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Abstract. Consider the equation

(0.1)
ut = ∆u− V u + aup in Rn × (0, T );

u(x, 0) = φ(x) 
 0, in Rn,

where p > 1, n ≥ 2, T ∈ (0,∞], V (x) ∼ ω
|x|2 as |x| → ∞, for some ω 6= 0,

and a(x) is on the order |x|m as |x| → ∞, for some m ∈ (−∞,∞).

A solution to the above equation is called global if T = ∞. Under

some additional technical conditions, we calculate a critical exponent

p∗ such that global solutions exist for p > p∗, while for 1 < p ≤ p∗,

all solutions blow up in finite time. We also show that when V ≡ 0,

the blow-up/global solution dichotomy for (0.1) coincides with that for

the corresponding problem in an exterior domain with the Dirichlet

boundary condition, including the case in which p is equal to the critical

exponent.

1. Introduction and Statement of Results

Consider the semilinear heat equation

(1.1)
ut = ∆u− V u+ up in Rn × (0, T );

u(x, 0) = φ(x) 
 0 in Rn,

where p > 1, n ≥ 1 and T ∈ (0,∞]. In this paper, when we speak of a

solution to the above equation, or to any of the other equations appearing

later on, we mean a classical solution u satisfying ||u(·, t)||∞ < ∞, for
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0 < t < T . This allows us to employ comparison principles. A solution to

(1.1) is called global if T = ∞. In the case that V ≡ 0, p∗ ≡ 1 + 2
n is the

critical exponent, the so-called Fujita exponent, and one has the following

dichotomy: if p > p∗, then for sufficiently small initial data φ, the solution

to (1.1) is global, whereas if 1 < p ≤ p∗, then (1.1) has no global solution—

every solution blows up in finite time. This result goes back to Fujita [3] in

the case p 6= p∗. Various proofs of blow-up in the borderline case p = p∗ can

be found in [1], [8], [12].

More recently, Zhang [14] considered (1.1) with n ≥ 3 for potentials V

behaving like ω
1+|x|b , for b > 0 and ω 6= 0. He proved the following result.

Theorem (Zhang). Let n ≥ 3.

i. If 0 ≤ V (x) ≤ ω
1+|x|b , for some b > 2 and ω > 0, then p∗ = 1 + 2

n and

consequently the potential does not affect the critical exponent;

ii. If V (x) ≥ ω
1+|x|b , for some b ∈ (0, 2) and ω > 0, then p∗ = 1 and there

exist global solutions for all p > 1;

iii. If ω
1+|x|b ≤ V (x) ≤ 0, for some b > 2 and ω < 0 with |ω| sufficiently

small, then p∗ = 1 + 2
n and consequently the potential does not affect the

critical exponent;

iv. If V (x) ≤ ω
1+|x|b , for some b ∈ (0, 2) and ω < 0, then p∗ = ∞ and there

are no global solutions for any p > 1.

Note that wherever the statement of the result is that there exist global

solutions, Zhang either does not allow for negative V or else requires that

|V | be sufficiently small. The reason for this will become clear from Theorem

2 below.

Zhang noted that it seemed difficult to specify the exact value of the

critical exponent in the case of quadratic decay; that is in the case that

V (x) ∼ ω
|x|2 as |x| → ∞. He also noted that it is unclear whether or not p∗

is finite in the case that V (x) ∼ ω
|x|2 , with ω < 0.
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Very recently, Ishige [6] treated (1.1) for n ≥ 3 in the case V (x) ∼ ω
|x|2 with

ω > 0. Let α = α(ω, n) denote the larger root of the equation α(α+n−2) =

ω; that is

(1.2) α(ω, n) =
2− n+

√
(n− 2)2 + 4ω
2

.

Since we are assuming here that ω > 0, one has α(ω, n) > 0. Define

(1.3) p∗(ω) = 1 +
2

n+ α(ω, n)
.

Theorem (Ishige). Let n ≥ 3 and assume that V ≥ 0. Let ω > 0.

i. If V (x) ≥ ω
|x|2 for large |x|, then for p > p∗(ω) there exist global solutions

to (1.1);

ii. If V (x) ≤ ω
|x|2 for large |x|, then for 1 < p ≤ p∗(ω) every solution to

(1.1) blows up in finite time.

