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Abstract. Let M(Rd) denote the space of locally finite measures on Rd and let
M1(M(Rd)) denote the space of probability measures on M(Rd). Define the mean
measure πν of ν ∈M1(M(Rd)) by

πν(B) =

∫

M(Rd)
η(B)dν(η), for B ⊂ Rd.

For such a measure ν with locally finite mean measure πν , let f be a nonnegative,
locally bounded test function satisfying < f, πν >= ∞. ν is said to satisfy the strong

law of large numbers with respect to f if <fn,η>
<fn,πν>

converges almost surely to 1 with

respect to ν as n → ∞, for any increasing sequence {fn} of compactly supported
functions which converges to f . ν is said to be mixing with respect to two sequences
of sets {An} and {Bn} if

∫

M(Rd)
f(η(An))g(η(Bn))dν(η)−

∫

M(Rd)
f(η(An))dν(η)

∫

M(Rd)
g(η(Bn))dν(η)

converges to 0 as n → ∞ for every pair of functions f, g ∈ C1
b ([0,∞)). It is known

that certain classes of measure-valued diffusion processes possess a family of invariant
distributions. These distributions belong to M1(M(Rd)) and have locally finite
mean measures. We prove the strong law of large numbers and mixing for many such
distributions.

In this paper we prove a strong law of large numbers and a mixing result for the

invariant probability distributions of certain spatially dependent measure-valued

diffusions. Because of the spatial dependence, these distributions will not be sta-

tionary. Let M(Rd) denote the space of locally finite measures on Rd, equipped
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with the vague topology, and let M1(M(Rd)) denote the space of Borel probabil-

ity measures on M(Rd). The invariant probability distributions we will study will

belong to M1(M(Rd)). We begin by defining a strong law of large numbers and

a mixing condition for probability measures ν ∈ M1(M(Rd)). The mean measure

πν of ν ∈M1(M(Rd)) is defined by

πν(B) =
∫

M(Rd)

η(B)dν(η), for measurable B ⊂ Rd.

(Note that the mean measure πν does not necessarily belong to M(Rd).) If the

mean measure possesses a density with respect to Lebesgue measure, the density

will also be denoted by πν . We will use the notation < f, η >=
∫

Rd fdη, for

η ∈M(Rd). Thus, for f ≥ 0, we have

∫

M(Rd)

< f, η > dν(η) =< f, πν > .

Definition 1. Let ν ∈ M1(M(Rd)) satisfy πν ∈ M(Rd), and let f be a measur-

able, locally bounded, nonnegative function satisfying < f, πν >= ∞. ν satisfies

the strong law of large numbers with respect to f if

lim
n→∞

< fn, η >

< fn, πν >
= 1, a.s. [ν].

for any increasing sequence {fn} of measurable, nonnegative, compactly supported

functions converging pointwise to f .

Definition 2. Let {An}∞n=1, {Bn}∞n=1 ⊂ Rd be sequences of measurable sets. The

measure ν ∈M1(M(Rd)) is mixing with respect to {An}∞n=1 and {Bn}∞n=1 if

∫

M(Rd)

f(η(An))g(η(Bn))dν(η)−
∫

M(Rd)

f(η(An))dν(η)
∫

M(Rd)

g(η(Bn))dν(η))

converges to 0 as n →∞, for every pair of functions f, g ∈ C1
b ([0,∞)).

In defining mixing, one typically works with translations A + xn and B + yn

of fixed sets A and B. This is not appropriate in our setting because the random

measure η under ν is not in general stationary under translation. One situation
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in which it is stationary is when ν is the invariant distribution of super Brown-

ian motion. As is well-known, for d ≥ 3 there exists a one-parameter family,

ζ(c) ∈ M1(M(Rd)), c > 0, of invariant probability distributions for d-dimensional

super Brownian motion, and the mean measure of ζ(c) possesses a density given by

πζ(c) = c. These measures are translation invariant and ergodic [2], from which one

can obtain a law of large numbers. (Mixing results also exist for these measures

[5].) However, when one considers the invariant distributions of measure-valued dif-

fusions whose underlying motion is a spatially dependent diffusion process rather

than Brownian motion, the invariant distributions will not be translation invariant

and one can not appeal directly to an ergodic theorem.

We now describe the class of measure-valued diffusion processes whose invariant

distributions we will be studying. Consider an operator L0 on Rd of the form

(1.1) L0 =
1
2
∇ · a∇+ (a∇Q) · ∇ =

1
2

exp(−2Q)∇ · exp(2Q)a∇,

where a = {ai,j} is positive definite and ai,j , Q ∈ C1,κ(Rd) for some κ ∈ (0, 1]. The

operator L0 is symmetric with respect to the density

msym ≡ exp(2Q).

We will assume that the martingale problem for L0 is well-posed; that is, the

diffusion process corresponding to L0 is conservative (nonexplosive). Because of the

symmetry, the diffusion will be reversible. This conservative, reversible diffusion

will serve as the underlying motion for the measure-valued diffusion.

The branching mechanism for the measure-valued diffusion is assumed to be of

the form Φ(x, z) = β(x)z − α(x)z2, where β is bounded from above, α > 0, and

α, β ∈ Cκ(Rd) for some κ ∈ (0, 1]. The coefficients β and α should be thought of

respectively as the mass creation and variance parameters for the measure-valued

process. Let X(t), 0 ≤ t < ∞, denote a canonical path with values in M(Rd). The

measure-valued diffusion is an M(Rd)-valued Markov process X(t) = X(t, ·) which

is uniquely defined via the following log-Laplace equation:

(1.2) E(exp(− < f, X(t) >)|X(0) = η) = exp(− < uf (·, t), η >),
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for f ∈ C+
c (Rd) and for locally finite initial measures η satisfying an appropriate

growth condition [13, condition (1.3)], where uf is the minimal positive solution to

the evolution equation

(1.3)
ut = L0u + βu− αu2 in Rd × (0,∞)

u(x, 0) = f(x) in Rd.

For the existence of a minimal positive solution uf ∈ C2,1(Rd × (0,∞)) ∩ C(Rd ×
[0,∞)) to (1.3), see [7, Theorem 1]. The measure-valued process may be obtained

as a scaled, high-density limit of the point measure-valued process corresponding to

independent branching particles which undergo L0-diffusion and whose branching

mechanism is related to the coefficients α and β above [6].

