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Abstract. Let D ⊂ Rd be a bounded domain and let P(D) denote the

space of probability measures on D. Consider a Brownian motion in D

which is killed at the boundary and which, while alive, jumps instan-

taneously at an exponentially distributed random time with intensity

γ > 0 to a new point, according to a distribution µ ∈ P(D). From

this new point it repeats the above behavior independently of what has

transpired previously. The generator of this process is an extension of

the operator −Lγ,µ, defined by

Lγ,µu ≡ −
1

2
∆u+ γVµ(u),

with the Dirichlet boundary condition, where Vµ is a non-local “µ-

centering” potential defined by

Vµ(u) = u−
∫
D

u dµ.

The operator Lγ,µ is symmetric only in the case that µ is normalized

Lebesgue measure; thus, only in that case can it be realized as a self-

adjoint operator. The corresponding semigroup is compact, and thus the

spectrum of Lγ,µ consists exclusively of eigenvalues. As is well known,

the principal eigenvalue gives the exponential rate of decay in t of the

probability of not exiting the domain by time t. We study the behavior

of the eigenvalues, our main focus being on the behavior of the principal

eigenvalue for the regimes γ � 1 and γ � 1. We also consider conditions

on µ that guarantee that the principal eigenvalue is monotone increasing

or decreasing in γ.

2000 Mathematics Subject Classification. 35P15, 60F10, 60J65.

Key words and phrases. principal eigenvalue, spectral analysis, Brownian motion, ran-

dom jumps.

This research was supported by the M. & M. Bank Mathematics Research Fund.

1



2

1. Introduction and Statement of Results

Let D ⊂ Rd be a bounded domain with C2,α-boundary and let P(D)

denote the space of probability measures onD. Fix a measure µ ∈ P(D), and

consider a Brownian motion in D which is killed at the boundary and which,

while alive, jumps instantaneously at an exponentially distributed random

time with intensity γ > 0 to a new point, according to the distribution µ.

From this new point it repeats the above behavior independently of what

has transpired previously. Denote this process by X(t), and let τD denote its

lifetime. Denote probabilities and expectations for the Markov process X(t)

starting from x ∈ D by P γ,µx and Eγ,µx . Define the contraction semigroup

T γ,µt f(x) = Eγ,µx (f(X(t)); τD > t), f ∈ C0(D̄),

where C0(D̄) is the space of continuous functions on D̄ vanishing on ∂D. We

will show that the infinitesimal generator of this semigroup is an extension

of the operator −Lγ,µ, defined on C2(D̄) ∩ {u : u, Lγ,µu ∈ C0(D̄)} by

Lγ,µu ≡ −
1
2

∆u+ γVµ(u),

with the Dirichlet boundary condition, where Vµ is a non-local “µ-centering”

potential defined by

Vµ(u) = u−
∫
D
u dµ.

We will show that the operator T γ,µt is compact; thus, the resolvent oper-

ator for T γ,µt is compact, and consequently the spectrum σ(Lγ,µ) of Lγ,µ

consists exclusively of eigenvalues. By the Krein-Rutman theorem, one de-

duces that Lγ,µ possesses a principal eigenvalue, λ0(γ, µ); that is, λ0(γ, µ) is

real and simple and satisfies λ0(γ, µ) = inf{Re(λ) : λ ∈ σ(Lγ,µ)} [14]. It is

known that λ ∈ σ(Lγ,µ) if and only if exp(−λt) ∈ σ(T γ,µt ) [12]. Thus, since

||T γ,µt || < 1, it follows that λ0(γ, µ) > 0. We have

sup
f∈C0(D̄),||f ||≤1

||T γ,µt f || = sup
x∈D

P γ,µx (τD > t);



BROWNIAN MOTION WITH RANDOM JUMPS 3

thus, a standard result [15] allows us to conclude that

lim
t→∞

1
t

log sup
x∈D

P γ,µx (τD > t) = −λ0(γ, µ).

It is well known that this is equivalent to

(1.1) lim
t→∞

1
t

logP γ,µx (τD > t) = −λ0(γ, µ), x ∈ D.

The main focus in this paper is on the behavior of the principal eigenvalue

for the regimes γ � 1 and γ � 1. We also consider conditions on µ that

guarantee that the principal eigenvalue is monotone increasing or decreasing

in γ.

The Brownian motion with random jumps analyzed here is a paradigm for

a phenomenon that occurs in various settings and which is best illustrated

perhaps in terms of computer-games or the game “chutes and ladders.”

The object of the game is to reach the boundary of D in as little time

as possible (or alternatively, to avoid reaching the boundary for as much

time as possible). The game is played in rounds; however, time is always

accumulating. Various obstacles (modelled by the exponential clock with

intensity γ) lead to the end of a round, and each new round begins afresh

from a new position which may be deterministic or random (modelled by

the measure µ). Then λ0(γ, µ) is a measure of the probability of long-term

failure (or success, depending on the rules).

A number of recent papers have treated Brownian motion with random

jumps from the boundary, rather than from within the domain. Such a

process is ergodic and possesses a unique invariant measure. The principal

eigenvalue of the generator of the process is 0, the rest of the spectrum is

negative, and the spectral gap, which is the supremum of the real part of the

nonzero spectrum, gives the exponential rate of convergence to equilibrium.

See [1], [2], [8], [9], [11].
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In the past decade or so, a number of papers have treated spectral prop-

erties of elliptic operators with a nonlocal reaction term of the form

(∇ · a∇u)(x) + b(x)u+ c(x)
∫
D
d(y)u(y)dy,

with the Dirichlet boundary condition, where a is positive definite and b, c,

and d are functions. These papers study the location and multiplicities of

the eigenvalues and the existence of a principal eigenvalue (this last point

is automatic in our situation). See, for example, [4], [5], [3] and references

therein for results and applications. See also Remark 3 after Theorem 3 and

Remark 1 after Theorem 4.

We now turn to the results, considering first the regime γ � 1. Before

stating the theorem, we note that probabilistic intuition suggests the general

direction of the result. Since γ � 1, the Brownian motion doesn’t get very

far before it jumps and gets redistributed according to µ. In particular then,

if supp(µ) ⊂ D, it will be very difficult for the Brownian motion to exit D,

and in light of (1.1) one expects that limγ→∞ λ0(γ, µ) = 0. More generally,

one expects that the leading asymptotic behavior for large γ will depend

only on the behavior of µ arbitrarily close to the boundary.

For ε > 0, let Dε = {x ∈ D : dist(x, ∂D) < ε}. We will prove the following

result.

Theorem 1. Let D ⊂ Rd, d ≥ 1, be a bounded domain and let µ ∈ P(D).

i. Assume that for some ε > 0, the restriction of µ to Dε possesses a density

which belongs to C(D̄ε): µ(dx)|Dε ≡ µ(x)dx. Then

lim
γ→∞

γ−
1
2λ0(γ, µ) =

1√
2

∫
∂D

µdσ.

ii. Assume that for some ε > 0, the restriction of µ to Dε possesses a density

which belongs to C2
b (Dε)∩C1(D̄ε) and vanishes on ∂D: µ(dx)|Dε ≡ µ(x)dx.

Then

lim
γ→∞

λ0(γ, µ) =
1
2

∫
∂D

(∇µ · n)dσ,

where n is the inward unit normal vector on ∂D.
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iii. Assume that for some ε > 0, the restriction of µ to Dε possesses a

density which belongs to C2
b (D̄ε), and is such that µ and ∇µ vanish on ∂D:

µ(dx)|Dε ≡ µ(x)dx. Then

lim
γ→∞

γ
1
2λ0(γ, µ) =

1
2
√

2

∫
∂D

∆µdσ.