Note that Ishige assumes from the outset that V ≥ 0. The delicacy

between having global solutions and allowing V to take negative values will

be explained by Theorem 2 below.

Ishige’s proof involved comparison with a solution to the radially symmet-

ric linear equation vt = ∆v− V̂ (|x|)v, where V̂ (r) ∼ ω
r2 as r →∞. The large

time behavior of this linear equation, which is needed for the comparison,

was recently obtained by Ishige and Kawakami [7].

In this paper, our main focus is the study of the remaining case, V (x) ∼
ω
|x|2 , with ω < 0. In fact we treat the following more general problem:

(1.4)
ut = ∆u− V u+ aup in Rn × (0, T );

u(x, 0) = φ(x) 
 0, in Rn,

where p > 1, n ≥ 2, T ∈ (0,∞], φ is bounded and continuous, 0 �

a ∈ Cα(Rn) and V ∈ Cα(Rn − {0}) α ∈ (0, 1]. We also require that

lim infx→0 V (x) > −∞ so that V is locally bounded from below. Our meth-

ods, which are completely different from the method employed by Ishige, also

allow one to obtain weaker versions of Ishige’s results for the case ω > 0, but
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in the more general context of equation (1.4) with n ≥ 2. The method of

proof also leads naturally to a study of the critical exponent in an exterior

domain with the Dirichlet boundary condition in the case V ≡ 0.

In the case that V ≡ 0 and that a satisfies

(1.5)

c1|x|m ≤ a(x) ≤ c2|x|m, for sufficiently large |x| and somem ∈ (−∞,∞), c1, c2 > 0,

the critical exponent p∗ for (1.4) was calculated in [12]; it is given by

(1.6) p∗ = 1 +
(2 +m)+

n
.

In (1.2) we defined α(ω, n) for ω > 0. We now extend the definition of α(ω, n)

in (1.2) to ω ≥ −1
4(n− 2)2. Note that α(ω, n) < 0 for −1

4(n− 2)2 ≤ ω < 0.

Now define

(1.7) p∗(ω,m) = 1 +
(2 +m)+

n+ α(ω, n)
.

We will prove the following theorem.

Theorem 1. Let n ≥ 3 and let −1
4(n − 2)2 ≤ ω < 0. Consider (1.4) with

a(x) satisfying (1.5). Assume that V ∈ Cα(Rn − {0}) and that

lim infx→0 V (x) > −∞. Let p∗(ω,m) be as in (1.7).

i. If V (x) ≥ ω
|x|2 , then there exist global solutions to (1.4) for p > p∗(ω,m);

ii. If V (x) ≤ ω
|x|2 , for sufficiently large |x|, then there are no global solutions

to (1.4) for 1 < p ≤ p∗(ω,m).

Remark. Note that in the case of the existence of global solutions, we allow

V to be negative up to a precise globally specified size. The reason for this

will become clear in Theorem 2.

We now consider what happens when ω < −1
4(n − 2)2, n ≥ 2. We will

show that p∗ = ∞ under a certain general condition on the operator −∆+V ,

and that this condition holds if V (x) ≤ ω
|x|2 , for |x| > ε, with sufficiently

small ε > 0.
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Let D j Rn be a domain. Then −∆ + V on D with the Dirichlet bound-

ary condition on ∂D can be realized as a self-adjoint operator on L2(D).

Denoting its spectrum by σ(−∆ + V ;D), let

λ0;D(−∆ + V ) ≡ inf σ(−∆ + V ;D).

Theorem 2. If there exists a domain D j Rn for which infx∈D a(x) > 0

and λ0;D(−∆ + V ) < 0, then there are no global solutions to (1.4) for any

p > 1; that is, p∗ = ∞.

We can use Theorem 2 to prove the following corollary.

Corollary 1. Consider (1.4) with a > 0 on Rn, n ≥ 2. Let ω < −1
4(n−2)2.

There exists an ε > 0 such that if V (x) ≤ ω
|x|2 , for |x| > ε, then there are no

global solutions to (1.4) for any p > 1; that is, p∗ = ∞.