For a probability distribution ν ∈ M1(M(Rd)) whose support is contained in

the set of measures for which (1.2) is well-defined (that is, ν satisfies [13, condition

(1.3)]), let Pν denote the probability measure which corresponds to the Markov

process with transition mechanism given by (1.2) and such that X(0) has distribu-

tion ν under Pν . Denote the distribution of X(t) under Pν by ζt, for each t ≥ 0. A

probability measure ν ∈ M1(M(Rd)) is called an invariant distribution if ζ0 = ν

implies that ζt = ν, for all t > 0.

In order to describe a class of invariant distributions of the above measure-

valued diffusions, we need to recall some basic facts concerning the semigroup of

the operator

L = L0 + β

which comprises the linear part of the right hand side of (1.3). Denote by P· the

solution to the martingale problem for L0 on Rd and denote by Y (t) a canonical

diffusion path in C([0,∞), Rd). Let Tt denote the semigroup corresponding to the

operator L on Rd, and let p(t, x, y) denote its transition kernel so that Ttf(x) =
∫

Rd p(t, x, y)f(y)dy, for f ∈ C+
c (Rd). (The existence of the density in the case

L = L0 follows from [16, chapter 9]; the extension to the case L = L0 + β is

easy.) We assume that the operator L on Rd is so-called subcritical; that is, that

it possesses a Green’s function: G(x, y) =
∫∞
0

p(t, x, y)dt < ∞, for x 6= y. It then
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follows from the general theory that
∫

B
G(x, y)dy < ∞, for x ∈ Rd and bounded

sets B ⊂ Rd [12]. The subcriticality condition can be stated probabilistically as

follows. The Feynman-Kac formula gives

Ttf(x) = Ex exp(
∫ t

0

β(Y (s))ds)f(Y (t)),

for f ∈ C+
c (Rd), where Ex is the expectation corresponding to Px. Thus, subcriti-

cality is equivalent to the condition

(1.4) Ex

∫ ∞

0

exp(
∫ t

0

β(Y (s))ds)1B(Y (t))dt < ∞,

for x ∈ Rd and bounded, open B ⊂ Rd. In particular, if β ≡ 0, then subcriticality

is equivalent to the transience of the diffusion process Y (t).

For later use, we note that it follows from the symmetry property of L0 that

(1.5-a) msym(x)p(t, x, y) = msym(y)p(t, y, x);

(1.5-b) msym(x)G(x, y) = msym(y)G(y, x).

(We sketch a proof of this at the end of the section.)

A positive function f ∈ Cκ(Rd), for some κ ∈ (0, 1], which satisfies Ttf = f ,

for all t > 0 is called an invariant positive function for the semigroup Tt. If f is

invariant, then it is L-harmonic; that is, it satisfies Lf = 0. (To see this, multiply

both sides of the equality Ttf = f by exp(−t) and integrate from 0 to ∞ to obtain
∫

Rd G1(x, y)f(y)dy = f(x), where G1 is the Green’s function for the operator L−1.

It then follows essentially from [12, Theorem 4.3.8] that the left hand side above

is smooth and satisfies (L − 1)
∫

Rd G1(x, y)f(y)dy = −f . Substituting f for the

integrated expression gives (L− 1)f = −f , and we conclude that Lf = 0.)

A positive function µ ∈ Cκ(Rd), for some κ ∈ (0, 1], which satisfies µTt = µ (i.e.,

< µ, Ttf >=< µ, f >, for all bounded, measurable f), for all t > 0 is called an

invariant density for Tt. In the symmetric case under consideration, the connection

between invariant densities and invariant positive functions is as follows:

(1.6)
µ is an invariant density for Tt if and only if it is of the form

µ = hmsym, where h is an invariant positive function for Tt.
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Remark. Note in particular that if β = 0, then h = 1 is an invariant positive

function and µ = msym is an invariant density (the invariance of h = 1 is equivalent

to the conservativeness of the diffusion).

We can now state a result concerning invariant distributions of the above class

of measure-valued diffusions.

Theorem A[13]. Assume that L = L0 + β on Rd is subcritical; that is, that it

possesses a Green’s function. Let µ = hmsym as in (1.6) be an invariant density for

the semigroup Tt corresponding to L. Assume that α ≤ c
h , for some c > 0. Then

the measure-valued diffusion satisfying (1.2) possesses an invariant distribution ζ(µ)

which is uniquely defined by its Laplace-transform:

(1.7)∫

M(Rd)

exp(− < f, η >)dζ(µ)(η) = exp(− < f, µ > +
∫ ∞

0

< αu2
f (·, t), µ > dt),

for f ∈ C+
c (Rd). The mean measure of ζ(µ) is absolutely continuous with respect

to Lebesgue measure and its density is given by πζ(µ) = µ. Furthermore, for f ∈
C+

c (Rd), the random variables < Ttf, η > on (M(Rd), ζ(µ)) satisfy

lim
t→∞

< Ttf, η >=< f, µ > in ζ(µ) − probability.

Remark. In fact, Theorem A was proven under more general conditions; namely,

when the operator L0 on Rd corresponding to a conservative, reversible diffusion

is replaced by an operator on an arbitrary domain D ⊂ Rd with coefficients that

are smooth away from the boundary and which corresponds to a reversible but

not-necessarily conservative diffusion process with absorption at the boundary ∂D.

All the results in this paper go through in this more general context, the only

caveat being that the function h = 1 is not necessarily invariant when β = 0 since

the diffusion is not necessarily conservative. We have restricted to the case of

conservative diffusions on Rd in order to keep the exposition more transparent.

Before stating our first result concerning a law of large numbers for ζ(µ), we

need to recall a fact from spectral theory. Since β is bounded from above, the
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operator L acting on smooth compactly supported functions is semibounded and

can be extended via the Friedrichs’ extension to a unique self-adjoint operator on

L2(Rd,msymdx) [14] which we will continue to call L. Let σ(L) denote the spectrum

of L which, by self-adjointness, is contained in the real line. Define

λc(L) = sup σ(L).

In fact λc(L) coincides with the so-called generalized principle eigenvalue for L on

Rd, this latter being defined as inf{λ : L − λ possesses a Green’s function} [12].

Thus, in light of (1.4), we have

λc(L) = inf{λ : Ex

∫ ∞

0

exp(−λt) exp(
∫ t

0

β(Y (s))ds)1B(Y (t))dt < ∞},

for any x ∈ Rd and any bounded, open B ⊂ Rd. The subcriticality assumption

guarantees that λc(L) ≤ 0.