(One has ∆µ ≥ 0 on ∂D since µ and ∇µ vanish on ∂D and µ is nonnegative

in D.)

iv. Assume that µ ∈ P(D) is compactly supported. Then

lim
γ→∞

λ0(γ, µ) = 0.

In fact, letting l = dist(supp(µ), ∂D) and a = sup{|x − z| : z ∈ ∂D, x ∈

supp(µ)}, there exists a constant cl,d such that

(1.2)
γ

1 + (a
2π2γ

2 )
1
4

exp(−
√

2aγ
1
2 ) < λ0(γ, µ) < (2d+ 1)γ exp(− lγ

1
2

2
√

2d
), for γ ≥ cl,d.

(In parts (i)-(iii), σ denotes Lebesgue measure on ∂D if d ≥ 2, while it is

the counting measure on the endpoints of D if d = 1.)

Remark. We expect that if µ and all its partial derivatives up to order k

vanish on ∂D, and the derivatives of order k+1 do not all vanish identically

on ∂D, then λ0(γ, µ) will decay on the order of γ−
k
2 . Similarly, if the density

is allowed to blow up at the boundary, then the order γ
1
2 in part (i) will

increase. By Proposition 1 in section 2, the order can never be greater than

γ.

Example. When µ = lD, the normalized Lebesgue measure on D, Theorem

1 gives

lim
γ→∞

γ−
1
2λ0(γ, lD) =

1√
2
|∂D|
|D|

.
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We now turn to the regime γ � 1. Of course, λ0(0, µ) = λD0 , where λD0 is

the principal eigenvalue of −1
2∆ in D with the Dirichlet boundary condition.

(Henceforth, this operator (with the negative sign) will be referred to as the

Dirichlet Laplacian.) We wish to determine when λ0(γ, µ) > λD0 and when

λ0(γ, µ) < λD0 , for small γ. In the former (latter) case, random jumps at

low intensity cause the probability of the event {τD > t} to decay more

(less) rapidly than it would for standard Brownian motion without random

jumps. Let φ0 denote the principal eigenfunction, normalized by φ0 > 0 and∫
D φ

2
0dx = 1, corresponding to the principal eigenvalue λD0 for the Dirichlet

Laplacian. Let

(1.3) F0 ≡
∫
D
φ0dx and G0(µ) ≡

∫
D
φ0dµ.

Let V0 denote the solution to the equation

(1.4)

1
2

∆V + λD0 V = −1 + F0φ0 in D;

V = 0 on ∂D;∫
D
V φ0dx = 0.

(Since (1
2∆ + λD0 )φ0 = 0 and

∫
D(−1 + F0φ0)φ0dx = 0, the Fredholm alter-

native guarantees the existence of a unique solution to (1.4).)

Theorem 2. i.

dλ0

dγ
(0+, µ) = 1− F0G0(µ) = 1−

∫
D
φ0dx

∫
D
φ0dµ.

Thus, if F0G0(µ) < 1 (F0G0(µ) > 1), then λ0(γ, µ) > λD0 (λ0(γ, µ) < λD0 ),

for γ � 1.

ii. If F0G0(µ) = 1 and
∫
D V0dµ < 0 (

∫
D V0dµ > 0 ), then λ0(γ, µ) > λD0

(λ0(γ, µ) < λD0 ), for γ � 1, where V0 is the solution to (1.4).

Example 1. Consider the case that µ = lD, the normalized Lebesgue mea-

sure on D. One has G0(lD) = F0
|D| . The Cauchy-Schwarz inequality gives

F0G0(lD) = 1
|D|(

∫
D φ0dx)2 <

∫
D φ

2
0dx = 1, and thus by Theorem 2,

λ0(γ, lD) > λD0 , for γ � 1.
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Example 2. Consider the case D = (0, 1) with µ = δx0 , for some x0 ∈ (0, 1).

In this case, we have φ0(x) =
√

2 sinπx, so F0 = 2
√

2
π and G0 =

√
2 sinπx0.

Let xc ≡ 1
π arcsin π

4 ≈ .288. Then F0G0(δx0) < 1 if and only if x0 ∈

(0, xc) ∪ (1 − xc, 1). Consider now the borderline case, µ = δxc . A long

and tedious calculation reveals that the solution V0 to (1.4) is given by

V0(x) = 6
π3 sinπx+ 2

π2 cosπx− 2
π2− 4

π2x cosπx. One checks that
∫ 1

0 V0(x)dµ =

V0(xc) > 0. Thus, we conclude from Theorem 2 that for γ � 1, λ0(γ, δx0)

is greater than λD0 if x0 ∈ (0, xc) ∪ (1 − xc, 1) and is less than λD0 if x0 ∈

[xc, 1− xc].

It follows from Theorems 1 and 2 that λ0(γ, µ) is frequently not monotone

in γ; one can easily construct examples where it increases and then decreases

or vice versa. Note that if there exists a point x0 ∈ D such that Px0(τD >

t) ≥ Px(τD > t), for all x ∈ D and all t > 0, where Px(τD > t) denotes

the probability that a standard Brownian motion starting from x0 ∈ D

has not exited D by time t, then by the definition of the Brownian motion

with random jumps along with probabilistic considerations and (1.1), it

follows that λ0(γ, δx0) is decreasing in γ, and furthermore, that λ0(γ, δx0) ≤

λ0(γ, µ), for all µ ∈ P(D) and all γ > 0. In particular, this occurs if

D = (0, 1) and x0 = 1
2 .

In the case that µ = lD, the normalized Lebesgue measure on D, Lγ,µ is

symmetric and can be realized as a self-adjoint operator. We can express

the corresponding quadratic form as∫
D
uLγ,µudx =

1
2

∫
D
|∇u|2dx+ γ|D|VarlD(u),

where VarlD(u) =
∫
D u

2dlD−(
∫
D udlD)2 ≥ 0 is the variance of u with respect

to the probability measure lD, and u ∈ C2(D) ∩ C0(D̄). Thus, λ0(γ, µ) is

given by the variational formula

λ0(γ, µ) = inf
06=u∈C2(D)∩C0(D̄)

1
2

∫
D |∇u|

2dx+ γ|D|VarlD(u)∫
D u

2dx
.
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From this it follows that λ0(γ, µ) is strictly monotone increasing in γ. Be-

cause of the self-adjointness, it also follows that all of the eigenvalues of Lγ,µ

are real.

In fact, we can single out two classes of measures µ, each defined by a

spectral theoretic condition, for one of which λ0(γ, µ) is monotone increasing

and for the other of which it is monotone decreasing, and for both of which

all of the eigenvalues are real, even though Lγ,µ is not self-adjoint when

µ 6= lD.

We will need some additional notation to state the result. We have already

introduced λD0 and φ0. Let {λDn }∞n=1 denote all the non-principal eigenvalues

of the Dirichlet Laplacian, labelled in increasing order, and let {φn}∞n=1

denote the corresponding eigenfunctions, normalized by
∫
D φ

2
ndx = 1. Let

(1.5) Fn ≡
∫
D
φndx and Gn(µ) ≡

∫
D
φndµ.

When d ≥ 3, we will sometimes need to assume that the domain D satisfies

the following condition.

Assumption 1.
∑∞

n=0
Fn
λDn
φn converges uniformly and absolutely on D.

Remark. When d = 1, 2, Assumption 1 always holds [2, 7]. One has∑∞
n=0

1
(λDn )2

<∞ if and only if d ≤ 3 [2]. Thus, since {Fn} ∈ l2, Assumption

1 holds when d = 3 if the φn are uniformly bounded.

