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Abstract.
If a Brownian motion is physically constrained to the interval [0, γ] by reflecting

it at the endpoints, one obtains an ergodic process whose exponential rate of conver-

gence to equilibrium is π2

2γ2 . On the other hand, if Brownian motion is conditioned

to remain in (0, γ) up to time t, then in the limit as t → ∞ one obtains an ergodic

process whose exponential rate of convergence to equilibrium is 3π2

2γ2 . A recent paper

[2] considered a different kind of physical constraint—when the Brownian motion

reaches an endpoint, it is catapulted to the point pγ, where p ∈ (0, 1
2
], and then con-

tinues until it again hits an endpoint at which time it is catapulted again to pγ , etc.
The resulting process—Brownian motion physically returned to the point pγ—is er-
godic and the exponential rate of convergence to equilibrium is independent of p and

equals 2π2

γ2 . In this paper we define a conditioning analog of the process physically

returned to the point pγ and study its rate of convergence to equilibrium.

1. Introduction and statement of results. Consider a free Brownian particle

that one wants to constrain to the interval [0, γ] in such a way that the resulting

process is Markovian and ergodic. There are two classical ways to do this—one via

a physical constraint and one constrained via conditioning. For the physical con-

straint, one introduces reflection at the two endpoints to obtain reflecting Brownian

motion. The infinitesimal generator of this process is the Neumann Laplacian on

[0, γ], which we denote by LN . It is the closure of the operator L = 1
2

d2

dx2 in [0, γ]

on the domain {u ∈ C2([0, γ]) : u′(0) = u′(γ) = 0}. For the conditioning method,
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we need to introduce a bit of notation. Denote paths in C([0,∞), R) by ω and

denote the value of a path at time t by X(t) = X(t, ω). Let Px be Wiener measure

on C([0,∞), R) supported on paths satisfying X(0) = x. Define the first exit time

from [0, γ] by T0,γ = inf{t ≥ 0 : X(t) 6∈ (0, γ)}. For t > 0, one considers the condi-

tioned process Px(X(·) ∈ ·|T0,γ > t). This process is a time inhomogeneous Markov

process, and as t →∞, it converges weakly to a limiting diffusion process that we

call Brownian motion conditioned to remain in (0, γ), and which can be described

as follows [5]. Let LD denote the Dirichlet Laplacian on [0, γ]. It is the closure of

the operator L = 1
2

d2

dx2 in [0, γ] on the domain {u ∈ C2([0, γ]) : u(0) = u(γ) = 0}.
The principal eigenvalue for −LD is π2

2γ2 and the corresponding eigenfunction is

φ0(x) = sin πx
γ . The limiting diffusion process obtained by the above described

conditioning is generated by (LD + π2

2γ2 )φ0 , the h–transform of LD + π2

2γ2 via the

h–function φ0. (The h-transform Aψ of an operator of the form A = 1
2

d2

dx2 +b d
dx +V

via the function ψ is defined by Aψf = 1
ψA(ψf) which, when written out, gives

Aψ = 1
2

d2

dx2 + b d
dx + ψ′

ψ
d
dx + Aψ

ψ .) When written out explicitly, one finds that a core

for the generator of the process is L = 1
2

d2

dx2 + φ′0
φ0

d
dx = 1

2
d2

dx2 + π
γ cot πx

γ
d
dx on the

domain {u ∈ C2
b ((0, γ))}.

Consider now the invariant probability density and the spectral gap for the

operators LN and (LD + π2

2γ2 )φ0 , which correspond respectively to the reflected

Brownian motion on [0, γ] and to the Brownian motion conditioned to remain in

(0, γ). The principal eigenvalue for both −LN and −(LD+ π2

2γ2 )φ0 is of course 0, and

the corresponding eigenfunction is 1. The invariant probability density solves the

adjoint equation; that is, it is the eigenfunction corresponding to the eigenvalue 0

for the adjoint operator. Now −LN is self-adjoint while the adjoint of −(LD+ π2

2γ2 )φ0

is seen to be −(LD + π2

2γ2 )
1

φ0 . Denoting the invariant probability densities by µ(N)

and µ(D), we find that

µ(N)(x) =
1
γ

and

µ(D)(x) =
2
γ

sin2 πx

γ
.
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The spectrum is invariant under h–transforms; thus the spectrum of (LD + π2

2γ2 )φ0

coincides with that of LD + π2

2γ2 . (Indeed, (LD + π2

2γ2 )φ0u = −λu if and only if

(LD + π2

2γ2 )(φ0u) = −λφ0u, and φ0u satisfies the Dirichlet boundary condition if u

is bounded.) The first positive eigenvalue for −LN is given by λ
(N)
1 = π2

2γ2 , while

for −(LD + π2

2γ2 ) it is given by λ
(D)
1 − π2

2γ2 = 2π2

γ2 − π2

2γ2 = 3π2

2γ2 . Since the principal

eigenvalue is 0, this first positive eigenvalue is the spectral gap. As is well-known,

the spectral gap controls the rate of convergence to equilibrium. Letting p(N)(t, x, y)

and p(D)(t, x, y) denote the transition probability densities for the two processes,

one can show that

lim
t→∞

1
t

log sup
x,y∈(0,γ)

|p(N)(t, x, y)− 1
γ
| = −1

2
π2

γ2
,

and

lim
t→∞

1
t

log sup
x,y∈(0,γ)

|p(D)(t, x, y)− 2
γ

sin2 πy

γ
| = −3

2
π2

γ2
.