Remark. If λc(L) > 0, then the operator L is called supercritical and Tt possesses

no invariant density. If the mean measure of an invariant distribution is locally

finite, that mean measure must be an invariant density for Tt; thus, if λc(L) > 0,

the measure-valued diffusion does not possess any invariant distribution with locally

finite mean measure [13].

Theorem 1. Let µ = hmsym be an invariant density as in (1.6) and let ζ(µ) be the

invariant distribution defined in Theorem A and whose Laplace transform is given

by (1.7). Assume that λc(L) < 0. Then ζ(µ) satisfies the strong law of large numbers

with respect to any nonnegative f for which f
h is bounded and < f, µ >= ∞; that

is, if {fn} is an increasing sequence of compactly supported functions converging to

f , then

lim
n→∞

< fn, η >

< fn, µ >
= 1 a.s. [ζ(µ)].

Remark. As is explained below in the paragraph preceding Theorem 2, it is always

true that
∫

Rd h2msymdx = ∞; thus, the requirements on f in Theorem 1 will be

satisfied in particular if c1h ≤ f ≤ c2h, for positive constants c1, c2. Also note that
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if h is bounded away from 0 (which occurs in particular if β = 0 and one chooses

h = 1), then f = 1A is admissible if A ⊂ Rd satisfies µ(A) =
∫

A
hmsymdx = ∞.

Thus, choosing bounded sets An which increase to A, it follows from Theorem 1

that limn→∞
η(An)
µ(An) = 1 a.s. [ζ(µ)].

We now present briefly a couple of multi-dimensional examples where λc(L) < 0

so that Theorem 1 applies and where furthermore the invariant positive harmonic

functions h can be calculated explicitly so that the invariant distributions ζ(µ) may

be exhibited explicitly via Theorem A.

Example 1. Let L0 = 1
2∆ + kx · ∇ for some k > 0 be a “transient Ornstein

Uhlenbeck process.” Note that msym = exp(k|x|2). One can show that λc(L0) =

−kd, and thus λc(L) < 0 if sup β < kd. When β is constant, the cone of positive

harmonic functions is generated by a collection of minimal elements which are in

one to one correspondence with the sphere Sd−1, and all of these positive harmonic

functions are invariant positive functions. In particular, in the case that β = 0, this

collection of minimal invariant positive functions, {hv}v∈Sd−1 , may be represented

explicitly (as can be deduced from [4]): hv(x) =
∫∞
−∞ exp(−k|x−vekt|2) exp(2kt)dt.

Example 2. Let L0 = 1
2∆ in Rd, d ≥ 1, and let β = −c, for some constant c > 0.

Then λc(L) = −c. The cone of positive harmonic functions is again generated

by a collection of minimal elements which are in one to one correspondence with

the sphere Sd−1, and all of these positive harmonic functions are invariant positive

functions [12]. These minimal invariant positive functions, {hv}v∈Sd−1 , can be

represented explicitly as follows: hv(x) = exp((2c)
1
2 v · x).

The second example above treated the case of subcritical super-Brownian motion.

The classical critical super-Brownian motion (L0 = 1
2∆, β = 0, α = 1) is not covered

by Theorem 1 since λc(L) = 0 in this case. We now present an alternative sufficiency

condition for a strong law of large numbers to hold as well as a sufficiency condition

for a weak law to hold. These alternative conditions cover, in particular, the critical

super-Brownian motion.

Before stating the theorem, we recall a few basic facts about h-transforms. Let
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h be invariant for the semigroup Tt and let Lh denote the h-transform of L: Lhf =

1
hL(hf); equivalently,

Lh = L0 + a
∇h

h
· ∇.

The semigroup Th
t corresponding to Lh satisfies Th

t f = 1
hTthf and the measure

mh
sym with respect to which Lh is symmetric is given by

mh
sym = h2msym.

Since h is invariant for Tt, the function 1 is invariant for Th
t ; thus, the operator

Lh corresponds to a conservative diffusion process Ph
· . Subcriticality is preserved

under h-transforms; thus Lh on Rd is subcritical, that is, the diffusion process

Ph
· is transient. From this it follows that

∫
Rd h2msymdx = ∞. Indeed, mh

sym =

h2msym is an invariant density for the conservative diffusion process Lh. If it were

integrable, then the diffusion process would be positive recurrent. The Green’s

function Gh(x, y) for Lh satisfies

Gh(x, y) = G(x, y)
h(y)
h(x)

.

Theorem 2. Let µ = hmsym be an invariant density as in (1.6) and let ζ(µ) be

the invariant distribution defined in Theorem A and whose Laplace transform is

given by (1.7). Assume that it is possible to choose for each x ∈ Rd, a sequence

{Dn(x)}∞n=1 of sets such that

γn ≡ sup
x∈Rd

sup
y∈Dn(x)

Gh(x, y)
mh

sym(y)
satisfies lim

n→∞
γn = 0,

and such that

ln ≡ sup
x∈Rd

∫

y∈Rd−Dn(x)

Gh(x, y)dy < ∞, for some n = 1, 2, ...

Then the invariant distribution ζ(µ) satisfies the weak law of large numbers with

respect to any nonnegative f for which f
h is bounded and < f, µ >= ∞; that is, if

{fn} is an increasing sequence of compactly supported functions converging to f ,

then
< fn, η >

< fn, µ >
converges in ζ(µ) − probability to 1.
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If one can choose the sequence {Dn(x)} such that
∑∞

n=1 γn < ∞, and such that

ln < ∞ for all n and lim supn→∞
l̂n+1

l̂n
< ∞, for a nondecreasing sequence {l̂n}

satisfying l̂n ≥ ln, then ζ(µ) satisfies the strong law of large numbers with respect to

{fn}; that is,

lim
n→∞

< fn, η >

< fn, µ >
= 1 a.s. [ζ(µ)].

Remark 1. The remark after Theorem 1 concerning the class of admissible func-

tions f and the possibility of choosing f = 1A holds just as well, of course, for

Theorem 2.

Remark 2. As will be seen in the proofs of Corollaries 1 and 2 below, in typical

cases the sets Dn(x) will be decreasing in n and satisfy ∩∞n=1Dn(x) = ∅.