Let {ΛDn }∞n=0 denote the collection of distinct values among the eigenval-

ues {λDn }∞n=0 of the Dirichlet Laplacian, labelled in increasing order. Let

PΛDn
denote the orthogonal projection onto the eigenspace corresponding to

the eigenvalue ΛDn . Note that∫
D
PΛD0

1dµ = F0G0(µ) > 0

and that ∫
D
PΛDn

1dµ =
∑

m:λDm=ΛDn

FmGm(µ).
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Theorem 3. Let µ ∈ P(D). For part (i), assume that µ possesses an L2-

density. For parts (ii) and (iii), if d ≥ 3 assume either that µ possesses an

L2-density or that the domain D satisfies Assumption 1.

i-a. If
∫
D PΛDn

1dµ =
∑

m:λDm=ΛDn
FmGm(µ) = 0, for all n ≥ 1, then λ0(γ, µ) =

λD0 , for all γ > 0;

i-b. If
∫
D PΛDn

1dµ =
∑

m:λDm=ΛDn
FmGm(µ) ≥ 0, for all n ≥ 1, and is nonzero

for at least one value of n ≥ 1, then λ0(γ, µ) is strictly increasing in γ;

i-c. If
∫
D PΛDn

1dµ =
∑

m:λDm=ΛDn
FmGm(µ) ≤ 0, for all n ≥ 1, and is nonzero

for at least one value of n ≥ 1, then λ0(γ, µ) is strictly decreasing in γ.

ii. If
∫
D PΛDn

1dµ =
∑

m:λDm=ΛDn
FmGm(µ) is nonnegative for all n ≥ 1 or

non-positive for all n ≥ 1, then all of the eigenvalues of Lγ,µ are real.

iii. Assume that
∫
D PΛDn

1dµ = FnGn(µ) > 0, for all n ≥ 1, and assume that

all the eigenvalues of the Dirichlet Laplacian are distinct. Thus, λDn = ΛDn

and
∫
D PΛDn

1dµ = FnGn(µ). Then

γ + λDn−1 < λn(γ, µ) < γ + λDn , n ≥ 1.

Remark 1. Recall that the function 1 is represented in L2 by
∑∞

n=0 Fnφn.

The assumption that µ has an L2-density is used in the proof of part (i)

in order to guarantee that
∑∞

n=0 FnGn(µ) = 1. (In fact, one can check

that the proof of part (i-a) goes through as long as
∑∞

n=0 FnGn(µ) ≤ 1

and the proof of part (i-b) goes through as long as
∑∞

n=0 FnGn(µ) ≥ 1.)

If
∑∞

n=0 Fnφn converges boundedly pointwise on the support of µ, then

the bounded convergence theorem gives
∑∞

n=0 FnGn(µ) = 1, and thus part

(i) holds in such a case even if µ does not have an L2-density. In the

one-dimensional case, one can show that
∑∞

n=0 Fnφn converges boundedly

pointwise away from the endpoints. Thus, when d = 1, part (i) can be

applied to any compactly supported µ. Of course, such a µ cannot satisfy

the condition of part (i-a) or (i-b) since if it did, then λ0(γ, µ) would be

nondecreasing in γ, contradicting Theorem 1.
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Remark 2. The conditions for monotonicity in part (i) are of course only

sufficient. When D = (0, 1) and µ = δ 1
2
, then as noted earlier, λ0(γ, δ 1

2
) is

decreasing in γ; however F2nG2n(δ 1
2
) = 4

(2n+1)π sin 2n+1
2 π, which alternates

sign.

Remark 3. In the one-dimensional setting, part (ii) of the theorem was

proved in [4].

Remark 4. When one (or both) of the assumptions appearing in the state-

ment of part (iii) is violated, one can still use the method of proof there

to give estimates on the eigenvalues; however each particular case must be

treated separately.

The proofs of Theorems 1 and 2 utilize a characterization of the principal

eigenvalue which appears in Proposition 1 in Section 2. This characterization

does not allow for a proof of Theorem 3. Instead, we make use of the

following characterization of all of the eigenvalues of Lγ,µ, which is of some

interest in its own right.

Theorem 4. Let µ ∈ P(D) and γ > 0. If d ≥ 3, assume either that µ

possesses an L2-density or that the domain D satisfies Assumption 1. Let

dn denote the dimension of the eigenspace corresponding to the n-th distinct

eigenvalue ΛDn of the Dirichlet Laplacian. Let

(1.6) Eγ,µ(λ) ≡
∞∑
n=0

γFnGn(µ)
γ + λDn − λ

=
∞∑
n=0

γ
∫
D PΛDn

1dµ
γ + ΛDn − λ

.

The set of eigenvalues of Lγ,µ and their multiplicities are given as follows:

i. The set {λ : Eγ,µ(λ) = 1}\{γ + ΛDn }∞n=1 consists of simple eigenvalues;

ii. For each n = 1, 2, · · · , the following rule determines whether γ + ΛDn is

an eigenvalue, and if so, specifies its multiplicity:

If dn = 1 and neither Fm = 0 nor Gm(µ) = 0, for the unique m satisfying

λDm = ΛDn , then γ + ΛDn is not an eigenvalue. Otherwise, γ + ΛDn is an

eigenvalue and its multiplicity is specified as follows:
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If Gm(µ) 6= 0 for some m such that λDm = ΛDn and Fm 6= 0 for some m such

that λDm = ΛDn , then the multiplicity is dn − 1;

If Gm(µ) = 0 for all m such that λDm = ΛDn and Fm 6= 0 for some m such

that λDm = ΛDn , or if Gm(µ) 6= 0 for some m such that λDm = ΛDn and Fm = 0

for all m such that λDm = ΛDn , then the multiplicity is dn;

If Gm(µ) = 0 for all m such that λDm = ΛDn and Fm = 0 for all m such that

λDm = ΛDn , then the multiplicity is dn if Eγ,µ(γ + ΛDn ) 6= 0 and is dn+1 if

Eγ,µ(γ + ΛDn ) = 0.

Remark 1. Partial results along the lines of Theorem 4 can be found in [5]

and [3].

Remark 2. For n ≥ 0, if
∫
D PΛDn

1dµ and
∫
D PΛDn+1

1dµ have opposite signs,

then there is an eigenvalue between γ + ΛDn and γ + ΛDn+1, since in this

case Eγ,µ(λ), with ΛDn < λ < ΛDn+1, approaches +∞ as λ approaches one

endpoint and approaches −∞ as λ approaches the other endpoint.

The rest of the paper is organized as follows. In section 2 we prove a

couple of preliminary results concerning the principle eigenvalue λ0(γ, µ),

which will be used to prove Theorems 1 and 2, the proofs of which are

given in sections 3 and 4 respectively. We prove Theorem 4 in section 5 and

Theorem 3, whose proof depends on Theorem 4, in section 6. In an appendix

we show that −Lγ,µ, suitably extended, is the infinitesimal generator of T γ,µt ,

and that T γ,µt is compact.

All the results in the paper go through with only cosmetic changes when

Brownian motion and the Laplacian are replaced by a general reversible

diffusion and its generator A ≡ 1
2 exp(−2Q)∇·exp(2Q)a∇ = 1

2∇·a∇+∇Q∇.

2. Preliminary results about the principal eigenvalue

Let Y (t) denote the standard Brownian motion inD without jumps, which

is killed at the boundary, let τD denote its lifetime and denote the corre-

sponding probabilities and expectations by P· and E·.
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For c ∈ (−∞, λD0 ), let wc > 0 denote the solution to the equation

(2.1)

1
2

∆w + cw = −1 in D;

w = 0 on ∂D.