Remark 1. Note that there is a discontinuity in the critical exponent at

ω = −1
4(n − 2)2. By Theorem 1, if V (x) = − (n−2)2

4|x|2 , for sufficiently large

|x|, and V (x) ≥ − (n−2)2

4|x|2 , for all x, then the critical exponent is equal to

p∗(−1
4(n − 2)2,m) = 1 + 2(2+m)+

n+2 . However, if V (x) = ω
|x|2 , for some ω <

−1
4(n−2)2 and |x| > ε, for sufficiently small ε > 0, then the critical exponent

is ∞.

Remark 2. Theorem 2 makes it clear why in the theorems of Zhang and of

Ishige and in Theorem 1, one needed to be careful with regard to stating

the existence of global solutions and allowing V to take negative values. For

example, part (iii) of the theorem of Zhang states that if ω
1+|x|b ≤ V (x) ≤ 0

for some b > 2 and ω < 0, with |ω| sufficiently small, then the critical

exponent for (1.1) is 1 + 2
n . The requirement that |ω| be sufficiently small

is mandatory in light of Theorem 2. Indeed, for any D j Rn, if ω < 0 and

|ω| is sufficiently large, then λ0;D(−∆ + ω
1+|x|b ) < 0 and thus, by Theorem

2, one has p∗ = ∞.

The method of proof in Theorem 1 also yields the following result for the

case ω > 0.
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Theorem 3. Let n ≥ 2 and ω > 0. Consider (1.4) with a(x) satisfying

(1.5). Assume that V ∈ Cα(Rn − {0}). Let p∗(ω,m) be as in (1.7).

i. If V (x) ≥ ω
|x|2 , then there exist global solutions to (1.4) for p > p∗(ω,m).

ii. If V (x) ≤ ω
|x|2 , for sufficiently large |x|, then there are no global solutions

to (1.4) for 1 ≤ p ≤ p∗(ω,m).

Remark. Note that part (i) requires that V approach ∞ as |x| → 0. In fact,

as Ishige has proven in the case that a ≡ 1 and n ≥ 3, the result should

hold as long as V (x) ≥ ω
|x|2 , for sufficiently large |x|, and V ≥ 0 for all

x. However, our method of proof does not seem to be extendable to this

situation.

As will be seen below, the method of proof we employ for the blow-up

case in Theorems 1 and 3 will lead naturally to a consideration of the critical

exponent for the semilinear heat equation in an exterior domain with the

Dirichlet boundary condition and with V ≡ 0. Let Br = {x ∈ Rn : |x| < r}.

Consider the following problem:

(1.8)

ut = ∆u+ aup in (Rn − B̄r0)× (0, T );

u(x, t) = 0, for |x| = r0, t ≥ 0;

u(x, 0) = φ(x) 
 0 in Rn − B̄r0 ,

where

(1.9)

c1|x|m ≤ a(x) ≤ c2|x|m, for sufficiently large |x| and somem ∈ (−∞,∞), c1, c2 > 0.

We prove that restricting to an exterior domain does not affect the blow-

up/global solution dichotomy.

Theorem 4. Let n ≥ 2. Consider (1.8) with a(x) satisfying (1.9). Let

p∗ = 1 +
(2 +m)+

n

as in (1.6).

i. If 1 ≤ p ≤ p∗, then there exist global solutions to (1.8);
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ii. If p > p∗, then there are no global solutions to (1.8).

Remark. In the case a ≡ 1, n ≥ 3 and p 6= p∗, the result in Theorem 4

was proven in [2]. For some other works that treat the critical exponent in

exterior domains, see [9] and [15]. Most of the results in these papers do not

cover the case in which p is equal to the critical exponent.

We end this section with an outline of the methods used to prove Theo-

rems 1 and 3, concentrating on the case of nonexistence of global solutions,

which is where our method is novel, and leads to a consideration of the criti-

cal exponent in the case of a semilinear heat equation in an exterior domain

with the Dirichlet boundary condition. By standard comparison techniques,

it suffices to treat the radially symmetric case. Thus, instead of considering

solutions u(x, t) of (1.4) with a satisfying (1.5), we may consider solutions

u(r, t) of the equation

(1.10)
ut = urr +

n− 1
r

ur − V (r)u+ a(r)up in (0,∞)× (0, T );

u(r, 0) = φ(r) 
 0 in [0,∞),

where p > 1, T ∈ (0,∞], φ is bounded and continuous, V ∈ Cα((0,∞)) and

lim infr→0 V (r) > −∞, 0 � a ∈ Cα([0,∞)), α ∈ (0, 1], with a satisfying

(1.11)

c1r
m ≤ a(r) ≤ c2r

m, for sufficiently large r and somem ∈ (−∞,∞), c1, c2 > 0.