Remark 3. In Theorem 1, where the strict negativity condition on the spectrum

is assumed, the requirements in order that a strong law of large numbers hold

for a function f and an invariant distribution ζ(µ) depended on the particular

distribution in question—that is, on µ = hmsym— only through the requirement

that f
h be bounded and that < f, µ >= ∞, this latter condition of course being

necessary in order to even consider a law of large numbers. In Theorem 2 however,

where the strict negativity condition on the spectrum is no longer assumed, the

requirements depend more heavily on the particular distribution via the function

h.

We now apply Theorem 2 to two different classes of measure-valued diffusions.

The first class contains the critical super-Brownian motion as a particular case. The

operator L0 = 1
2∇·a∇ is uniformly elliptic if there exists a constant c > 0 such that

c|v|2 ≤ ∑d
i,j=1 ai,jvivj ≤ 1

c |v|2, for all v ∈ Rd. If L0 is uniformly elliptic and β = 0,

then L = L0 is subcritical if d ≥ 3. The invariant positive functions are h = c,

where c > 0 is a constant. A proof of this can be found after (2.17). The symmetric

density is msym = 1. Thus, from (1.6), it follows that the invariant densities are of

the form µ = hmsym = c. Let ζ(c) denote the corresponding invariant distribution

as described in Theorem A.
10



Corollary 1. Assume that β = 0 and that L = L0 = 1
2∇ · a∇ is uniformly elliptic

in Rd, d ≥ 3. Let ζ(c), c > 0, be the invariant distributions as in Theorem A.

Then ζ(c) satisfies the strong law of large numbers for any nonnegative, bounded

f for which
∫

Rd fdx = ∞; that is, if {fn} is an increasing sequence of compactly

supported functions converging to f , then

lim
n→∞

< fn, η >∫
Rd fndx

= c a.s. [ζ(c)].

The second corollary of Theorem 2 treats one-dimensional measure-valued dif-

fusions. Before stating the result, we need to make a few remarks about one-

dimensional diffusion processes. Let

(1.8) L0 =
1
2
a(x)

d2

dx2
+ b(x)

d

dx
,

with 0 < a ∈ C1,κ(R) and b ∈ Cκ(R), for κ ∈ (0, 1]. Every such one-dimensional op-

erator may be put into divergence form ((1.1)) as follows: L = 1
2

1
msym(x)

d
dxmsym(x)a(x) d

dx ,

where msym(x) = 1
a(x) exp(

∫ x

0
2b
a (y)dy). We continue to assume that the diffu-

sion process corresponding to L0 is conservative (a condition which in the one-

dimensional case at hand can be checked by subjecting the coefficients a and b to

Feller’s integral test [12, chapter 5]). The operator L0 is subcritical (i.e., possesses

a Green’s function) if and only if it corresponds to a transient diffusion process,

and this will occur if and only if exp(− ∫ x

0
2b
a (y)dy) is integrable at either +∞ or

−∞. If it is integrable only at +∞ (−∞), then the diffusion process will run off

to +∞ (−∞) with probability one and we will say that the diffusion is transient

to +∞ (−∞). On the other hand, if it is integrable at both +∞ and −∞, then

the diffusion process will have a positive probability of running off to +∞ and a

positive probability of running off to −∞, and we will say that the diffusion is

transient to both +∞ and −∞. (See [12, chapter 5] for the above facts.)

Now let L0 be as above (conservative, but not necessarily subcritical) and let

L = L0 + β. Assume that L is subcritical and that h is an invariant positive

function for the corresponding semigroup Tt. Then the h-transformed operator
11



is given by Lh = L0 + ah′
h

d
dx . This new operator is of the same form as L0—

the diffusion coefficient is still a but the drift is now b + ah′
h instead of b. Since

subcriticality is preserved under h-transforms, the operator Lh will correspond to

a transient diffusion and, substituting b + ah′
h for b above, it follows that it will

be transient to +∞( resp. to −∞, resp. to both +∞ and −∞) if and only if

1
h2(x) exp(− ∫ x

0
2b
a (y)dy) is integrable only at +∞ (resp. only at −∞, resp. at both

+∞ and −∞).

Corollary 2. Let L = L0 + β be subcritical, where L0 is a one-dimensional

operator as in (1.8). Let µ = hmsym be an invariant density as in (1.6) and let

ζ(µ) be the invariant distribution defined in Theorem A. Let f ≥ 0 and assume that

f
h is bounded and < f, µ >= ∞. Define

H(x) =
∫ x

0

dr
1

h2(r)
exp(−

∫ r

0

2b

a
(s)ds)

Recall that the subcriticality assumption guarantees that at least one of H(−∞) and

H(∞) is finite.

Case i. Assume that both H(−∞) and H(∞) are finite. Then ζ(µ) satisfies the weak

law of large numbers with respect to f ; that is, if {fn} is an increasing sequence of

compactly supported functions converging to f , then

(1.9)
< fn, η >

< fn, µ >
converges in ζ(µ) − probability to 1.

If in addition,

lim sup
n→∞

∫ zn+1

−zn+1
mh

sym(y)dy
∫ zn

−zn
mh

sym(y)dy < ∞ < ∞,

for some increasing, positive sequence {zn}∞n=1 satisfying

∞∑
n=1

(H(∞)−H(zn)) + (H(−zn)−H(−∞)) < ∞,

then ζ(µ) satisfies the strong law of large numbers with respect to {fn}; that is,

(1.10) lim
n→∞

< fn, η >

< fn, µ >
= 1 a.s. [ζ(µ)].
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Case ii. Assume that H(∞) = ∞ (resp. H(−∞) = −∞). Assume in addition that

f is supported away from +∞(resp.−∞). Then ζ(µ) satisfies the weak law of large

numbers with respect to f ; that is, (1.9) occurs. If in addition,

lim sup
n→∞

∫ 0

−zn+1
mh

sym(y)dy
∫ 0

−zn
mh

sym(y)dy
< ∞, (lim sup

n→∞

∫ zn+1

0
mh

sym(y)dy∫ zn

0
mh

sym(y)dy
< ∞),

for some increasing, positive sequence {zn}∞n=1 satisfying

∞∑
n=1

(H(−zn)−H(−∞)) < ∞ (resp.

∞∑
n=1

(H(∞)−H(zn)) < ∞),

then ζ(µ) satisfies the strong law of large numbers with respect to {fn}; that is,

(1.10) occurs.

Remark. If case (i) of the corollary holds for the operator L = L0 + β, then we

obtain a law of large numbers for functions f supported on the entire line, while if

case (ii) holds, then we require that f be supported on a half-line. We are not sure

whether this restriction is essential, or whether it is just a result of the technical

limitations of the method of proof. One might wonder whether Theorem 1 could

be used to extend case (ii) to f supported on the entire line. However, it cannot

because one can show that in case (ii), σ(L) is always equal to 0.