(To prove this, one writes the transition probability density in an eigenfunction

expansion as in the proof of (2.11) below. However, in the present case unlike in

(2.11), all the eigenvalues and eigenfunctions can be calculated explicitly.) Thus,

the exponential rate of convergence to equilibrium for Brownian motion conditioned

to remain in (0, γ) is three times the rate for reflected Brownian motion.

Now consider the following alternative physical conditioning. Fix p ∈ (0, 1
2 ]. The

Brownian particle starts from some point in (0, γ) and runs freely until it hits 0 or

γ. When it hits one of these endpoints, the particle is immediately catapulted to

pγ from where it continues its Brownian motion until it again hits an endpoint and

is again catapulted to pγ, etc. We will call this process Brownian motion physically

returned to the point pγ. (We consider p ∈ (0, 1
2 ] instead of in (0, 1) because the

cases p and 1 − p are equivalent by symmetry.) This process, which is of course

discontinuous, was investigated in a recent paper [2]. Among other things, it was

shown that the process is an ergodic Markov process with invariant measure

µphy,p(x) =

{
2

ργ2 x, if y ∈ [0, pγ];
2

(1−p)γ2 (γ − x), if x ∈ [pγ, γ].
3



Furthermore, letting pphy,p(t, x, y) denote the corresponding transition probability

density, it was shown that

lim
t→∞

1
t

log sup
x,y∈(0,γ)

|p(phy,p)(t, x, y)− µ(phy,p)(y)| = −2π2

γ2
.

(Actually, in [2] the authors have π2

2γ2 instead of 2π2

γ2 on the right hand side above;

they didn’t realize that the two larger order terms that ostensibly contribute to the

slower rate of decay in fact cancel one another.)

We were intrigued by the fact that the exponential rate of convergence to equi-

librium for Brownian motion physically returned to pγ is independent of p. Note

that the exponential rate of convergence to equilibrium is four times as fast as that

of reflected Brownian motion and a little faster than that of Brownian motion con-

ditioned to remain in (0, γ). In light of the above considerations, we were interested

in constructing a Markov process which would constitute the conditioning analog

of the Brownian motion physically returned to a point, and to investigate its spec-

tral gap and rate of convergence to equilibrium. The process in question should be

such that when it is in (0, pγ) it looks like Brownian motion conditioned to hit pγ

before 0, and when it is in (pγ, γ) it looks like Brownian motion conditioned to hit

pγ before γ. Let Ty = inf{t ≥ 0 : X(t) = y}. Let ψ1(x) = Px(Tpγ < T0) = x
pγ ,

for x ∈ [0, pγ] and let ψ2(x) = Px(Tpγ < Tγ) = γ−x
(1−p)γ , for x ∈ [pγ, γ]. As is

well-known [6, chapter 7], Brownian motion on (0, pγ) conditioned to hit pγ before

hitting 0 corresponds to the h–transformed operator ( 1
2

d2

dx2 )ψ1 = 1
2

d2

dx2 + 1
x

d
dx and

Brownian motion on (pγ, γ) conditioned to hit pγ before hitting γ corresponds to

the h–transformed operator ( 1
2

d2

dx2 )ψ2 = 1
2

d2

dx2 − 1
γ−x

d
dx . Thus the process we are

looking for is the solution to the martingale problem for the operator

(1.1) Lp =

{
1
2

d2

dx2 + 1
x

d
dx , for x ∈ (0, pγ)

1
2

d2

dx2 − 1
γ−x

d
dx , for x ∈ (pγ, γ).

Note that the drift has a discontinuity at pγ. However, since the drift is bounded in a

neighborhood of pγ, this discontinuity causes no problem; the martingale problem

is well-posed for bounded measurable drifts and continuous diffusion coefficients
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[10]. (The drift is unbounded at the endpoints but this too is no problem; indeed,

this is what prevents the process from leaving (0, γ).) We will call this process

Brownian motion returned to the point pγ by conditioning. The process can also be

obtained via a procedure similar to the one used to obtain the Brownian motion

conditioned to remain in (0, γ). For δ > 0, let τ
[pγ,pγ+δ]
1 = inf{t ≥ 0 : X(t) = pγ},

σ
[pγ,pγ+δ]
n = inf{t > τ

[pγ,pγ+δ]
n : X(t) = pγ + δ} and τ

[pγ,pγ+δ]
n+1 = inf{t > σ

[pγ,pγ+δ]
n :

X(t) = pγ}, for n ≥ 1. Then σ
[pγ,pγ+δ]
n is the time of the n-th upcrossing of the

interval [pγ, pγ + δ]. Instead of conditioning on T0,γ > t and letting t → ∞, as

was done for Brownian motion conditioned to remain in (0, γ), we condition on

σ
[pγ,pγ+δ]
n < T0,γ and let n →∞. The limiting process will not be Markovian, but

if we then let δ → 0 we obtain the desired process. We have the following result.