Applying Ito’s formula with the stopping time τD gives

(2.2) Ex exp(cτD)wc(Y (τD)) = wc(x) + Ex
∫ τD

0
(
1
2

∆ + c)wc(Y (t)) exp(ct)dt.

From (2.1) and (2.2) we obtain

(2.3) wc(x) =


1
c (Ex exp(cτD)− 1), if c 6= 0;

ExτD, if c = 0.

(The condition c < λD0 is necessary and sufficient for the existence of a

positive solution to (2.1) and for the finiteness of Ex exp(cτD) [14, Chapter

3].) Similarly, the solution uc to the equation

(2.4)

1
2

∆u+ cu = 0 in D;

u = 1 on ∂D,

is given by

(2.5) uc(x) = Ex exp(cτD).

We begin with a characterization of the principal eigenvalue λ0(γ, µ) of

Lγ,µ.

Proposition 1. One has λ0(γ, µ) < γ+λD0 , for all γ > 0. More specifically,

for λ < γ + λD0 , consider the equation

(2.6)

λ =

γEµ exp((λ− γ)τD), γ 6= λ;

(EµτD)−1, γ = λ.

or equivalently, λ =

γ
∫
D uλ−γdµ, γ 6= λ;

(EµτD)−1, γ = λ.


i. If γ > (EµτD)−1, then λ0(γ, µ) ∈ (0, γ) and is equal to the smallest root

λ ∈ (0, γ) of (2.6).
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ii. If γ < (EµτD)−1, then λ0(γ, µ) ∈ (γ, γ + λD0 ) and is equal to the smallest

root λ ∈ (γ, γ + λD0 ) of (2.6).

iii. If γ = (EµτD)−1, then λ0(γ, µ) = γ = (EµτD)−1.

Proof. Let w denote the principal eigenfunction corresponding to λ0(γ, µ),

normalized by
∫
D wdµ = 1. Then

1
2

∆w − γw + γ = −λ0(γ, µ)w in D;

w = 0 on ∂D.

Thus, w = γwλ0(γ,µ)−γ . From the normalization condition above, it then

follows that λ = λ0(γ, µ) is a solution to the equation

(2.7) γ

∫
D
wλ−γdµ = 1.

Conversely, if λ solves (2.7), then it is an eigenvalue. Consequently, λ0(γ, µ)

is the smallest solution λ to (2.7). By (2.3) and (2.5), it follows that (2.7)

is equivalent to (2.6).

Fix γ > 0 and let q(λ) = λ − γEµ exp((λ − γ)τD). Then q(0) < 0 and

q(γ) = 0. If γ > (EµτD)−1, then q′(γ) < 0, and we conclude that the smallest

root λ of (2.6) occurs in (0, γ). This proves part (i). If γ ≤ (EµτD)−1,

then q′(λ) > 0, for λ ∈ (0, γ), and thus (2.6) has no root λ ∈ (0, γ). If

γ = (EµτD)−1, we then conclude that the smallest root of (2.6) occurs at

λ = γ. If γ < (EµτD)−1, then q′(γ) > 0. Since q(γ+λD0 ) = −∞, we conclude

that the smallest root of (2.6) occurs in (γ, γ + λD0 ). �

The following lemma will be used repeatedly.

Lemma 1.

lim
γ→∞

λ0(γ, µ)
γ

= 0.

Proof. By Proposition 1, it is enough to show that as γ →∞, the quotient
λ0(γ,µ)

γ has no accumulation points in (0, 1]. We first show that there are

no accumulation points in (0, 1). If p ∈ (0, 1) were an accumulation point,
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then substituting λ0(γ, µ) for λ in (2.6), dividing both sides by γ and letting

γ →∞ along an appropriate sequence would give the contradiction p = 0.

We now show that 1 is not an accumulation point. Assume to the contrary

that limn→∞
λ0(γn.µ)

γn
= 1, where limn→∞ γn = ∞. By Proposition 1, we

have λ0(γn, µ) = γn− cn, where cn > 0 for sufficiently large n. Without loss

of generality we may assume that limn→∞ cn ≡ c∞ ∈ [0,∞] exists. First

consider the case that c∞ 6= 0. Then substituting λ0(γn, µ), γn and −cn
respectively for λ, γ and λ−γ in (2.6), dividing both sides by γn and letting

n→∞ gives the contradiction 1 = Eµ exp(−c∞τD). Now consider the case

c∞ = 0. Rewrite (2.6) as λ − γ = γ(Eµ exp((λ − γ)τD) − 1). Substituting

as before, we obtain −cn = γn(Eµ exp(−cnτD)− 1). Dividing both sides by

−cn and letting n→∞, we obtain the contradiction 1 =∞. �

3. Proof of Theorem 1

It will be convenient to prove the results in an order different from that

in which they were stated.

Part iv. Clearly EµτD can be bounded from below by a positive constant

depending only on l ≡ dist(supp(µ), ∂D) and d. By Proposition 1, λ0(γ, µ)

is the smallest root λ ∈ (0, γ) of (2.6) when γ > (EµτD)−1. As functions of

λ, both the left hand side and the right hand side of (2.6) are increasing.

Furthermore, the left hand side is smaller than the right hand side when λ =

0, and it is larger than the right hand side when λ = γ
2 , if Eµ exp(−γ

2 τD) < 1
2 .

This last inequality holds when γ is larger than a constant depending only

on l and d. Thus there exists a constant cl,d such that

(3.1)

γ

∫
D
Ex exp(−γτD)dµ(x) < λ0(γ, µ) < γ

∫
D
Ex exp(−1

2
γτD)dµ(x), for γ ≥ cl,d.

One has the inequality [14, Chapter 2]

(3.2) Px(τD ≤ t) ≤ 2d exp(−dist(x, ∂D)2

2dt
).
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Letting t =
√

2
γ l in (3.2), we have the estimate

(3.3)

Ex exp(−1
2
γτD) ≤ Px(τD ≤ t) + exp(−1

2
γt)

< 2d exp(− lγ
1
2

2
√

2d
) + exp(− lγ

1
2

√
2

), if dist(x, ∂D) ≥ l.

Thus, the upper bound in (1.2) follows from (3.3) and (3.1).

By the reflection principle for one-dimensional Brownian motion [10], it

follows that in any dimension,

(3.4)

Px(τD ≤ t) ≥ 2
∫ ∞
a

1

(2πt)
1
2

exp(−|y|
2

2t
)dy, where a = sup{|x− z| : z ∈ ∂D}.

One has the inequality [13, Lemma 3.6]

(3.5)

∫ ∞
a

1

(2πt)
1
2

exp(−|y|
2

2t
)dy =

∫ ∞
at−

1
2

1

(2π)
1
2

exp(−|y|
2

2
)dy

≥ 1

(2π)
1
2

1

at−
1
2 + ( 2

π )
1
2

exp(−a
2

2t
).

Letting t = a

(2γ)
1
2

in (3.5), and using (3.4), we have the estimate

(3.6)
Ex exp(−γτD) ≥ exp(−γt)Px(τD ≤ t) ≥

1

1 + (a
2π2γ

2 )
1
4

exp(−
√

2aγ
1
2 ),

if sup{|x− z| : z ∈ ∂D} ≤ a.