We now turn to the result on mixing, for which we will need the following

assumption.

Assumption 1. The two sequences {A(i)
n }∞n=1, i = 1, 2, of measurable sets in Rd

satisfy the following condition:

lim
n→∞

∫

A
(1)
n

∫

A
(2)
n

G(x, y)msym(x)dxdy = 0.

Remark. Since msym(x)G(x, y) = msym(y)G(y, x), Assumption 1 is symmetric in

{A(1)
n }∞n=1 and {A(2)

n }∞n=1.

Theorem 3. Let µ = hmsym be an invariant density as in (1.6) and let ζ(µ) be

the invariant distribution defined in Theorem A and whose Laplace transform is
13



given by (1.7). Then ζ(µ) is mixing with respect to any pair of sequences {A(i)
n }∞n=1,

i = 1, 2, of measurable sets in Rd which satisfy Assumption 1.

We apply Theorem 3 to the class of uniformly elliptic operators that appeared

in Corollary 1. Let |A| denote the Lebesgue measure of A ⊂ Rd.

Corollary 3. Under the conditions of Corollary 1, the invariant distributions

ζ(c), c > 0, are mixing with respect to any pair of sequences {A(i)
n }∞n=1, i = 1, 2, of

measurable sets satisfying

(1.11) lim
n→∞

|A(1)
n ||A(2)

n |
(dist(A(1)

n , A
(2)
n ))d−2

= 0.

In particular therefore, ζ(c) is mixing with respect to {A(1)
n }∞n=1 and {A(2)

n }∞n=1 if

the sequences {|A(i)
n |}∞n=1, i = 1, 2, are bounded and limn→∞ dist(A(1)

n , A
(2)
n ) = ∞.

Remark. Corollary 3 also holds for all the invariant distributions ζ(µ) as in The-

orem A in the case that L0 is uniformly elliptic, d ≥ 3 and β � 0. Indeed, the

semigroup p(t, x, y) and thus also G(x, y) in the case β � 0 is smaller than in the

case β ≡ 0; thus, Assumption 1 holds a fortiori in the case β ≤ 0.

For the proofs we will need an estimate on the covariance of ζ(µ). We define

the second moment operator M
(2)
ν (·, ·), the covariance operator Covν(·, ·) and the

variance operator V arν(·) of a probability measure ν ∈M1(M(D)) as follows:

M (2)
ν (f, g) =

∫

M(D)

< f, η >< g, η > dν(η), for f, g ∈ Cc(D);

Covν(f, g) = M (2)
ν (f, g)− < f, πν >< g, πν >;

V arν(f) = Covν(f, f).

Theorem B. The covariance of the invariant distribution ζ(µ) defined in Theorem

A satisfies

(1.12) Cov
ζ
(µ)
∞

(f, g) = 2
∫ ∞

0

< α(Ttf)(Ttg), µ > dt.

Theorem B in the case of the variance, that is the case that f = g, was proved in

[13]. For the covariance, one uses the formula Cov(f, g) = 1
2 (V ar(f, g)− V ar(f)−

V ar(g)).
14



We now sketch a proof of (1.5). It is well known that the Green’s function is

symmetric in x and y in the case of an operator of the form 1
2∇ · â∇ + β̂. See for

example [8] which treats the Laplacian; essentially the same proof works for the

more general operator above. It is also known that if Ĝ denotes the Green’s function

for an operator L̂, then for a positive function γ, G(x,y)
γ(y) is the Green’s function

for the operator γL. This is almost an immediate consequence of [12, Theorem

4.3.8], for example. We apply these facts as follows. Using the notation above, let

Ĝ(x, y) denote the Green’s function in the case â = a exp(2Q) and β̂ = β exp(2Q).

Then it follows that Ĝ(x, y) is symmetric and that the Green’s function G for L =

1
2 exp(−2Q)∇ · exp(2Q)a∇+ β is given by G(x, y) = Ĝ(x, y) exp(2Q(y)). Recalling

that msym = exp(2Q), (1.5-b) follows. Now (1.5-a) follows from (1.5-b) and the

following resolvent equation for self-adjoint operators: Tt = limn→∞(1 − tL
n )−n =

limn→∞ t
n

n
Gn

n
t
, where Gλ denotes the Green’s function for L− λ.

We prove Theorems 1 and 2 and Corollaries 1 and 2 in section 2. The proofs of

Theorem 3 and Corollary 3 are given in section 3.

2. Proofs of Theorems 1 and 2 and Corollaries 1 and 2.

Proof of Theorem 1. Let f be as in the theorem and let {fn} be an increasing

sequence of compactly supported functions converging pointwise to f . Replacing

both f and g by fn

<fn,µ> in (1.12), we have

(2.1) V ar
ζ
(µ)
∞

(
fn

< fn, µ >
) =

2
∫∞
0

< α(Ttfn)2, µ > dt

< fn, µ >2
.

Recall that p(t, x, y) denotes the transition kernel of the semigroup Tt so that

Tf(x) =
∫

Rd p(t, x, y)f(y)dy. By the subcriticality assumption, the Green’s func-

tion G(x, y) =
∫∞
0

p(t, x, y)dt exists. By the symmetry assumption, we have

msym(x)p(t, x, y) = msym(y)p(t, y, x). Recall from Theorem A that µ = hmsym

15



and α ≤ c
h . Thus, substituting for µ and α, and using the symmetry, we have

(2.2)

∫ ∞

0

< α(Ttfn)2, µ > dt

≤ c

∫ ∞

0

dt

∫

Rd

dx

∫

Rd

dy

∫

Rd

dz p(t, x, y)fn(y)p(t, x, z)fn(z)msym(x)

= c

∫ ∞

0

dt

∫

Rd

dx

∫

Rd

dy

∫

Rd

dz p(t, y, x)fn(y)p(t, x, z)fn(z)msym(y)

= c

∫ ∞

0

dt

∫

Rd

dy

∫

Rd

dz p(2t, y, z)fn(y)fn(z)msym(y)

=
c

2

∫

Rd

∫

Rd

G(x, y)fn(x)fn(y)msym(x)dxdy.