Let C([0,∞); (0, γ)) denote the space of continuous functions X(t) = X(t, ω) on

[0,∞) with values in (0, γ) and let Ft, t ≥ 0 denote the standard filtration.

Proposition 1. Let P cond,p
x , x ∈ (0, γ), denote the probability measures on

C([0,∞); (0, γ)) corresponding to the Brownian motion returned to the point pγ

by conditioning; that is, P cond,p
x is the solution to the martingale problem for the

operator in (1.1). Then P cond,p
x can be obtained as the following weak limit:

P cond,p
x (·) = lim

δ→0
lim

n→∞
P (· |σ[pγ,pγ+δ]

n < T0,γ).

Remark. One can of course work just as well with upcrossings of [pγ− δ1, pγ + δ2]

with δ1, δ2 ≥ 0 and δ1 + δ2 > 0, and then let δ1, δ2 → 0.

An alternative way to characterize the process under consideration is in terms

of the Radon-Nikodym derivative of P cond,p
x with respect to Wiener measure Px,

which as will be seen below, can be written in terms of the local time at pγ. Let

lxt = lxt (ω) denote the local time at x of a Brownian path X(·, ω) up to time t. That

is, lxt (ω) is the density of the occupation measure L(·, ω) =
∫ t

0
1(·)(X(s, ω))ds with

respect to Lebesgue measure.

Proposition 2.

dP cond,p
x

dPx

∣∣
Ft∧T0,γ

=
ψp(X(t ∧ T0,γ))

ψp(x)
exp(

lpγ
t∧T0,γ

2γp(1− p)
),
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where

(1.2) ψp(x) =

{
x
pγ , for x ∈ [0, pγ],

γ−x
(1−p)γ , for x ∈ [pγ, γ].

Remark. Note that the Radon-Nikodym derivative “rewards” paths that spend

a lot of time at pγ (through the term exp(
lpγ
t∧T0,γ

2γp(1−p) )), and “penalizes” paths that

stray away from pγ toward the endpoints (through the term ψp(X(t ∧ T0,γ))).

We will prove the following theorem. Let pcond,p(t, x, y) denote the transition

probability density for Brownian motion returned to the point pγ by conditioning.

Theorem 1. Brownian motion returned to the point pγ by conditioning has in-

variant probability density given by

µcond,p(x) =

{ 3x2

p2γ3 , if 0 < x ≤ pγ;
3(γ−x)2

(1−p)2γ3 , if pγ ≤ x < γ.

One has

lim
t→∞

1
t

log sup
x,y∈(0,γ)

|p(cond,p)(t, x, y)− µ(cond,p)(y)| = −Q(p)
γ2

,

where Q(p) is a continuous, strictly increasing function on (0, 1
2 ] satisfying

Q(0+) =
1
2
κ2

0π
2 = (1.022...)π2,

where κ0 = 1.430... is the smallest positive root of tan πx = πx, and

Q(
1
2
) = 2π2.

In fact, for p ∈ (0, 1
2 ), Q(p) = q2

2 , where q is the smallest positive root of the

equation
q sin q

sin pq sin(1− p)q
=

1
p(1− p)

.

The theorem allows us to conclude that for Brownian motion returned to a point

by conditioning, the exponential rate of convergence to equilibrium depends on the

particular point, unlike in the case of Brownian motion physically returned to a
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point. For p = 1
2 , the exponential rate of convergence to equilibrium is equal to

that of Brownian motion physically returned to a point, but for all other p the rate

is slower. Even the slowest rate is more than twice as fast as the rate for reflected

Brownian motion. For p sufficiently close to 0 (sufficiently close to 1
2 ), the rate is

less than (greater than) that of Brownian motion conditioned to remain in (0, γ).

Let

(1.3) Ap = −1
2

d2

dx2
− 1

2γp(1− p)
δpγ(x)

denote the one-dimensional Schrodinger operator on [0, γ] with δ-potential Vp(x) =

− 1
2γp(1−p)δpγ(x) and with the Dirichlet boundary condition. More precisely, Ap is

defined via the quadratic form q(φ) = 1
2

∫ γ

0
(φ′(x))2dx − 1

2γp(1−p)φ
2(pγ) operating

on functions φ ∈ H1
0 ((0, γ)). See [7, Theorem X.17 (p. 167) and example 3 (page

168)]. The following result is an immediate corollary of the proof of Theorem 1.

Corollary 1. Let λ0(p) and λ1(p) denote the first two eigenvalues of the Schrodinger

operator Ap in (1.3) with the Dirichlet boundary condition. Then λ0(p) = 0 and

λ1(p) = Q(p)
γ2 , where Q is as in Theorem 1.