For the existence of global solutions when p > p∗(ω,m) in part (i) of The-

orems 1 and 3, we construct a global super-solution to (1.10). Note that in

general it is much more difficult to use the method of super/sub-solutions to

prove blow-up, since the construction of an appropriate sub-solution would

probably require a reasonable knowledge of the blow-up profile.

We now turn to the nonexistence of global solutions when 1 < p ≤

p∗(ω,m) in part (ii) of Theorems 1 and 3, We may assume without loss

of generality that the initial data φ in (1.10) satisfy φ(r) > 0 for all r > 0.

Indeed, if this is not the case, then for δ > 0 sufficiently small, we can con-

sider ū(r, t) ≡ u(r, t+δ), which also satisfies (1.10) and is strictly positive at
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t = 0. We apply a transformation as follows. Let u be a solution to (1.10)

and define v(r, t) = r−αu(r, t). Let ψ(r) = r−αφ(r). Then one calculates

that

(1.12)

vt = vrr +
n− 1 + 2α

r
vr +

(
α(α+ n− 2)

r2
− V (r)

)
v + rα(p−1)a(r)vp

in (0,∞)× (0, T );

v(r, 0) = ψ(r) > 0 in (0,∞).

There will be global solutions of v if and only if there are global solutions of

u; thus it suffices to study (1.12). In part (ii) of Theorems 1 and 3, we are

assuming that V (r) ≤ ω
r2 , for sufficiently large r, say for r ≥ r0, where ω ≥

−1
4(n− 2)2. If one now chooses α = α(ω, n) as in (1.2), then the coefficient

of v in (1.12) is nonnegative for r ≥ r0. By the comparison principle, the

solution to that equation dominates the solution to the equation

(1.13)

wt = wrr +
N − 1
r

wr + â(r)wp in (r0,∞)× (0, T );

w(r, 0) = ψ(r) > 0 in [r0,∞);

w(r0, t) = 0, t > 0,

where

(1.14) N ≡ n+ 2α(ω, n)

and â(r) = rα(p−1)a(r). In terms of â, the assumption (1.11) on a is

(1.15) c1r
M ≤ â(r) ≤ c2r

M , for sufficiently large r, c1, c2 > 0,

where

(1.16) M ≡ α(ω, n)(p− 1) +m, m ∈ (−∞,∞).

(The reason we insisted on φ(r) > 0 for all r > 0, and thus also ψ(r) > 0 for

all r > 0, is that otherwise we could have ended up with ψ ≡ 0 in (1.13).)

Thus, it suffices to show that there are no global solutions to (1.13)-(1.16).
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Now (1.13)-(1.16) is the radial version of (1.4)-(1.5) in the case V ≡ 0,

except that we have placed the Dirichlet boundary condition at r = r0

instead of considering the problem for all r > 0, and except that m in (1.5)

is replaced by M and the dimension n is replaced by the “dimension” N .

(Note from the definition of α(ω, n) that one always has N ≥ 2.) The critical

exponent p∗ for (1.4) with V ≡ 0 and with a satisfying (1.5) was given in

(1.6). Substituting N and M for n and m in (1.6), it is not unreasonable to

suspect that no global solutions will exist if

(1.17) 1 < p ≤ 1 +
(2 +M)+

N
= 1 +

(2 + α(ω, n)(p− 1) +m)+

n+ 2α(ω, n)
.

We now solve (1.17) for p. Consider first the case ω < 0, in which case

α(ω, n) < 0. Since we are assuming that p > 1, (1.17) will never hold if

2 + α(ω, n)(p− 1) +m ≤ 0; that is, if

(1.18) p ≥ 1− 2 +m

α(ω, n)
.