Since λc(L) = sup σ(L) < 0 by assumption, the integral operator G defined

by Gf(x) =
∫

Rd G(x, y)f(y)dy on L2(Rd,msymdx) is the inverse of the positive

operator −L on L2(Rd,msymdx) obtained via the Friedrichs’ extension. (See [12,

Theorem 4.3.8] where it is shown that G is a generalized inverse operator in the

case that λc(L) ≤ 0.) Thus, using the assumption in the theorem that λc(L) < 0,

we have

(2.3) sup σ(G) =
1

inf σ(−L)
= − 1

sup σ(L)
= − 1

λc(L)
∈ (0,∞).

By the Rayleigh-Ritz variational formula [15], we have

(2.4) sup σ(G) = sup
g∈L2(Rd,msymdx)

∫
Rd g(x)Gg(x)msym(x)dx∫

Rd g2(x)msym(x)dx
.

By assumption, fn is compactly supported and locally bounded; thus, fn ∈
L2(Rd,msymdx) and it follows from (2.3) and (2.4) that there exists a constant

c1 > 0 such that

(2.5)
c

2

∫

Rd

∫

Rd

G(x, y)fn(x)fn(y)msym(x)dxdy ≤ c1

∫

Rd

f2
n(x)msym(x)dx, n = 1, 2, ...

By assumption, f
h is bounded; thus there exists a constant c2 > 0 such that fn ≤

c2h, for n = 1, 2, .... Using this along with (2.2) and (2.5), we have

(2.6)

∫∞
0

< α(Ttfn)2, µ > dt

< fn, µ >2
≤ c1

∫
Rd f2

n(x)msym(x)dx

< fn, µ >2

≤ c1c2

∫
Rd fn(x)h(x)msym(x)dx

(
∫

Rd fn(x)h(x)msym(x)dx)2
=

c1c2

< fn, µ >
.
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Now (2.1) and (2.6) give

(2.7) V ar
ζ
(µ)
∞

(
fn

< fn, µ >
) ≤ 2c1c2

< fn, µ >
.

Let ρ > 1. By adding terms to the sequence if necessary and preserving the

monotonicity, there exists a subsequence {fnk
}∞k=1 such that < fnk

, µ >∈ [ρk, ρk+1).

Thus, by Chebyshev’s inequality and (2.7) we have for ε > 0,

(2.8)

ζ(µ)(|< fnk
, η >

< fnk
, µ >

− 1| > ε) ≤ 1
ε2

V ar
ζ
(µ)
∞

(
fnk

< fnk
, µ >

) ≤ 2c1c2

ε2 < fnk
, µ >

≤ 2c1c2

ε2ρk
.

It then follows from (2.8) and the lemma of Borel-Cantelli that

(2.9) lim
k→∞

< fnk
, η >

< fnk
, µ >

= 1 a.s..

By monotonicity, there exists a nondecreasing sequence {km}∞m=1 satisfying limm→∞ km =

∞ and such that fnkm
≤ fm ≤ fnkm+1

. From this and the defining property of the

subsequence {nk} we obtain

(2.10)
1
ρ2

< fnkm
, η >

< fnkm
, µ >

≤ < fnkm
, η >

< fnkm+1
, µ >

≤ < fm, η >

< fm, µ >
≤

< fnkm+1
, η >

< fnkm
, µ >

≤ ρ2
< fnkm+1

, η >

< fnkm+1
, µ >

.

From (2.9) and (2.10) we conclude that

1
ρ2
≤ lim inf

m→∞
< fm, η >

< fm, µ >
≤ lim sup

m→∞
< fm, η >

< fm, µ >
≤ ρ2 a.s..

Since ρ > 1 is arbitrary, we conclude that limm→∞
<fm,η>
<fm,µ> = 1 a.s.. ¤

Proof of Theorem 2. Following the proof of Theorem 1 through (2.2), we now

give an alternative estimate for the right hand side of (2.2):

(2.11)

∫

Rd

∫

Rd

G(x, y)fn(x)fn(y)msym(x)dxdy

≤ (
∫

Rd

fn(x)h(x)msym(x)dx)( sup
x∈Rd

∫

Rd

G(x, y)
h(x)

fn(y)dy)

=< fn, µ > ( sup
x∈Rd

∫

Rd

Gh(x, y)
fn

h
(y)dy).

17



Thus, from (2.2) and (2.11) we obtain

(2.12)

∫∞
0

< α(Ttfn)2, µ > dt

< fn, µ >2
≤ c

2
supx∈Rd

∫
Rd Gh(x, y) fn

h (y)dy

< fn, µ >

=
c

2

supx∈Rd

∫
Rd

Gh(x,y)
mh

sym(y)
fn

h (y)mh
sym(y)dy

∫
Rd

fn

h (y)mh
sym(y)dy

.

Recalling the definitions of γn and ln in the statement of the theorem, and fixing a

positive integer j, we have

(2.13)

∫

Rd

Gh(x, y)
mh

sym(y)
fn

h
(y)mh

sym(y)dy

=
∫

Dj(x)

Gh(x, y)
mh

sym(y)
fn

h
(y)mh

sym(y)dy +
∫

Rd−Dj(x)

Gh(x, y)
fn

h
(y)dy

≤ γj

∫

Rd

fn

h
(y)mh

sym(y)dy + lj sup
fn

h
, for all x ∈ Rd.

From (2.12) and (2.13), we have

(2.14)

∫∞
0

< α(Ttfn)2, µ > dt

< fn, µ >2
≤ cγj

2
+

clj sup fn

h

2 < fn, µ >
, for j = 1, 2, ...

Using (2.14), (1.12) and Chebyshev’s inequality gives

(2.15) ζ(µ)(|< fn, η >

< fn, µ >
− 1| > ε) ≤ 1

ε2
(
cγj

2
+

clj sup fn

h

2 < fn, µ >
), for j = 1, 2, ....

Since limn→∞ < fn, µ >=< f, µ >= ∞ and sup fn

h ≤ sup f
h < ∞, letting n → ∞

in (2.15) gives

lim sup
n→∞

ζ(µ)(|< fn, η >

< fn, µ >
− 1| > ε) ≤ cγj

2ε2
, for each j = 1, 2, ...

The weak law of large numbers now follows since limj→∞ γj = 0.