Remark. Consider a one-dimensional Schrodinger operator of the form A = − 1
2

d2

dx2 +

V on [0, γ] with the Dirichlet boundary condition, and denote its first two eigenval-

ues by λ0 and λ1. One calls V a single-well potential if there exists a c ∈ [0, γ] such

that V is nonincreasing on [0, c] and nondecreasing on [c, γ]. The point c is called

the transition point. It is known that if V is a single-well potential with transition

point γ
2 or if V is a convex, single-well potential, then the spectral gap λ1 − λ0

satisfies the following inequality ([1,3,4]):

(1.4) λ1 − λ0 ≥ 3π2

2γ2
,

and equality holds if and only if V is constant. Note that the potential Vp(x) =

− 1
2γp(1−p)δpγ(x) is a nonconvex, single-well potential with transition point pγ. By

(1.4) it follows that λ1( 1
2 ) − λ0( 1

2 ) ≥ 3π2

2γ2 , and in fact by Corollary 1 we have
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λ1( 1
2 )− λ0( 1

2 ) = 2π2

γ2 . On the other hand, the inequality λ1(p)− λ0(p) ≥ 3π2

2γ2 does

not hold for p sufficiently close to 0.

The two propositions and the theorem will be proved in the next section.

2. Proof of Results.

Proof of Proposition 1. For ease of notation we will write τ δ
n for τ

[pγ,pγ+δ]
n and σδ

n for

σ
[ργ,ργ+δ]
n . For n ≥ 1, let Fσδ

n

τδ
n

= σ(X(t), τ δ
n < t ≤ σδ

n) and Fτδ
n+1

σδ
n

= σ(X((t), σδ
n <

t ≤ τ δ
n+1). Also, define Fτδ

1
σδ
0

= σ(X(t), 0 ≤ t ≤ τ δ
1 ). Let P

(n,δ)
x (X(·) ∈ ·) ≡

P (X(·) ∈ ·|σδ
n < T0,γ). It follows from the definitions that for m ≤ n, the process

corresponding to P
(n,δ)
x , restricted to Fσδ

m

τδ
m

, is Brownian motion conditioned to hit

pγ + δ before hitting 0. This conditioned Brownian motion on (0, pγ + δ) is the

diffusion corresponding to the h-transformed operator ( 1
2

d2

dx2 )ψ1δ = 1
2

d2

dx2 + 1
x

d
dx on

(0, pγ + δ), where ψ1,δ(x) = Px(Tpγ+δ < T0) = x
pγ+δ . Note that this operator has

the same form as has the restriction of Lp (in (1.1)) to the interval (0, pγ). Thus,

for f ∈ C∞0 (R) and m ≤ n,

(2.1) f(X(τ δ
m ∨ (t ∧ σδ

m)))−
∫ τδ

m∨(t∧σδ
m)

τδ
m

Lpf(X(s))ds is a P (n,δ)
x − martingale.

Similarly, for m < n, it follows that on Fτδ
m+1

σδ
m

, the process corresponding to P
(n,δ)
x

is Brownian motion conditioned to hit pγ before hitting γ. This conditioned Brown-

ian motion on (pγ, γ) is the diffusion corresponding to the h-transformed operator

( 1
2

d2

dx2 )ψ2 = 1
2

d2

dx2 − 1
γ−x

d
dx on (pγ, γ), where ψ2(x) = Px(Tpγ < Tγ) = γ−x

(1−p)γ .

This operator is the restriction of Lp (in (1.1)) to the interval (pγ, γ). Thus, for

f ∈ C∞0 (R) and m < n,

(2.2) f(X(σδ
m∨(t∧τ δ

m+1)))−
∫ σδ

m∨(t∧τδ
m+1)

σδ
m

Lpf(X(s))ds is a P (n,δ)
x − martingale.

Since P
(n,δ)
x |F

σδ
m

= P
(m,δ)
x |F

σδ
m

, for m < n, and since limn→∞ P
(n,δ)
x (σδ

n ≤ t) = 0,

for all t ≥ 0, it follows that there exists a measure P
(δ)
x on σ(∪∞n=1Fσδ

n
) such that

P
(δ)
x |F

σδ
n

= P
(n,δ)
x |F

σδ
n

[10, Theorem 1.3.5]. Since limn→∞ σδ
n = ∞ a.s. [P (δ)

x ], it

follows that σ(∪∞n=1Fn)=σ(∪∞n=1Fσδ
n
); thus, P

(δ)
x is defined on F∞.
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From (2.1) and (2.2), it follows that for f ∈ C∞0 (R),

(2.3) f(X(t))−
∫ t

0

Lpf(X(s))1[pγ,pγ+δ]c(X(s))ds−B
(δ)
f (t) is a P (δ)

x − martingale,

where B
(δ)
f (t) satisfies

(2.4)
|B(δ)

f (t)| ≤ M

∫ t

0

I[pγ,pγ+δ](X(s))ds,

with M = sup
x∈[pγ,pγ+δ]

max{ 1
x
|f ′(x)|, 1

γ − x
|f ′(x)|, 1

2
|f ′′(x)|}.

From (2.3), it is clear that one can find a constant Af such that g(X(t)) − Af t is

a P
(δ)
x -submartingale for all small δ > 0 and all translates g of f (that is, g(·) =

f(x0 + ·) for some x0 ∈ R). It then follows from [10, Theorem 1.4.6] that the

measures P
(δ)
x are tight. From (2.4), it follows that limδ→0 P

(δ)
x (|B(δ)

f (t)| > ε) =

0, for all ε > 0 and t > 0. Thus, letting δ → 0 and using (2.3), we conclude

that f(X(t)) − ∫ t

0
Lpf(X(s))ds is a Q-martingale for every accumulation point Q

of {P (δ)
x }. This completes the proof since there exists a unique solution to the

martingale problem for the operator Lp in (1.1). ¤

Proof of Proposition 2. The drift in (1.1) is given by ψ′p
ψp

, where ψp is as in (1.2).

