε, and thus (since M can be made arbitrarily large) also the

sum of all of the positive terms. Now consider those r for which δ0 ≤ r ≤ C, for

some constants 0 < δ0 < C. For r in this range and ε sufficiently small, we have

|I4| ≥ MR2(1 + εlR
2

p−1 ), and it is easy to see that for M sufficiently large, |I4|
dominates each of the positive terms, uniformly over large R and small ε, and thus,

also the sum of all of the positive terms. One can also show that the transition

from r of order unity to r of order R causes no problem. Thus, we conclude that

for any fixed δ0 > 0 and γ sufficiently large, the sum of the right hand sides of (5.6)

and (5.7) is negative for all large R and small ε. Note that all this holds uniformly

over l ∈ (0, 1]. The parameter l has not been needed yet.

We now turn to the delicate situation—when ε ≤ r ≤ δ0. For later use, we

remind the reader that δ0 may be chosen as small as one likes. (Note that at r = ε,

all the terms vanish except J1 and I5. Using the fact that 2
p−1 + 2 = 2p

p−1 , it is

easy to see that for sufficiently large γ, |I5(ε)| dominates J1(ε), uniformly over all

large R and small ε. However, when r is small, but on an order larger than ε,

the analysis becomes a lot more involved.) In the sequel, whenever we say that a

condition holds for γ or M sufficiently large, or for l sufficiently small, we mean

independent of R and ε.

We first take care of the easy terms. Clearly, J5 ≤ |I4| if γ is sufficiently large.

Also J7 = l+1
d−1 |I3| ≤ |I3|, if l is chosen sufficiently small. (This last inequality holds

since by assumption, d > 2p
p−1 ; thus, d > 2 for all choices of p.)

We now show that for γ sufficiently large, J2 ≤ |I4| + |I5|, for ε ≤ r ≤ δ0. (We

are reusing |I4| here. Later we will reuse |I5|. This is permissible because γ can be

chosen as large as we like.) To show this inequality, it suffices to show that for M

sufficiently large,

(5.8) (r − ε)R ≤ M(r − ε)2R2 + M(1 +
εl

rl
R

2
p−1 )p−1, for r ∈ [ε, δ0].

A trivial calculation shows that the left hand side of (5.8) is less than the first term
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on the right hand side if r ≥ ε + 1
RM . If r ∈ [ε, ε + 1

RM ], then the left hand side

of (5.8) is less than or equal to 1
M while the second term on the right hand side is

greater than M . We conclude that (5.8) holds with M ≥ 1.

It remains to consider J1, J4 and I2. We will show that for γ sufficiently large,

(5.9) J1 + J4 + I2 + I1 + I5 ≤ 0, for r ∈ [ε, δ0].

Since I2 has the factor (r − ε)2, while I1 has the factor (r − ε), and since R−r
R+ε−2r

can be made arbitrarily close to 1 by choosing R sufficiently large, it follows that

for any η > 0, we have I2 ≤ η|I1|, for r ∈ [ε, δ0], if we choose δ0 sufficiently small

and R sufficiently large. Note that J4 ≤ 2l
d−1 |I1|. Thus,

(5.10) J1 + J4 + I2 + I1 ≤ J1 + (1− 2l

d− 1
− η)I1 = J1 + (1− κ)I1,

where κ = 2l
d−1 + η. Also note that since we are free to choose l and η as small as

we like, the same holds for κ. We have

(5.11)
J1 + (1− κ)I1 = (1 + r)

2
p−1 (R + ε− 2r)(1 +

εl

rl
R

2
p−1 )×

(2(p + 1)
(p− 1)2

(R + ε− 2r)− (1− κ)
2(d− 1)
p− 1

(
r − ε

r
)(R− r)

)
.

From the assumption that d > 2p
p−1 , it follows that for κ sufficiently small and R

sufficiently large,

(5.12)
(2(p + 1)

(p− 1)2
(R+ ε−2r)− (1−κ)

2(d− 1)
p− 1

(
r − ε

r
)(R−r)

)
≤ C

ε

r
R, r ∈ [ε, δ0],

for some C > 0. From (5.10)-(5.12), we obtain

(5.13)
J1 + J4 + I2 + I1 ≤ C

ε

r
R(1 + r)

2
p−1 (R + ε− 2r)(1 +

εl

rl
R

2
p−1 ),

for r ∈ [ε, δ0].

In light of (5.13), in order to prove (5.9), it suffices to show that

(5.14)
ε

r
R2 ≤ M(1 +

εl

rl
R

2
p−1 )p−1, r ∈ [ε, δ0],
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for sufficiently large M . Choose l sufficiently small so that l(p− 1) ≤ 1. Then the

right hand side of (5.14) is greater or equal to M ε
r R2.

We now turn to the case d = 2p
p−1 . For ε and R satisfying 0 < ε < 1 and R > 1,

and some c ≥ 2, define

(5.15) φR,ε(x) = ((|x| − ε)(R− |x|))− 2
p−1 (1 + |x|) 2

p−1
(
1 + (

R2

log c|x|
ε

)
1

p−1
)
.