Assume now that
∑

n=1 γn < ∞ and lim supn→∞
l̂n+1

l̂n
< ∞, where {l̂n} is non-

decreasing and l̂n ≥ ln. Let ρ > 1. By adding terms to the series if necessary

and preserving the monotonicity, there exists a subsequence {fnk
}∞k=1 such that

< fnk
, µ >∈ [l̂kρk, l̂kρk+1). Then setting n = nk and j = k in (2.15), we have

ζ(µ)(|< fnk
, η >

< fnk
, µ >

− 1| > ε) ≤ 1
ε2

(
cγk

2
+

c sup fnk

h

2ρk
).
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Since sup fnk

h is uniformly bounded in k, it follows from the lemma of Borel-Cantelli

that

lim
k→∞

< fnk
, η >

< fnk
, µ >

= 1 a.s..

Now an argument similar to (2.10) gives the strong law of large numbers. ¤

We now turn to the proofs of Corollaries 1 and 2.

Proof of Corollary 1. For uniformly elliptic operators, it is known [1] that there

exist constants ci > 0, i = 1, ...4, such that

(2.16)
c1

t
d
2

exp(−|y − x|2
c2t

) ≤ p(t, x, y) ≤ c3

t
d
2

exp(−|y − x|2
c4t

).

From this it follows in particular that there exists a constant C > 1 such that

(2.17)
1
C
|y − x|2−d ≤ G(x, y) ≤ C|y − x|2−d, for d ≥ 3.

We use (2.17) to show that the invariant positive harmonic functions are the positive

constants. By the nonexplosion assumption, the constants are indeed invariant. As

was noted when invariant positive functions were defined, any such function h must

be L-harmonic; that is, satisfy Lh = 0. By the Martin boundary theory [12, chapter

9], every positive harmonic function h is of the form h(x) = limn→∞
G(x,yn)
G(0,yn) for some

sequence {yn} satisfying limn→∞ |yn| = ∞. Using this with (2.17) shows that every

positive harmonic function is bounded and bounded away from 0. Fix a positive

harmonic function h. Choose M larger than the supremum of h and let ε0 > 0 be

the supremum of those ε for which M − εh is nonnegative. Let u = M − ε0h. By

the maximum principle, either u ≡ 0 or u > 0. In the latter case, u is a positive

L-harmonic function and thus it must be bounded away from 0. Since h is bounded,

this contradicts the maximality of ε0. Thus, we conclude that u ≡ 0 in which case

h is constant.

Recall from the paragraph preceeding Corollary 1 that msym = 1. Since h is

constant, we have Gh(x, y) = G(x, y). Define Dn(x) = {y ∈ Rd : |y − x| > n
2

d−2 }.
It then follows from (2.17) and the definition of γn in Theorem 2 that there exists

19



a C1 > 0 such that

(2.18) γn ≤ C1

n2
.

From (2.17) and the definition of ln in Theorem 2, we obtain for some C2 > 1,

(2.19)
1
C2

n
4

d−2 ≤ 1
C

∫

|y|≤n
2

d−2

1
|y|d−2

dy ≤ ln ≤ C

∫

|y|≤n
2

d−2

1
|y|d−2

dy ≤ C2n
4

d−2 .

In light of (2.18) and (2.19), the strong law of large numbers follows from Theorem

2. ¤

Proof of Corollary 2. The operator Lh is given by

Lh =
1
2
a

d2

dx2
+ (b + a

h′

h
)

d

dx
.

We have

mh
sym(y) = h2(y)msym(y) =

h2(y)
a(y)

exp(
∫ y

0

2b

a
(z)dz).

We must consider two cases separately. First consider the case that both H(−∞)

and H(∞) are finite. In this case, the Green’s function is given by

(2.20) Gh(x, y) =
2mh

sym(y)
H(∞)−H(−∞)

(H(∞)−H(y ∨ x))(H(y ∧ x)−H(−∞)).

(To calculate this, one solves for un in the equation Lhun = −f on (−n, n) with

un(−n) = un(n) = 0, then lets n →∞ and substitutes f(z) = δy(z). The resulting

quantity is Gh(x, y). In solving the equation, it’s convenient to write Lhu = −f

in the form (exp(
∫ x

0
2b
a (y)dy)h2(x)u′(x))′ = − 2

a(x) exp(
∫ x

0
2b
a (y)dy)h2(x)f(x) and

integrate twice, using −n as the lower limit of integration.) It is easy to see that

there exists a constant C > 0 such that

(2.21)

1
H(∞)−H(−∞)

(H(∞)−H(y ∨ x))(H(y ∧ x)−H(−∞))

≤ C min(H(∞)−H(y),H(y)−H(−∞)), for all x ∈ R.

Let {zn} be a positive sequence converging to ∞ and satisfying

(2.22)
∞∑

n=1

(H(∞)−H(zn)) + (H(−zn)−H(−∞)) < ∞.
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Define Dn(x) independent of x by Dn = (−∞,−zn) ∪ (zn,∞), and recall from

Theorem 2 that

γn = sup
x∈Rd

sup
y∈Dn(x)

Gh(x, y)
mh

sym(y)

Then it follows from (2.20)-(2.22) and the monotonicity of H that

(2.23)
∞∑

n=1

γn < ∞.

From (2.20) there exists a C > 0 such that

(2.24) sup
x∈R

Gh(x, y) ≤ Cmh
sym(y).

It follows from (2.24) that

(2.25) sup
x∈R

∫

y∈R−Dn(x)

Gh(x, y)dy ≤ C

∫ zn

−zn

mh
sym(y)dy < ∞, for n = 1, 2, ...

Letting l̂n = C
∫ zn

−zn
mh

sym(y)dy, the corollary now follows from (2.22), (2.23), (2.25)

and Theorem 2.

We now turn to the case in which H(−∞) is finite but H(∞) is not (the opposite

case being treated similarly). In this case the Green’s function is given by

(2.26) Gh(x, y) = 2mh
sym(y)(H(x ∧ y)−H(−∞)).

(One calculates the Green’s function by the method noted parenthetically after

(2.20), except that this time it is better to let 0 be the lower limit of integration.)

Define Dn(x) independent of x by Dn = (−∞,−zn), where {zn} is a sequence

increasing to ∞ and chosen so that

(2.27)
∞∑

n=1

(H(−zn)−H(−∞)) < ∞.

Recall that an assumption of the corollary in this case is that the support of f is

bounded away from +∞. From (2.26), (2.27) and the choice of Dn(x), it follows

that

(2.28)
∞∑

n=1

γn < ∞.
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Let z0 = sup supp(f). Define

(2.29) l̂n = C

∫ z0

−zn

2mh
sym(y)dy, for n = 1, 2, ...,

where C > 0. If C is sufficiently large, then from (2.26) we have

(2.30) l̂n ≥ sup
x∈supp(f)

∫

y∈supp(f)∩{R−Dn(x)}
Gh(x, y)dy.