Thus, from Girsanov’s theorem [6,9,10] it follows that

(2.5)
dP cond,p

x

dPx

∣∣
Ft∧T0,γ

= exp(
∫ t∧T0,γ

0

ψ′p
ψp

(X(s))dX(s)− 1
2

∫ t∧T0,γ

0

(
ψ′p
ψp

)2(X(s))ds).

We have ψ′p((pγ)+) − ψ′p((pγ)−) = − 1
γp(1−p) . Furthermore, ψ′′p (x) = 0 for x 6=

pγ. Thus, in the distributional sense, ψ′′p (x) = − 1
γp(1−p)δpγ(x), where δy(·) is the

Dirac delta-function at y. In particular then, ψ′′p (x)

2ψp(x) = − 1
2γp(1−p)δpγ(x). Thus,

the generalized Ito formula for functions whose second derivatives are measures [9,

IV-45] gives

(2.6)

∫ t∧T0,γ

0

ψ′p
ψp

(X(s))dX(s) = log
ψp(X(t ∧ T0,γ))

ψp(x)
+

1
2

∫ t∧T0,γ

0

(
ψ′p
ψp

)2(X(s))ds

+
1

2γp(1− p)
lpγ
t∧T0,γ

.

Substituting (2.6) into (2.5), we obtain

dP cond,p
x

dPx

∣∣
Ft∧T0,γ

=
ψp(X(t ∧ T0,γ))

ψp(x)
exp(

lpγ
t∧T0,γ

2γp(1− p)
).
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Proof of Theorem 1. The Brownian motion returned to the point pγ by conditioning

corresponds to the operator Lp in (1.1). Recall from the proof of Proposition 2 that
ψ′′p (x)

2ψp(x) = − 1
2γp(1−p)δpγ(x), where ψp is as in (1.2). Consequently we can write the

operator Lp as an h-transform in the following way:

(2.7) Lp = (
1
2

d2

dx2
+

1
2γp(1− p)

δpγ(x))ψp .

We need to impose the Dirichlet boundary condition on the operator 1
2

d2

dx2 +

1
2γp(1−p)δpγ(x) since ψp vanishes at 0 and γ. Note then that

(2.7′) Lp = (−Ap)ψp ,

where Ap is the operator defined in the paragraph containing (1.3). It is easy

to check that the adjoint of an operator of the form Ah is Ã 1
h . Since 1

2
d2

dx2 +

1
2γp(1−p)δpγ(x) is self adjoint, we have L̃p = ( 1

2
d2

dx2 + 1
2γp(1−p)δpγ(x))

1
ψp . The in-

variant probability density µ(cond,p) must solve L̃pµ
(cond,p) = 0. Thus, µ(cond,p)

will be of the form vψp, where v solves ( 1
2

d2

dx2 + 1
2γp(1−p)δpγ(x))v = 0. That is, v

is the eigenfunction corresponding to the principal eigenvalue 0 for the operator

1
2

d2

dx2 + 1
2γp(1−p)δpγ(x). It follows that v must be linear on [0, pγ], linear on [pγ, γ],

vanish at 0 and at γ, and have a jump discontinuity in its first derivative at pγ of

magnitude − 1
γp(1−p)v(pγ). This gives v(x) = aψp(x), for some a > 0. Choosing

a so that vψ is a probability density, we find that µ(cond,p) = vψp is given by the

expression in the statement of the theorem.

We now turn to the spectrum of −Lp. We will show first that −Lp has a

compact resolvent; that is, there exists a sequence 0 = λ0 < λ1 ≤ λ2 ≤ ... of

eigenvalues satisfying limn→∞ λn = ∞ and a corresponding complete sequence of

eigenfunctions. By (2.7) and the spectral invariance under h-transforms, it suffices

to show this for the operator −( 1
2

d2

dx2 + 1
2γp(1−p)δpγ(x)) with the Dirichlet boundary

condition. The quadratic form corresponding to this operator is given by Q(u) =
∫ γ

0
(u′(x))2

2 dx− 1
2γp(1−p)u

2(pγ). Letting

λ̂n = sup
v1,...,vn−1

inf
u∈[v1,...,vn−1]⊥,

∫ γ

0
u2dx=1

Q(u),
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where the infimum and the supremum are over functions u which vanish at 0 and γ,

it follows from the mini-max principle [8] that if limn→∞ λ̂n = ∞, then the operator

has a compact resolvent and λn = λ̂n. Using the boundary condition on u and the

normalization, along with the inequality |ab| ≤ ε 1
2a2 + 1

ε
1
2b2, for a, b ∈ R and ε > 0,

we have

u2(pγ) =
∫ pγ

0

(2uu′)(x)dx ≤ ε

∫ γ

0

(u′(x))2

2
dx +

2
ε
.