On the other hand, if 2 + α(ω, n)(p− 1) +m > 0, then solving (1.17) for p

gives

(1.19) 1 < p ≤ 1 +
2 +m

n+ α(ω, n)
.

One can check that for m > −2, the right hand side of (1.19) is strictly less

than the right hand side of (1.18). From this fact along with (1.18) and

(1.19), we conclude that (1.17) holds if and only if 1 < p ≤ p∗(ω,m), where

p∗(ω,m) is as in (1.7).

Now consider the case ω > 0, in which case α(ω, n) > 0.

If 2 + α(ω, n)(p − 1) + m > 0, then solving (1.17) as we did above gives

(1.19). On the other hand, if 2 + α(ω, n)(p − 1) + m ≤ 0 (which implies

that m < −2), then (1.17) does not hold. Putting these facts together leads

again to (1.17) holding if and only if 1 < p ≤ p∗(ω,m).

To turn the above argument into a rigorous proof, we need to show that

indeed no global solutions exist for (1.13)-(1.16) when 1 < p ≤ 1 + (2+M)+

N .

That is we need to show that the proof in [12], which treated the operator ∆
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in Rn (whose radial part is d2

dr2 + n−1
r

d
dr ), can accommodate two changes: (1)

operators of the form d2

dr2 + N−1
r

d
dr with fractional N and (2) the Dirichlet

boundary condition at r = r0, which serves to make solutions smaller. The

proof in [12] made rather heavy use of the explicit form of the heat kernel

p(t, x, y) = (4πt)−
n
2 exp(− |y−x|2

4t ) for the corresponding linear operator ∆−
∂
∂t in Rn. In the present case, the corresponding linear operator is ∂2

∂r2 +
N−1

r
∂
∂r −

∂
∂t with the Dirichlet boundary condition at r = r0. It turns out

that if N > 2 (equivalently, ω > −1
4(n − 2)2), then the heat kernel for

this operator is comparable in an appropriate sense to the heat kernel for
∂2

∂r2 + N−1
r

∂
∂r −

∂
∂t on the entire space r > 0; thus, we will be able to use

this latter heat kernel, which we can exhibit explicitly. However, this latter

heat kernel is a much less convenient object than the Gaussian heat kernel.

In fact, this obstacle prevented us from using the method of proof in [12] to

prove the existence of global solutions above the critical exponent; hence the

use of super-solutions. However, we were able to use this heat kernel and

amend the nonexistence proof in [12] at or below the critical value. When

N = 2 (equivalently, ω = −1
4(n − 2)2), the heat kernel with the Dirichlet

boundary condition is not comparable to the heat kernel on the whole space,

however an appropriate lower bound is known and sufficient for our needs.

In section 2 we prove the existence of global solutions in part (i) of The-

orems 1 and 3. In section 3 we prove the nonexistence of global solutions in

part (ii) of Theorems 1 and 3. In section 4 we prove Theorem 4. In section

5 we prove Theorem 2 and Corollary 1.

2. Proofs of Part (i) of Theorems 1 and 3

We assume that p > p∗(ω,m), where p∗(ω,m) is as in (1.7). As noted

in the first section of the paper, instead of studying (1.4) with a satisfying

(1.5), it suffices to study the radial problem (1.10) with a satisfying (1.11).

By the standard theory, it suffices to exhibit a global super-solution. We
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look for such a super-solution in the form

v(r, t) = δ
rα

(t+ 1)γ
exp(− cr2

t+ 1
),

for some δ, c > 0 and some α, γ ∈ (−∞,∞). We have

(2.1) vr = (
α

r
− 2cr
t+ 1

)v;

(2.2) vrr = (
α2

r2
+

4c2r2

(t+ 1)2
− 4cα
t+ 1

− α

r2
− 2c
t+ 1

)v;

(2.3) vt = (− γ

t+ 1
+

cr2

(t+ 1)2
)v.