A look at the proof of Theorem 2 reveals immediately that everything works just

as well if the requirement l̂n ≥ ln ≡ supx∈Rd

∫
y∈Rd−Dn(x)

Gh(x, y)dy is replaced

by the requirement l̂n ≥ supx∈supp(f)

∫
y∈supp(f)∩{Rd−Dn(x)}Gh(x, y)dy. Thus, the

corollary now follows from (2.28)-(2.30) and Theorem 2. ¤

3. Proofs of Theorem 3 and Corollary 3.

Proof of Theorem 3. The space M(Rd) is equipped with the natural partial

ordering defined by η1 ≤ η2 if η1(A) ≤ η2(A) for all Borel sets A ⊂ Rd. A function

f : M(Rd) → R is called nondecreasing if f(η1) ≤ f(η2) whenever η1 ≤ η2.

A probability measure ν ∈ M1(M(Rd)) is called associated if for each pair of

nondecreasing functions f, g : M(Rd) → R, one has

Cov(f(ν), g(ν)) ≡
∫

M(Rd)

f(η)g(η)dν(η)−
∫

M(Rd)

f(η)dν(η)
∫

M(Rd)

g(η)dν(η) ≥ 0.

Since the invariant distribution ζ(µ) is infinitely divisible, it follows from [3,9] that

ζ(µ) is associated. It is known [10, 11] that for associated random variables, in-

dependence is equivalent to uncorrelatedness, and we will show below that the

asymptotic independence of η(A(1)
n ) and η(A(2)

n ) under ζ(µ), which we call mixing

(Definition 2), is equivalent to the following asymptotic uncorrelatedness of η(A(1)
n )

and η(A(2)
n ) under ζ(µ):

(3.1)

lim
n→∞

(
∫

M(Rd)

η(A(1)
n )η(A(2)

n )dζ(µ)(η)−
∫

M(Rd)

η(A(1)
n )dζ(µ)(η)

∫

M(Rd)

η(A(2)
n )dζ(µ)(η)) = 0.

We first prove that (3.1) holds whenever Assumption 1 is in effect, and then we

show that (3.1) implies mixing.
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Recalling the definition of Covν(f, g), defined before (1.12), note that the expres-

sion in the parentheses on the left hand side of (3.1) is just Covζ(µ)(1
A

(1)
n

, 1
A

(2)
n

).

Thus, by (1.12), the expression in the parentheses on the left hand side of (3.1) is

equal to 2
∫∞
0

< α(Tt1A
(1)
n

)(Tt1A
(2)
n

), µ > dt. We have Tt1A
(i)
n

(x) =
∫

A
(i)
n

p(t, x, y)dy.

Thus, using the symmetry assumption msym(x)p(t, x, y) = msym(y)p(t, y, x), along

with the fact that µ(x) = h(x)msym(x) and along with the underlying assumption

in Theorem A that α ≤ c
h , we have

(3.2)

2
∫ ∞

0

< α(Tt1A
(1)
n

)(Tt1A
(2)
n

), µ > dt =

2
∫ ∞

0

dt

∫

Rd

dx

∫

A
(1)
n

dy

∫

A
(2)
n

dz α(x)p(t, x, y)p(t, x, z)µ(x)

≤ 2c

∫ ∞

0

dt

∫

Rd

dx

∫

A
(1)
n

dy

∫

A
(2)
n

dz p(t, x, y)p(t, x, z)msym(x)

= 2c

∫ ∞

0

dt

∫

Rd

dx

∫

A
(1)
n

dy

∫

A
(2)
n

dz p(t, y, x)p(t, x, z)msym(y)

= 2c

∫ ∞

0

dt

∫

A
(1)
n

dy

∫

A
(2)
n

dz p(2t, y, z)msym(y)

= c

∫

A
(1)
n

dy

∫

A
(2)
n

dz G(y, z)msym(y).

From (3.2), Assumption 1 and the fact that the left hand side of (3.2) coincides

with the expression in the parentheses on the left hand side of (3.1), we obtain

(3.1).

We now show that (3.1) implies mixing. Let f, g ∈ C1
b ([0,∞)). Let

H(1,2)
n (x, y) = ζ(µ)(η(A(1)

n ) > x, η(A(2)
n ) > y)− ζ(µ)(η(A(1)

n ) > x) · ζ(µ)(η(A(2)
n ) > y).

By associativity, H
(1,2)
n (x, y) ≥ 0. Integration by parts along with the finiteness of

the covariance shows that

(3.3)∫

M(Rd)

η(A(1)
n )η(A(2)

n )dζ(µ)(η)−
∫

M(Rd)

η(A(1)
n )dζ(µ)(η)

∫

M(Rd)

η(A(2)
n )dζ(µ)(η)

=
∫ ∞

−∞

∫ ∞

−∞
H(1,2)

n (x, y)dxdy,
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and that

(3.4)∫

M(Rd)

f(η(A(1)
n ))g(η(A(2)

n ))dζ(µ)(η)−
∫

M(Rd)

f(η(A(1)
n ))dζ(µ)(η)

∫

M(Rd)

g(η(A(2)
n ))dζ(µ)(η)

=
∫ ∞

−∞

∫ ∞

−∞
f ′(x)g′(y)H(1,2)

n (x, y)dxdy.

By (3.1) and (3.3) we have

(3.5) lim
n→∞

∫ ∞

−∞

∫ ∞

−∞
H(1,2)

n (x, y)dxdy = 0.

Since f ′ and g′ are bounded and since H(1,2) ≥ 0, it follows from (3.4) and (3.5)

that mixing holds. ¤

Proof of Corollary 3. By Theorem 3, we must verify that Assumption 1 holds

when {A(1)
n }∞n=1 and {A(2)

n }∞n=1 are as in the statement of the corollary. By (2.17),

G(x, y) ≤ C|x− y|2−d.

Also, we have msym ≡ 1. Thus,

∫

A
(1)
n

∫

A
(2)
n

G(x, y)msym(x)dxdy ≤ C
|A(1)

n ||A(2)
n |

(dist(A(1)
n , A

(2)
n ))d−2

.

Therefore, by the condition on {A(1)
n }∞n=1 and {A(2)

n }∞n=1 in the corollary, Assump-

tion 1 holds. ¤
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