Thus,

(2.8) (1− ε)
∫ γ

0

(u′(x))2

2
dx− 1

εγp(1− p)
≤ Q(u) ≤

∫ γ

0

(u′(x))2

2
dx.

However,
∫ γ

0
(u′(x))2

2 dx is the quadratic form for 1
2

d2

dx2 , and as is well known, the

eigenvalues for this operator are {π2n2

2 }∞n=1. Using this with (2.8) and the mini-max

principle, it follows that limn→∞ λ̂n

n2 = π2

2 , completing the proof.

We now show that

(2.9) lim
t→∞

1
t

log sup
x,y∈(0,γ)

|p(cond,p)(t, x, y)− µ(cond,p)(y)| = −λ1.

We can write Lp from (1.1) (or (2.7)) in divergence form as

(2.10) Lp =
1
2

1
µ(cond,p)

d

dx
(µ(cond,p) d

dx
).

(Recall that up to a multiplicative constant, µ(cond,p) is equal to ψ2
p.) It thus follows

that Lp is self adjoint on L2
µ(cond,p)((0, γ)). Since µ(cond,p) vanishes at the endpoints,

we impose no boundary conditions. Let {φn}∞n=0 be an orthonormal sequence of

eigenfunctions corresponding to the eigenvalues {λn}∞n=0. In particular, φ0 = 1.

Now, L̃p, the adjoint (with respect to Lebesgue measure) of Lp, is easily seen to

be self-adjoint with respect to the density 1
µ(cond,p) . Thus, it possesses a sequence

of eigenfunctions {ψ̃n}∞n=0, orthonormal in L2
1

µ(cond,p)
((0, γ)), corresponding to the

same eigenvalues. One can check that φ̃n = φnµ(cond,p). In particular, φ̃0 =

µ(cond,p). Since p(cond,p)(t, x, y) solves ut = Lpu as a function of t and x, solves

ut = L̃pu as a function of t and y, and satisfies p(cond,p)(0, x, y) = δx(y), it follows
11



that the equality

(2.11)

p(cond,p)(t, x, y) =
∞∑

n=0

exp(−λnt)φn(x)φ̃n(y) =
∞∑

n=0

exp(−λnt)φn(x)φn(y)µ(cond,p)(y)

= µ(cond,p)(y) +
∞∑

n=1

exp(−λnt)φn(x)φn(y)µ(cond,p)(y)

holds in L2. If we show that the series
∑∞

n=1 exp(−λnt)φn(x)φn(y)µ(cond,p)(y)

converges uniformly over x, y ∈ [0, γ] × [0, γ], for all t > 0, then (2.11) will hold

pointwise and also, clearly, (2.9) will hold.

In order to show this uniform convergence, we need to estimate φn. Before

entering into calculations, we investigate the smoothness of φn at the singularity

pγ. By (2.7) and (2.7′), Lp is the h transform of −Ap with h-function ψp. Thus,

φn = fn

ψp
, where fn is the eigenfunction corresponding to the eigenvalue λn for

the operator −Ap. Since 1
2f ′′n + 1

2γp(1−p)δpγfn = −λnfn, it follows that f ′n(pγ+)−
f ′n(pγ−) = − 1

γp(1−p)fn(pγ). From (1.2), ψ′p(pγ+) − ψ′p(pγ−) = − 1
γp(1−p)ψp(pγ).

From these facts, it follows that φ′n is continuous at pγ—the singularity at pγ first

enters into φn at the level of the second derivative.

We now estimate φn. We begin by showing that

(2.12) lim
x→0

µ(cond,p)(x)φ′n(x) = lim
x→γ

µ(cond,p)(x)φ′n(x) = 0.

In fact, (2.12) follows from a direct calculation using the facts that φn = fn

ψp
,

µ(cond,p) = aψ2
p, for some a > 0, and fn(0) = fn(γ) = ψp(0) = ψp(γ).

Recall that by the normalization,
∫ γ

0
φ2

n(x)µ(cond,p)(x)dx = 1. Consider the

equation Lpφn = −λnφn, where Lp is written as in (2.10). Since (µ(cond,p)φ′n)′ =

−2λnφnµ(cond,p), it follows from (2.12) and the fact that φ′n is continuous that

(2.13) φ′n(x) = − 2λn

µ(cond,p)(x)

∫ x

0

φn(y)µ(cond,p)(y)dy.

Using Cauchy-Schwarz and the fact that µ(cond,p) = aψ2
p, for some a > 0, we obtain

12



from (2.13)

(2.14)

|φ′n(x)| ≤ 2λn

µ(cond,p)(x)

∫ x

0

|φn(y)|µ(cond,p)(y)dy

≤ 2λn

µ(cond,p)(x)
(
∫ x

0

µ(cond,p)(y)dy)
1
2 (

∫ x

0

φ2
n(y)µ(cond,p)(y)dy)

1
2

≤ 2λn

µ(cond,p)(x)
(
∫ x

0

µ(cond,p)(y)dy)
1
2 =

2λn

a
1
2 ψ2

p(x)
(
∫ x

0

ψ2
p(y)dy)

1
2 .