The lower bound in (1.2) follows from (3.1) and (3.6)

Part ii. By assumption, we can represent µ in the form µ = µregdx + µcs,

where µreg ∈ C2
b (D) ∩ C1(D̄) is a sub-probability density on D which coin-

cides with the density µ in the statement of the theorem in a neighborhood

of ∂D, and where µcs is a compactly supported sub-probability measure on

D. By Proposition 1, we have

(3.7)
λ0(γ, µ) = γEµ exp((λ0(γ, µ)− γ)τD) =

γ

∫
D
Ex exp((λ0(γ, µ)− γ)τD)µreg(x)dx+ γ

∫
D
Ex exp((λ0(γ, µ)− γ)τD)dµcs(x).
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The proof of part (iv) showed that

(3.8) lim
γ→∞

γ

∫
D
Ex exp((λ0(γ, µ)− γ)τD)dµcs(x) = 0.

Using the fact that close to the boundary µreg coincides with the density µ

in the statement of the theorem along with the assumption that µ vanishes

on the boundary, we obtain from (2.5), (2.4) and integration by parts that

(3.9)

γ

∫
D
Ex exp((λ0(γ, µ)− γ)τD)µreg(x)dx = γ

∫
D
uλ0(γ,µ)−γµregdx =

γ

2(γ − λ0(γ, µ))

∫
D
µreg∆uλ0(γ,µ)−γdx =

γ

2(γ − λ0(γ, µ))

∫
∂D
∇µreg · ndσ +

γ

2(γ − λ0(γ, µ))

∫
D
uλ0(γ,µ)−γ∆µregdx,

where n denotes the inward unit normal on ∂D. By assumption, ∆µreg

is bounded in D. By Lemma 1 and (2.5) it follows that uλ0(γ,µ)−γ(x) =

Ex exp((λ0(γ, µ) − γ)τD) ≤ Ex exp(−1
2γτD), for sufficiently large γ. Thus,

the bounded convergence theorem and Lemma 1 give

(3.10) lim
γ→∞

γ

2(γ − λ0(γ, µ))

∫
D
uλ0(γ,µ)−γ∆µregdx = 0.

From (3.7)-(3.10), Lemma 1 and the fact that µreg = µ in a neighborhood

of ∂D, one concludes that

lim
γ→∞

λ0(γ, µ) =
1
2

∫
∂D
∇µ · ndσ.

Part iii. From (3.7)-(3.9) and the assumption that µ and ∇µ vanish on ∂D,

we obtain

(3.11) λ0(γ, µ) =
γ

2(γ − λ0(γ, µ))

∫
D
uλ0(γ,µ)−γ∆µregdx.

By assumption, ∆µreg is continuous on D̄ and coincides with ∆µ in a neigh-

borhood of ∂D. Thus, similar to (3.19) in the proof of part (i) below, we

have

(3.12) lim
γ→∞

γ
1
2

∫
D
uλ0(γ,µ)−γ∆µregdx =

1√
2

∫
∂D

∆µdσ.
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From (3.11), (3.12) and Lemma 1, we conclude that

lim
γ→∞

γ
1
2λ0(γ, µ) =

1
2
√

2

∫
∂D

∆µdσ.

Part i. As the proofs of the other parts have shown, we may ignore any

compactly supported part of µ. Thus, by assumption, we may assume that

µ possesses a continuous density, denoted by µ. From (2.6) we have

(3.13) λ0(γ, µ) = γ

∫
D
uλ0(γ,µ)−γµdx.

Let µ̂ be the harmonic function in D which coincides with µ on ∂D. Using

(2.4), integrating by parts and noting that∫
∂D

uλ0(γ,µ)−γ∇µ̂ ·Ndσ =
∫
∂D
∇µ̂ ·Ndσ =

∫
D

∆ûdx = 0,

where N denotes the outward unit normal on ∂D, we have

(3.14)

∫
D
uλ0(γ,µ)−γµ̂dx =

1
2(γ − λ0(γ, µ))

∫
D
µ̂∆uλ0(γ,µ)−γdx =

1
2(γ − λ0(γ, µ))

∫
∂D

µ̂∇uλ0(γ,µ)−γ ·Ndσ =

1
2(γ − λ0(γ, µ))

∫
∂D

µ∇uλ0(γ,µ)−γ ·Ndσ.

We will show below that

(3.15) lim
γ→∞

γ−
1
2 (∇u−γ ·N)(x) =

√
2, uniformly over x ∈ ∂D.

From (3.14), (3.15) and Lemma 1, we have

(3.16) lim
γ→∞

γ
1
2

∫
D
uλ0(γ,µ)−γµ̂dx =

1√
2

∫
∂D

µdσ.

Now consider γ
1
2

∫
D uλ0(γ,µ)−γ(µ − µ̂)dx. The proof of part (iv) showed

that limγ→∞ γ
1
2

∫
U uλ0(γ,µ)−γdx = 0, for any set U satisfying Ū ⊂ D. Thus,

for any ε > 0,

(3.17)

lim sup
γ→∞

|γ
1
2

∫
D
uλ0(γ,µ)−γ(µ− µ̂)dx| ≤

sup
x∈Dε

|µ(x)− µ̂(x)| lim sup
γ→∞

γ
1
2

∫
D
uλ0(γ,µ)−γdx,
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where Dε is as in the statement of the theorem. In the case that µ = 1 on

∂D, one has µ̂ ≡ 1 and (3.16) gives limγ→∞ γ
1
2

∫
D uλ0(γ,µ)−γdx = 1√

2
|∂D|.

Substituting this in (3.17), using the fact ε > 0 is arbitrary and that µ and

µ̂ are continuous and coincide on ∂D, we obtain

(3.18) lim
γ→∞

γ
1
2

∫
D
uλ0(γ,µ)−γ(µ− µ̂)dx = 0.

Now (3.16) and (3.18) give

(3.19) lim
γ→∞

γ
1
2

∫
D
uλ0(γ,µ)−γµdx =

1√
2

∫
∂D

µdσ,

and thus, from (3.13), we conclude that

lim
γ→∞

γ−
1
2λ0(γ, µ) =

1√
2

∫
∂D

µdσ.

We now return to prove (3.15). Fix a point x0 ∈ ∂D. We begin with a

localization result. For small δ > 0, let (∂D)δ = {x ∈ ∂D : dist(x, x0) < δ}.

Let U ⊂ D be a domain with (∂D)δ ⊂ ∂U . For γ > 0, let f be a continuous

function on ∂U satisfying f(x) = 1, for x ∈ (∂D)δ, and supx∈∂U |f(x)| <∞.

Let v−γ solve the equation

(3.20)

1
2

∆v − γv = 0 in U ;

v = f on ∂U.

Let gγ denote the restriction of u−γ to ∂U . Let Wγ = u−γ − v−γ . Then Wγ

satisfies the equation
1
2

∆W − γW = 0 in U ;

W = gγ − f on ∂U.

Let h(x) be a continuous function on ∂U satisfying h(x) ≥ supγ≥0 |gγ(x)−

f(x)|, for x ∈ ∂U , and h(x) = 0, for x ∈ (∂D)δ. By the maximum principle,

|Wγ | ≤ Ŵ ,

where Ŵ satisfies

(3.21)

1
2

∆Ŵ − γŴ = 0 in U ;

Ŵ = h on ∂U.
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Since Wγ(x0) = Ŵ (x0) = 0, we have

(3.22)

|(∇Wγ ·N)(x0)| = | lim
n→∞

Wγ(xn)
dist(xn, x0)

| ≤ lim
n→∞

Ŵ (xn)
dist(xn, x0)

= (∇Ŵ ·N)(x0) <∞,

where xn approaches x0 from the normal direction. From (3.22) it follows

that

(3.23)
lim
γ→∞

γ−
1
2 (∇u−γ ·N)(x0) =

√
2 if and only if

lim
γ→∞

γ−
1
2 (∇v−γ ·N)(x0) =

√
2, where v−γ solves (3.20).