The condition on V in part (i) of Theorems 1 and 3 is that V (r) ≥ ω
r2 , with

− (n−2)2

4 ≤ ω < 0 in Theorem 1 and ω > 0 in Theorem 3. Using this along

with (2.1), (2.2) and (2.3), we have

(2.4)

v−1(vrr +
n− 1
r

vr − V (r)v − vt + a(r)vp) ≤

(4c2 − c)
r2

(t+ 1)2
+
α2 + (n− 2)α− ω

r2
+
γ − 4cα− 2cn

t+ 1

+ δp−1a(r)
rα(p−1)

(t+ 1)γ(p−1)
exp(−c(p− 1)r2

t+ 1
).

In order to make the first term on the right hand side of (2.4) vanish, we

choose c = 1
4 , and in order to make the second term on the right hand side

of (2.4) vanish, we choose α = α(ω, n) as in (1.2).

If m ≤ 0, the assumption on a in (1.11) guarantees that for some C > 0,

a(r) ≤ Crm, for all r > 0. Ifm > 0, the assumption on a in (1.11) guarantees

that for some C > 0, a(r) ≤ C(r∨1)m, for all r > 0. This forces us to break

up the next part of the proof into two cases. We will continue the proof

under the assumption that m ≤ 0. After the completion of this case, it will

be easy to point out how to handle the case m > 0.

Since a(r) ≤ Crm, the final term on the right hand side of (2.4) (with c =
1
4 and α = α(ω, n)) is bounded from above by Cδp−1 rα(ω,n)(p−1)+m

(t+1)γ(p−1) exp(− (p−1)r2

4(t+1) ).
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Letting z = r2

t+1 , this upper bound can be written as

Cδp−1z
1
2
α(ω,n)(p−1)+ 1

2
m exp(−1

4(p− 1)z)

(t+ 1)(γ−
1
2
α(ω,n))(p−1)− 1

2
m

,

which is itself bounded from above by C1Cδp−1

(t+1)(γ−
1
2 α(ω,n))(p−1)− 1

2 m
, where

C1 = supz>0 z
1
2
α(ω,n)(p−1)+ 1

2
m exp(−1

4(p− 1)z). In light of the above analy-

sis, it follows from (2.4) that

(2.5) v(r, t) = δ
rα(ω,n)

(t+ 1)γ
exp(− r2

4(t+ 1)
)

satisfies

(2.6)

v−1(vrr +
n− 1
r

vr − V (r)v − vt + a(r)vp) ≤

γ − α(ω, n)− 1
2n

t+ 1
+

C1Cδ
p−1

(t+ 1)(γ−
1
2
α(ω,n))(p−1)− 1

2
m
.

If

(2.7) γ − α(ω, n)− 1
2
n < 0

and

(2.8) (γ − 1
2
α(ω, n))(p− 1)− 1

2
m ≥ 1,

then after choosing δ > 0 sufficiently small, the right hand side of (2.6) will

be non-positive. The two inequalities (2.7) and (2.8) together are equivalent

to
1
2
α(ω, n) +

1 + 1
2m

p− 1
≤ γ < α(ω, n) +

1
2
n,

and this latter pair of inequalities can be solved for γ if and only if α(ω, n)+
2+m
p−1 < 2α(ω, n) + n, or equivalently, if and only if p > 1 + 2+m

n+α(ω,n) . Since

we have assumed from the outset that p > 1, we conclude that if p >

1 + (2+m)+

n+α(ω,n) = p∗(ω,m), then it is possible to choose γ so that (2.7) and

(2.8) hold.

In the case m > 0, we have a(r) ≤ Crm, if r ≥ 1, and a(r) ≤ Cr0, if

0 < r < 1. Thus, in order for the above analysis to go through in this case,

we need to have (2.8) hold as it is written and also with m replaced by 0.
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However, since m > 0, if (2.8) holds as it is written, then it holds a fortiori

with m replaced by 0.

In the case ω > 0, the function v given by (2.5) with δ > 0 sufficiently

small and γ chosen to satisfy (2.7) and (2.8) serves as an appropriate global

super-solution.

In the case ω < 0, there is one technical problem; namely, that α(ω, n) < 0

and thus v is not finite at r = 0. This artificial singularity arises from the

use of polar coordinates. Unfortunately, if one replaces r by r + c for some

c > 0, then v will no longer be a super-solution. Thus, we argue as follows.