Since ψp(0) = 0 and ψ′p(0) 6= 0, it follows that

(2.15)
1

ψ2
p(x)

(
∫ x

0

ψ2
p(y)dy)

1
2 ≤ Cx−

1
2 , for x ∈ [0,

γ

2
], and some C > 0.

From (2.14) and (2.15) along with the corresponding calculation starting from γ

instead of 0, it follows that

(2.16) |φ′n(x)| ≤




Cλn

x
1
2

, if x ∈ [0, 1
2γ]

Cλn

(γ−x)
1
2
, if x ∈ [ 12γ, γ].

Since
∫ γ

0
φ2

n(x)µ(cond,p)(x)dx = 1, there exists an xn such that |φn(xn)| = 1. From

this and (2.16) if follows that |φn(x)| ≤ 1 + C1λn, for some C1 > 0. Using this

along with the fact proved above that limn→∞ λn

n2 = π2

2 , it follows that the series
∑∞

n=1 exp(−λnt)φn(x)φn(y)µ(cond,p)(y) converges uniformly.

In light of (2.9), to complete the proof of the theorem it remains to show that

λ1 = Q(p)
γ2 , where Q is as in the statement of the theorem. As we’ve noted above,

λ1 is the first positive eigenvalue for the operator 1
2

d2

dx2 + 1
2γp(1−p)δpγ(x) with the

Dirichlet boundary condition. It follows that λ1 is the smallest positive number for

which there exists a function φ̂1 satisfying

1
2
φ̂′′1(x) +

1
2γp(1− p)

δpγ(x)φ̂1(x) = −λ1φ̂1(x), for x ∈ (0, γ);

φ̂1(0) = φ̂1(γ) = 0.

.

Since 1
2 φ̂′′1 = −λ1φ̂1 on (0, pγ) and φ̂1(0) = 0, we have φ̂1(x) = sin qx

γ , x ∈ [0, pγ],

for some q > 0, in which case

(2.17) λ1 =
q2

2γ2
.
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Then since 1
2 φ̂′′1 = −λ1φ̂1 on (pγ, γ), we have φ̂1(x) = d1 cos qx

γ + d2 sin qx
γ , for

x ∈ (pγ, γ). The condition φ̂1(γ) = 0 gives

(2.18) d1 cos q + d2 sin q = 0,

while the continuity requirement at x = pγ gives

(2.19) sin qp = d1 cos qp + d2 sin qp.

Finally, in order to take care of the Dirac δ-function, we need

φ̂′1(pγ+)− φ̂′1(pγ−) = − 1
γp(1− p)

φ̂1(pγ),

which gives

(2.20) −qd1 sin qp + qd2 cos qp− q cos qp = − 1
p(1− p)

sin qp.

The determinant of the matrix corresponding to the 2× 2 equation arising from

(2.18) and (2.19) for d1, d2 is equal to sin qp cos q − cos qp sin q = − sin(1 − p)q,

while the inhomogeneous term is the vector (0, sin qp). Thus, there can only be a

solution if both sin qp and sin(1 − p)q vanish or if both do not vanish. We now

restrict q to the interval (0, 2π), in which case sin qp 6= 0. Therefore, we must have

sin(1− p)q 6= 0 for there to be a solution. Solving (2.18) and (2.19), we obtain

(2.21)
d1 =

sin q sin pq

sin(1− p)q
;

d2 =
− cos q sin pq

sin(1− p)q
.

Substituting (2.21) in (2.20) and using the identity sin q sin pq+cos q cos pq = cos(1−
p)q, we have

(2.22) q
sin pq

sin(1− p)q
cos(1− p)q + q cos pq =

1
p(1− p)

sin pq.

Dividing by sin pq, then obtaining a common denominator and using the identity

sin pq cos(1− p)q + cos pq sin(1− p)q = sin pq, we can rewrite (2.22) as

q sin q

sin pq sin(1− p)q
=

1
p(1− p)

.
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Defining

f(x) =
sin x

x
,

we arrive at the equation

(2.23)
f(q)

f((1− p)q)f(pq)
= 1.

We first show that the smallest positive root q = q(p) of (2.23) does not fall in

the interval (0, π). For fixed q ∈ (0, π), let h(p) = f((1− p)q)f(pq). Then

(2.24)

h′(p) = qf((1− p)q)f ′(pq)− qf(pq)f ′((1− p)q) = qh(p)
(

f ′

f
(pq)− f ′

f
((1− p)q)

)
.

We have

(2.25)
f ′

f
(x) = cot x− 1

x
.

Since f(x) > 0 and cot x− 1
x < 0 for x ∈ (0, π), we conclude from (2.24) and (2.25)

that f((1−p)q)f(pq) is decreasing as a function of p ∈ (0, 1
2 ]. Using this along with

the fact that limp→0
f(q)

f((1−p)q)f(pq) = 1 shows that f(q)
f((1−p)q)f(pq) < 1 for p ∈ (0, 1

2 ]

and q ∈ (0, π). We conclude that the smallest positive root q = q(p) of (2.23) does

not fall in (0, π).