Note that the only difference between φR,ε here and φR,ε in the previous case is

that the term εl

|x|l has been changed to ( 1

log
c|x|

ε

)
1

p−1 . As before, we define

ψR,ε(x, t) = φR,ε(x) exp(γ(t + 1)),

and convert to radial coordinates, with |x| = r. Note that 1
p−1 + 1 = p

p−1 and
1

p−1 + 2 = 2p−1
p−1 . In place of (5.6) and (5.7), we have

(5.16)

exp(−γ(t + 1))
(
(r − ε)(R− r)

)− 2
p−1−2(ψR,ε)rr =

(
2

p− 1
)(

2
p− 1

+ 1)(R + ε− 2r)2(1 + r)
2

p−1
(
1 + (

R2

log cr
ε

)
1

p−1
)

+ 2(
2

p− 1
)(r − ε)(R− r)(1 + r)

2
p−1

(
1 + (

R2

log cr
ε

)
1

p−1
)

− 2(
2

p− 1
)2(r − ε)(R− r)(R + ε− 2r)(1 + r)

2
p−1−1

(
1 + (

R2

log cr
ε

)
1

p−1
)

+ (
2

p− 1
)2(r − ε)(R− r)(R + ε− 2r)(1 + r)

2
p−1

1

r(log cr
ε )

p
p−1

R
2

p−1

+ (
2

p− 1
)(

2
p− 1

− 1)((r − ε)(R− r))2(1 + r)
2

p−1−2
(
1 + (

R2

log cr
ε

)
1

p−1
)

− (
2

p− 1
)2((r − ε)(R− r))2(1 + r)

2
p−1−1 1

r(log cr
ε )

p
p−1

R
2

p−1

+ (
1

p− 1
)((r − ε)(R− r))2(1 + r)

2
p−1

( 1

r2(log cr
ε )

p
p−1

+
p

(p− 1)r2(log cr
ε )

2p−1
p−1

)
R

2
p−1
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and

(5.17)

exp(−γ(t + 1))
(
(r − ε)(R− r)

)− 2
p−1−2

(d− 1
r

(ψR,ε)r − ψp
R,ε − (ψR,ε)t

)
=

− (
2

p− 1
)(

d− 1
r

)(r − ε)(R− r)(R + ε− 2r)(1 + r)
2

p−1
(
1 + (

R2

log cr
ε

)
1

p−1
)

+ (
2

p− 1
)(

d− 1
r

)((r − ε)(R− r))2(1 + r)
2

p−1−1
(
1 + (

R2

log cr
ε

)
1

p−1
)

− (
1

p− 1
)(

d− 1
r

)((r − ε)(R− r))2(1 + r)
2

p−1
1

r(log cr
ε )

p
p−1

R
2

p−1

− γ((r − ε)(R− r))2(1 + r)
2

p−1
(
1 + (

R2

log cr
ε

)
1

p−1
)

− (1 + r)
2p

p−1
(
1 + (

R2

log cr
ε

)
1

p−1
)p exp((p− 1)γ(t + 1)).

As before, we denote the terms in (5.16) and (5.17) by J1 − J7 and I1 − I5

respectively. It’s easy to see that the analysis in the previous case carries over to

the present case when r satisfies r ≥ δ0, where, as above, δ0 is an arbitrary positive

constant. It remains to consider r ∈ [ε, δ0].

Exactly as in the previous case, we have J5 ≤ |I4| and J2 ≤ |I4| + |I5|, and

similar to the previous case, it is easy to see that if c is chosen sufficiently large,

then J7 ≤ |I3|. (For this last inequality, we use the fact that the condition d = 2p
p−1

guarantees that d > 2.) We now consider the term I2. Using the fact that d− 1 =
p+1
p−1 , and replacing r−ε

r by 1, we have

I2 ≤ 2(p + 1)
(p− 1)2

(r − ε)(R− r)2(1 + r)
2

p−1−1
(
1 + (

R2

log cr
ε

)
1

p−1
)
,

whereas

|J3| = 2(
2

p− 1
)2

R + ε− 2r

R− r
(r − ε)(R− r)2(1 + r)

2
p−1−1

(
1 + (

R2

log cr
ε

)
1

p−1
)
.

Since R+ε−2r
R−r can be made arbitrarily close to 1 by choosing R sufficiently large, we

have I2 ≤ |J3|. (Notice that this argument does not work in the case that d > 2p
p−1

if d is chosen sufficiently large. On the other hand, the method of dealing with

I2 that was used above in the case d > 2p
p−1—namely, treating it together with
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I1—does not work in the present case that d = 2p
p−1 . It is because of this that it

has been necessary to split the proof into two cases.)

Now consider the term J4. In the case that d > 2p
p−1 , J4 was treated together

with I1; in the present borderline case, this will not work. It is here that the

amended form of φR,ε is needed. We have

J4 ≤ CR
2p

p−1 (log
cr

ε
)−

p
p−1 , for r ∈ [ε, δ0],

for some C > 0. On the other hand,

|I5| ≥ MR
2p

p−1 (log
cr

ε
)−

p
p−1 , for r ∈ [ε, δ0],

where M can be chosen as large as one wants by choosing γ sufficiently large. Thus,

by choosing γ sufficiently large, we have J4 ≤ |I5|.
Finally, the term J1 is treated as it was in the previous case, but without the

addition of J4 and I2. Using the fact that d = 2p
p−1 , the analysis in (5.11)-(5.13)

gives

(5.18) J1 + I1 ≤ C
ε

r
R(1 + r)

2
p−1 (R + ε− 2r)

(
1 + (

R2

log cr
ε

)
1

p−1
)
.

Comparing the right hand side of (5.18) with |I5|, one sees that the inequality

J1 + I1 + I5 ≤ 0, for r ∈ [ε, δ0],

will hold with γ chosen sufficiently large if

(5.19)
ε

r
R2 ≤ M

(
1 + (

R2

log cr
ε

)
1

p−1
)p−1

, for r ∈ [ε, δ0],

holds with M chosen sufficiently large. The right hand side of (5.19) is larger

than MR2(log cr
ε )−1; thus, (5.19) holds since ε

r (log cr
ε ) is bounded for r ∈ [ε, δ0],

uniformly over small ε. This completes the proof of Theorem 6-ii. ¤
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