We now prove a comparison result. Let Di, i = 1, 2, be domains with

smooth boundaries satisfying D1 ⊂ D ⊂ D2 and x0 ∈ ∂Di, i = 1, 2.

Let u(i)
−γ(x) = Ex exp(−γτDi). Either by comparing the stochastic repre-

sentations or by the maximum principle it follows that u(2)
−γ(x) ≤ u−γ(x) ≤

u
(1)
−γ(x), for x ∈ D1. Using this along with the fact that u(i)

−γ(x0) = u−γ(x0) =

1, for i = 1, 2, we obtain

(3.24) (∇u(1)
−γ ·N)(x0) ≤ (∇u−γ ·N)(x0) ≤ (∇u(2)

−γ ·N)(x0).

In light of (3.24), to prove (3.15) it is enough to show that if the curvature

of ∂D at x0 ∈ ∂D is given by R ∈ (−∞,∞), then

(3.25)
lim
γ→∞

γ−
1
2 (∇u−γ ·N)(x0) =

√
2, and the convergence is uniform

over R in any bounded set.

In light of this and (3.23), it suffices to consider the following situation: for

R > 0, we consider du−γ
dr (R), where u−γ is radially symmetric and satisfies

(2.4) and (2.5) with c = −γ and D = AR
2
,R(0) ≡ {x ∈ Rd : R2 < |x| < R}; for

R < 0, we consider −du−γ
dr (R), where u−γ is radially symmetric and satisfies

(2.4) and (2.5) with c = −γ, and D = AR,2R(0) ≡ {x ∈ Rd : R < |x| < 2R};

for R = 0, the boundary is flat, and without loss of generality we consider

−du−γ(0)
dx , where u−γ satisfies (2.4) and (2.5) with c = −γ, and D = (0, 1).

The flat case has been reduced above to a constant coefficient second order

ODE; one solves explicitly and finds that limγ→∞ γ
− 1

2 (−du−γ(0)
dx ) =

√
2. We
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now turn to the case R > 0. Let

(3.26) v−γ(r) = φγ(r) exp(−
√

2γ(R− r)), R
2
≤ r ≤ R,

for some function φγ . For a radial function v(r), one has ∆v = v′′ + d−1
r v′.

Using this with (3.26) one finds that v−γ will solve the equation

(3.27)

1
2

∆v−γ − γv−γ = 0,
R

2
< r < R;

v−γ(R) = 1, v′−γ(R) =
√

2γ,

if φγ solves the equation

(3.28)

1
2
φ′′ + (

√
2γ +

d− 1
2r

)φ′ +
d− 1

2r

√
2γφ = 0,

R

2
< r < R;

φ(R) = 1, φ′(R) = 0.

By the standard theory of linear ODE’s, (3.28) has a unique solution. Fur-

thermore, one has supγ>0 |φγ(R2 )| < ∞. This can be shown by making an

appropriate comparison with the solution ψγ of a constant coefficient ODE

of the form 1
2ψ
′′ + a(γ)ψ′ + b(γ)ψ = 0 with ψ(R) = 1 and ψ′(R) = 0, where

a(γ) and b(γ) are on the order γ
1
2 . One can calculate ψγ explicitly and

show that supγ>0 |ψγ(R2 )| < ∞. It follows then that v−γ(R2 ) is bounded in

γ. Consequently, the {v−γ}γ>0 solve equations of the form (3.20). (The f

in (3.20) will now depend on γ but is uniformly bounded in γ.)

Since γ−
1
2
dv−γ
dr (R) =

√
2 and since (3.27) is an equation of the form (3.20),

it follows from (3.23) that limγ→∞ γ
− 1

2 (∇u−γ ·N)(R) =
√

2. The difference

|(∇u−γ ·N)(R)− (∇v−γ ·N)(R)| is bounded from above by the right hand

side of (3.22), where the function Ŵ solves an equation of the form (3.21)

and depends on R. By taking the supremum of this quantity over R in a

bounded set, one concludes that (3.25) holds. The case R < 0 is dealt with

in an almost identical manner.

�
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4. Proof of Theorem 2

We can’t use Proposition 1 and (2.6) directly to analyze λ0(γ, µ) for small

γ because Ex exp(λD0 τD) = ∞. We make a renormalization. The proof of

Proposition 1 showed that λ0(γ, µ) solves (2.7) for λ. Recall the definition

of F0 in (1.3) and let

(4.1) Vγ = wλ0(γ,µ)−γ −
F0φ0

λD0 + γ − λ0(γ, µ)
.

Using (2.1) and the fact that φ0 is the principal eigenfunction corresponding

to the principal eigenvalue λD0 for the Dirichlet Laplacian, one calculates that

(4.2)

1
2

∆Vγ + (λ0(γ, µ)− γ)Vγ = −1 + F0φ0 in D;

Vγ = 0 on ∂D;∫
D
Vγφ0dx = 0.

Using (4.1) and recalling the definition of G0(µ) in (1.3), one can write (2.7)

with λ = λ0(γ, µ) in the form

γ

∫
D
Vγdµ+

γF0G0(µ)
λD0 + γ − λ0(γ, µ)

= 1,

or equivalently,

(4.3) γ

∫
D
Vγdµ+

F0G0(µ)

1− λ0(γ,µ)−λD0
γ

= 1.

From (4.2) we have limγ→0 Vγ = V0, where V0 is the solution to (1.4). Thus,

it follows from (4.3) that λ0(γ, µ) is differentiable from the right at γ = 0

and that d+λ0
dγ+ (0, µ) = 1−F0G0(µ). In the case that F0G0(µ) = 1, it follows

from (4.3) that if
∫
D V0dµ < 0 (

∫
D V0dµ > 0), then for γ � 1 one has

λ0(γ, µ)− λD0 > 0 (λ0(γ, µ)− λD0 < 0). �
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5. Proof of Theorem 4

A number λ ∈ C will constitute an eigenvalue for Lγ,µ if an only if there

exists a function u vanishing on ∂D satisfying

(5.1) −1
2

∆u+ γu− γc = λu,

where c ≡
∫
D udµ. (Note that since Lγ,µu = λu and u ∈ C0(D̄), the

condition Lγ,µu ∈ C0(D̄) is fulfilled automatically.) Recalling (1.5), the

function 1 is represented in L2(D) by 1 =
∑∞

n=0 Fnφn. We represent a

proposed eigenfunction u ∈ L2(D) by u =
∑∞

n=0 cnφn. In order for u to be

an eigenfunction, it must lie in the domain of the Dirichlet Laplacian; thus

−1
2∆u =

∑∞
n=0 λ

D
n cnφn. Substituting in (5.1) and equating coefficients, we

find that

(5.2) cn(γ + λDn )− cγFn = λcn, n = 0, 1, · · · .

We first show that the condition Eγ,µ(λ) = 1 is necessary and sufficient

for λ 6∈ {γ + ΛDn }∞n=0 to be an eigenvalue. Note that if u is an eigenfunction

for Lγ,,µ and
∫
D udµ = 0, then u is an eigenfunction for −1

2∆ and thus,

for some n and m, u = φm, λDm = ΛDn and u corresponds to the eigenvalue

γ + ΛDn . Consequently we may assume that c 6= 0. From (5.2), one has

cn =
cγFn

λDn + γ − λ
, n = 0, 1, · · · .

Thus,

(5.3) u =
∞∑
n=0

cγFn
γ + λDn − λ

φn.