Consider now q ∈ [π, 2π). Note that 0 < f(x) < 1 for x ∈ (0, π) and f(x) < 0

for x ∈ (π, 2π). We have pq < 1
2q < π; thus 0 < f(pq) < 1. Therefore, in order for

the left hand side of (2.23) to be positive, we need q > π
1−p . Since our calculations

have been under the assumption that q < 2π, it follows in particular that if p = 1
2 ,

then there is no solution q ∈ [π, 2π). On the other hand the reader can easily check

that (2.18)-(2.20) hold with p = 1
2 , d1 = 0, d2 = 1 and q = 2. Thus, it follows

that q(1
2 ) = 2π. Therefore, from (2.17) we obtain in the notation of the theorem

Q( 1
2 ) = 2π2.

From now on, we assume that p ∈ (0, 1
2 ). Recalling from the statement of the

theorem that κ0 is the smallest positive root of tan πx = πx, it follows from (2.25)

that f is decreasing on [0, κ0π] and increasing on [κ0π, 2π]. Using this along with
15



the fact that 0 < f(pq) < 1, we conclude that (2.23) cannot occur if q > π
1−p but

q ≤ κ0π. Thus a necessary condition for (2.23) to hold is that

(2.26) q > max(
π

1− p
, κ0π).

For fixed p ∈ (0, 1
2 ) the left hand side of (2.23) equals +∞ at q = ( π

1−p )+ and equals

0 at q = (2π)−. From this and (2.26) we conclude that the smallest positive root

q = q(p) of (2.23) satisfies

(2.27) max(
π

1− p
, κ0π) < q(p) < 2π.

Using (2.27) along with (2.17) allows us to conclude in the notation of the theorem

that

max(
1

2(1− p)2
,
κ2

0

2
)π2 < Q(p) < 2π2.

We will now show that if we set (1− p)q = κ0π, then

(2.28)
f(q)

f((1− p)q)f(pq)
=

f(κ0π + pκ0π
1−p )

f(κ0π)f(pκ0π
1−p )

< 1 for sufficiently small p > 0.

As we noted above, for fixed p ∈ (0, 1
2 ), f(q)

f((1−p)q)f(pq) equals +∞ at q = ( π
1−p )+;

thus, we conclude from (2.28), (2.27) and (2.23) that κ0π < q(p) < κ0π
1−p for small

p > 0. Letting p → 0 then shows that q(0+) = κ0π. In the notation of the theorem,

this gives Q(0+) = κ2
0π2

2 .

To prove (2.28), we expand f(κ0π + pκ0π
1−p ) about κ0π and f(pκ0π

1−p ) about 0. One

checks that f ′(0) = 0 and f ′′(0) = − 1
3 . Thus, f ′′

f (0) = − 1
3 . Since f reaches a

minimum at κ0π, we have f ′(κ0π) = 0. Using the fact that tan κ0π = κ0π, one can

check that f ′′

f (κ0π) = −1. Thus, we have

f(κ0π + pκ0π
1−p )

f(κ0π)f(pκ0π
1−p )

=
(

1− 1
2
(
pκ0π

1− p
)2 + o(p2)

) (
1

1− 1
6 (pκ0π

1−p )2 + o(p2)

)
,

= 1− 1
3
(
pκ0π

1− p
)2 + o(p2), as p → 0,

which proves (2.28).
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It remains to prove that Q(p) is monotone. Since Q(p) = 1
2q2(p), it suffices to

show that q(p) is monotone. By the implicit function theorem, q(p) is differen-

tiable for p ∈ (0, 1
2 ). We will show that q′(p) > 0. Differentiating the equation

f(q)
f((1−p)q)f(pq) = 1 with respect to p and doing some algebra, we obtain

(2.29)
q′(p)
q(p)

=
f ′

f (pq)− f ′

f ((1− p)q)
f ′
f (q)− p f ′

f (pq)− (1− p) f ′
f ((1− p)q)

.

We will show that both the numerator and the denominator on the right hand side

of (2.29) are negative.

Using (2.25) and a trigonometric identity, we have

(2.30)

f ′

f
(pq) +

f ′

f
((1− p)q) = cot pq − 1

pq
+ cot(1− p)q − 1

(1− p)q

= − 1
qp(1− p)

+
sin q

sin pq sin(1− p)q
.

From the equality f(q)
f((1−p)q)f(pq) = 1 and the definition of f , we have

sin pq sin(1− p)q = p(1− p)q sin q.

Substituting this into (2.30) gives

(2.31)
f ′

f
(pq) +

f ′

f
((1− p)q) = 0.

Since f ′

f (x) < 0, for x ∈ (0, π), and since pq ∈ (0, π), it follows from (2.31) that the

numerator on the right hand side of (2.29) is negative. Using (2.31) again, we have

(2.32)
f ′

f
(q)− p

f ′

f
(pq)− (1− p)

f ′

f
((1− p)q) =

f ′

f
(q) + (1− 2p)

f ′

f
(pq).

By (2.27), q = q(p) ∈ (κ0π, 2π). Since f ′

f (x) < 0 for x ∈ (κ0π, 2π) and since

f ′

f (pq) < 0, it follows from (2.32) that the denominator on the right hand side of

(2.29) is also negative. This completes the proof of the monotonicity. ¤
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