Using the inner product if µ possesses an L2-density, and using Assumption

1 and the bounded convergence theorem otherwise (recall from the remark

after Assumption 1 that it always holds if d = 1 or 2), we have from (5.3)

that

(5.4)
∫
D
udµ =

∞∑
n=0

cγFnGn(µ)
γ + λDn − λ

.
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On the other hand, 0 6= c =
∫
D udµ. Thus we conclude from (5.4) that

λ 6∈ {γ + λDn }∞n=0 is an eigenvalue if and only if

(5.5)
∞∑
n=0

γFnGn(µ)
γ + λDn − λ

= 1.

Furthermore, it follows that such an eigenvalue is simple, since the corre-

sponding eigenfunction has been uniquely specified (up to a multiplicative

constant).

We now consider the possibility that λ = γ + ΛDn0
is an eigenvalue, where

n0 is a nonnegative integer. Let Sn0 denote the dn0-dimensional eigenspace

corresponding to the eigenvalue Λn0 of the Dirichlet Laplacian. Let SGn0
(µ) =

{v ∈ Sn0 :
∫
D vdµ = 0} and let SFn0

= {v ∈ Sn0 :
∫
D vdx = 0}. Clearly, each

of these latter two spaces is either (dn0−1)-dimensional or dn0-dimensional.

Consider first the case that SFn0
is (dn0 − 1)-dimensional. There exists an

m0 such that λDm0
= ΛDn0

and Fm0 =
∫
D φm0dx 6= 0. But then (5.2) will

hold with n = m0 and λ = γ + ΛDn0
if and only if c = 0. But if c = 0 and

λ = γ+ΛDn0
, then the argument at the beginning of the second paragraph of

the proof forces one to conclude that the eigenfunction u belongs to SGn0
(µ).

Consequently, the multiplicity of ΛDn0
will be either dn0−1 or dn0 , depending

on which of these numbers is the dimension of SGn0
(µ). In particular, if

n0 = 0, then dn0 = 1 and SFn0
= SGn0

(µ) = {0} since φ0 > 0. Thus,

γ + λD0 = γ + ΛD0 can never be an eigenvalue.

Now consider the case that SFn0
is dn0-dimensional. In this case, Fm = 0,

for all m such that λDm = ΛDn0
. We first look for eigenfunctions for which

c 6= 0. Solving (5.2) gives

cn = cγFn
λDn +γ−λ , for all n such that λDn 6= ΛDn0

;

cn is arbitrary, for all n such that λDn = ΛDn0
.
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Writing cn = ckn, for n such that λDn = ΛDn0
, and employing the same

reasoning as in (5.3)-(5.5) yields

(5.6)
∑

n:λDn 6=ΛDn0

γFnGn(µ)
λDn − ΛDn0

+
∑

n:λDn =ΛDn0

knGn(µ) = 1.

There are two cases to consider—when SGn0
(µ) is (dn0 − 1)-dimensional and

when it is dn0-dimensional. In the latter case, Gn(µ) = 0, for all n satisfying

λDn = ΛDn0
. Thus, (5.6) reduces to Eγ,µ(γ + ΛDn0

) = 1. If this equation is

satisfied, we obtain one eigenfunction with c 6= 0, and if it is not satisfied,

we obtain no such eigenfunctions. Since SGn0
(µ) is dn0-dimensional, there are

also dn0 additional linearly independent eigenfunctions with c = 0. Thus,

the multiplicity is either dn0+1 or dn0 , depending on whether or not Eγ,µ(γ+

ΛDn0
) = 1.

Now consider the case that SGn0
(µ) is (dn0 − 1)-dimensional. Since we

may choose the orthonormal basis {φm}{m:λDm=ΛDn0
} corresponding to the

eigenspace Sn0 however we like, we may assume without loss of generality,

that Gm(µ) =
∫
D φmdµ = 0, for all but one of the m for which λDm = ΛDn0

.

Denote the single m for which this is not true by m0. Then (5.6) reduces to∑
n:λDn 6=ΛDn0

γFnGn(µ)
λDn − ΛDn0

+ km0Gm0(µ) = 1.

The above equation is uniquely solvable for km0 , and thus yields one eigen-

function with c 6= 0. Since SGn0
(µ) is (dn0 − 1)-dimensional, there are also

dn0 − 1 additional linearly independent eigenfunctions with c = 0; thus the

multiplicity is dn0 . �

6. Proof of Theorem 3

Part i. By Proposition 1 and Theorem 4 it follows that λ0(γ, µ) is equal

to the smallest root of the equation Eγ,µ(λ) = 1, where Eγ,µ is as in (1.6).

The function 1 has the L2-representation 1 =
∑∞

n=0 Fnφn. Since we are

assuming that µ has an L2-density, it follows that
∫
D 1dµ =

∑∞
n=0 FnGn(µ);
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thus,

(6.1)
∞∑
n=0

FnGn(µ) =
∞∑
n=0

∫
D
PΛDn

1dµ = 1.

First consider the case that
∫
D PΛDn

1dµ = 0, for all n ≥ 1. Then it follows

from (6.1) that
∫
D PΛD0

1dµ = 1, and we have Eγ,µ(λ) = γ
γ+λD0 −λ

. Thus,

Eγ,µ(λD0 ) = 1, for all γ > 0, and we conclude that λ0(γ, µ) = λD0 , for all

γ > 0.

Now consider the case that
∫
D PΛDn

1dµ ≥ 0, for all n ≥ 1, and
∫
D PΛDn

1dµ >

0, for some n ≥ 1. Recall that
∫
D PΛD0

1dµ > 0. By Proposition 1, one has

λ0(γ, µ) < γ+λD0 . To prove that λ0(γ, µ) is strictly monotone increasing in

γ, it suffices to show that Eγ,µ(λ) is increasing as a function of λ ∈ (0, γ+λD0 )

and that

(6.2)
d (Eγ,µ(λ))

dγ
|λ=λ0(γ,µ) < 0, for γ > 0.

Trivially, one has dEγ,µ(λ)
dλ > 0, for λ ∈ (0, γ + λD0 ). It remains to show that

(6.2) holds.

Differentiating Eγ,µ(λ) with respect to γ gives

(6.3)
d (Eγ,µ(λ))

dγ
|λ=λ0(γ,µ) =

∞∑
n=0

(ΛDn − λ0(γ, µ))
∫
D PΛDn

1dµ
(γ + ΛDn − λ0(γ, µ))2

.

Subtracting the equation

1 = Eγ,µ(λ0(γ, µ)) =
∞∑
n=0

γ
∫
D PΛDn

1dµ
γ + ΛDn − λ0(γ, µ)

from (6.1) gives

(6.4)
∞∑
n=0

(ΛDn − λ0(γ, µ))
∫
D PΛDn

1dµ
γ + ΛDn − λ0(γ, µ)

= 0,

which can be rewritten as

(6.5)

γ
∞∑
n=0

(ΛDn − λ0(γ, µ))
∫
D PΛDn

1dµ
(γ + ΛDn − λ0(γ, µ))2

= −
∞∑
n=0

(ΛDn − λ0(γ, µ))2
∫
D PΛDn

1dµ
(γ + ΛDn − λ0(γ, µ))2

.

Now (6.2) follows from (6.3), (6.5) and the assumption on {
∫
D PΛDn

1dµ}∞n=1.
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We now turn to the case that
∫
D PΛDn

1dµ ≤ 0, for all n ≥ 1, and∫
D PΛDn

1dµ < 0, for some n ≥ 1. To prove that λ0(γ, µ) is strictly monotone

decreasing in γ, it suffices to show that Eγ,µ(λ) is increasing as a function

of λ ∈ (0, γ + λD0 ) and that

(6.6)
d (Eγ,µ(λ))

dγ
|λ=λ0(γ,µ) > 0, for γ > 0.

We have

(6.7)
dEγ,µ
dλ

(λ) =
∞∑
n=0

∫
D

γPΛDn
1dµ

(γ + ΛDn − λ)2
.

By (6.1),

(6.8)
∫
D
PΛD0

1dµ >
∞∑
n=1

(−
∫
D
PΛDn

1dµ).

Since γ
(γ+ΛDn −λ)2

is decreasing in n for λ ∈ (0, γ+ΛD0 ), and since−
∫
D PΛDn

1dµ ≥

0, for n ≥ 1, it follows from (6.8) that

γ

(γ + ΛD0 − λ)2

∫
D
PΛD0

1dµ >
∞∑
n=1

γ

(γ + ΛDn − λ)2
(−

∫
D
PΛDn

1dµ);

thus, the right hand side of (6.7) is positive.

The proof of (6.6) is almost identical to the proof of (6.2).

Part ii. By Theorem 4, we must show that the equation Eγ,µ(λ) = 1, where

Eγ,µ is as in (1.6), has no non-real root λ. Writing λ = α+iβ and multiplying

each summand in Eγ,µ(α+ iβ) by the the conjugate of its denominator, we

have

Eγ,µ(α+ iβ) =
∞∑
n=0

γ(
∫
D PΛDn

1dµ) (γ + ΛDn − α+ iβ)
(γ + ΛDn − α)2 + β2

.

Thus, when β 6= 0, the equation Eγ,µ(α + iβ) = 1 is equivalent to the

equations

(6.9)

∞∑
n=0

γΛDn (
∫
D PΛDn

1dµ)
(γ + ΛDn − α)2 + β2

= 1;

∞∑
n=0

∫
D PΛDn

1dµ
(γ + ΛDn − α)2 + β2

= 0.
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Consider first the case that
∫
D PΛDn

1dµ ≥ 0, for all n ≥ 1. Since it is always

true that
∫
D PΛD0

1dµ > 0, the second equation in (6.9) cannot hold. Now

consider the case that
∫
D PΛDn

1dµ ≤ 0 for all n ≥ 1. If the second equation

in (6.9) holds, then one has∫
D PΛD0

1dµ

(γ + ΛD0 − α)2 + β2
=
∞∑
n=1

(−
∫
D PΛDn

1dµ)
(γ + ΛDn − α)2 + β2

.

Using this and the fact that ΛDn is increasing in n, we obtain

γΛD0
∫
D PΛD0

1dµ

(γ + ΛD0 − α)2 + β2
<

∞∑
n=1

γΛDn (−
∫
D PΛDn

1dµ)
(γ + ΛDn − α)2 + β2

;

thus the first equation in (6.9) cannot hold.

Part iii. By assumption, all of the eigenvalues {λDn }∞n=0 are distinct, and

FnGn(µ) > 0, for all n; thus, it follows from Theorem 4 that the set of eigen-

values of Lγ,µ coincides with the set of roots λ of the equation Eγ,µ(λ) = 1.

The condition FnGn(µ) > 0, for all n, guarantees that Eγ,µ(λ) is increasing

for λ ∈ (0, γ + λD0 ) and satisfies Eγ,µ(0) < 1 and Eγ,µ((γ + λD0 )−) =∞, and

that for each n ≥ 0, Eγ,µ(λ) is increasing for λ ∈ (γ + λDn , γ + λDn+1) and

satisfies Eγ,µ((γ+λDn )+) = −∞ and Eγ,µ((γ+λDn+1)−) =∞. Thus, there is

exactly one root between 0 and γ+λD0 and exactly one root between γ+λDn

and γ + λDn+1, for n ≥ 0. Consequently, γ + λDn−1 < λn(γ, µ) < γ + λDn , for

n ≥ 1. �

Appendix A. The semigroup T γ,µt and its connection to Lγ,µ

We first show that −Lγ,µ, defined on C2(D̄)∩{u : u, Lγ,µu ∈ C0(D̄)}, and

then extended appropriately, is the infinitesimal generator of T γ,µt . From the

definition of the Brownian motion with random jumps we have

(A.1)
T γ,µt u(x) = exp(−γt)

∫
D
pD(t, x, y)u(y)dy+∫ t

0
γ exp(−γs)

∫
D
pD(t− s, µ, y)u(y)dyds,

where pD(t, x, y) is the transition sub-probability density for Brownian mo-

tion in D starting at x ∈ D and killed at the boundary. A standard result for
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the semigroup corresponding to Brownian motion (without jumps) allows us

to conclude that for u ∈ C2(D̄)∩C0(D̄), one has limt→0

∫
D p

D(t,x,y)u(y)dy−u(x)

t =
1
2(∆u)(x), and the convergence is uniform over x ∈ D̄. Using this and

(A.1), we obtain limt→0
T γ,µt u(x)−u(x)

t = 1
2(∆u)(x) − γu(x) + γ

∫
D udµ =

−(Lγ,µu)(x), and the convergence is uniform over x ∈ D̄. Furthermore, by

assumption, −Lγ,µu ∈ C0(D̄). Thus, the infinitesimal generator of T γ,µt is

indeed an extension of −Lγ,µ on C2(D̄) ∩ {u : u, Lγ,µu ∈ C0(D̄)}.

We now turn to compactness.

Proposition 2. The semigroup T γ,µt is compact.

Proof. Let {Zn}∞n=1 be a sequence of IID random variables distributed ac-

cording to the exponential distribution with parameter γ, and let Sn =∑n
j=1 Zj . Denote probabilities for these random variables by Q. From the

definition of the Brownian motion with jumps, it follows that

T γ,µt f(x) = exp(−γt)
∫
D
pD(t, x, y)f(y)dy+

∞∑
n=1

∫ t

0

∫
D
pD(t− s, µ, y)f(y)Q(Sn = s, Sn+1 > t)dyds ≡

exp(−γt)
∫
D
pD(t, x, y)f(y)dy + T γ,µ;∞

t f(x).

It is known [6] that for any ε > 0, pD(t, x, y) is continuous on [ε,∞) ×

D̄ × D̄, and thus uniformly continuous on [ε, T ] × D̄ × D̄, for 0 < ε <

T < ∞. Thus the transformation f(x) → exp(−γt)
∫
D p

D(t, x, y)f(y)dy

maps bounded sets in C0(D̄) to equicontinuous and bounded sets in C0(D̄);

consequently, this transformation is compact. It remains to show that T γ,µ;∞
t

is a compact map.

For m ≥ 1, define the map T γ,µ;m
t by

T γ,µ;m
t f(x) =

m∑
n=1

∫ t

0

∫
D
pD(t− s, µ, y)f(y)Q(Sn = s, Sn+1 > t)dyds.

Then we have |||T γ,µ;∞
t − T γ,µ;m

t || ≤
∑∞

n=m+1Q(Sn ≤ t, Sn+1 > t) =

Q(Sm+1 ≤ t). Thus, T γ,µ;m
t converges in the operator norm to T γ,µ;∞

t .
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Consequently, we need only show that the map Un, defined by

Unf(x) =
∫ t

0

∫
D
pD(t− s, µ, y)f(y)Q(Sn = s, Sn+1 > t)dyds,

is compact. Define the map Un,ε by

Un,εf(x) =
∫ t−ε

0

∫
D
pD(t− s, µ, y)f(y)Q(Sn = s, Sn+1 > t)dyds.

Then ||Un − Un,ε|| ≤ Q(Sn ∈ [t − ε, t]). Thus, Un,ε converges to Un in the

operator norm and consequently it suffices to show that Un.ε is compact. By

the above noted uniform continuity of pD(t, x, y), Un,ε maps bounded sets

in C0(D̄) to equicontinuous and bounded sets in C0(D̄); consequently it is

compact.

�
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