Consider ω and p > p∗(ω, n) as fixed. Our work so far allows us to conclude

that for sufficiently small initial data φ, the solution u(x, t) of (1.4) satisfies

u(x, t) ≤ v(|x|, t) up until some possibly finite blow-up time. Choose ε > 0

sufficiently small so that p > p∗(ω−ε, n). The function v in (2.5) was shown

to be a super-solution for (1.4) under the assumption that the potential

V satisfies V (x) ≥ ω
|x|2 . Recall that in (1.4) we are also assuming that

V is locally bounded from below. Therefore, there exists an r0 > 0 such

that V (x) ≥ ω
r2
0

for |x| ≤ r0. One can check that it is then possible to

choose an x0 6= 0 such that V (x) ≥ ω−ε
|x−x0|2 . Now consider the radial version

(1.10) of (1.4) but with the origin shifted to the point x0. Call the new

radial variable ρ = |x − x0|. Since we have V (ρ) ≥ ω−ε
ρ2 , the construction

above shows that there exists a function v̂(ρ, t) = δ̂ ρα(ω−ε,n)

(t+1)γ̂ exp(− ρ2

4(t+1))

such that for sufficiently small initial data φ, the solution u(x, t) of (1.4)

satisfies u(x, t) ≤ v̂(|x − x0|, t) up until some possibly finite blow-up time.

We conclude that for sufficiently small initial data φ, the solution u(x, t)

of (1.4) satisfies u(x, t) ≤ v̂(|x− x0|, t) ∧ v(|x|, t) up until its blow-up time.

But the right hand side is finite for all x and t. Thus u is in fact a global

solution.
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3. Proofs of Part (ii) of Theorems 1 and 3

As was shown at the end of section 1, in order to prove that when 1 <

p ≤ p∗(ω,m) there are no global solutions to (1.4) with a satisfying (1.5),

it suffices to show that there are no global solutions for (1.13)-(1.16) when

p satisfies (1.17). We will always assume that M > −2 since otherwise

there is nothing to prove. We wish to employ the method of proof used in

[12]. This method requires a fairly explicit knowledge of the heat kernel for

the corresponding linear equation. In the present case, the linear equation

is Wt = Wrr + N−1
r Wr with (r, t) ∈ (r0,∞) × (0,∞), for some possibly

fractional N with N ≥ 2, and with the Dirichlet boundary condition at

r = r0. Denote the heat kernel for this equation by q̄(N,r0)(t, r, ρ).

Denote by q(N)(t, r, ρ) the heat kernel for the equationWt = Wrr+ N−1
r Wr

with (r, t) ∈ (0,∞) × (0,∞). The kernel q(N)(t, r, ρ) is the transition prob-

ability density for the Bessel process of order N , and is given by [5]

(3.1) q(N)(t, r, ρ) = exp(−r
2 + ρ2

4t
)

ρN−1

2t(rρ)
N
2
−1
IN

2
−1(

rρ

2t
),

where Iν is the modified Bessel function of order ν, given by

(3.2) Iν(x) = (
x

2
)ν

∞∑
n=0

(x
2 )2n

n!Γ(ν + n+ 1)
.

By the maximum principle, q̄(N,r0)(t, r, ρ) ≤ q(N)(t, r, ρ). What we need,

however, is an appropriate inequality in the reverse direction.

If N > 2 (equivalently, ω > −1
4(n − 2)2), then the Bessel process corre-

sponding to the operator d2

dr2 + N−1
r

d
dr is transient [11]. Furthermore, as will

be explained momentarily, the uniform parabolic Harnack inequality holds

for the heat equation Wt = Wrr + N−1
r Wr on r > 0. Thus, it follows from

[4] that there exist constants K0, c > 0 such that

(3.3)

q̄(N,r0)(t, r, ρ) ≥ cq(N)(K0t, r, ρ), for r > r0 +1, ρ > r0 +1, t > 0 and N > 2.
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(The uniform parabolic Harnack inequality concerns nonnegative solutions

W of Wt = Wrr + N−1
r Wr on r > 0 on a time interval [τ, τ + T ] . See [4,

Definition 2.2] for the precise definition. Any such solution can be repre-

sented as W (r, τ + t) =
∫∞
0 q(N)(t, r, ρ)W (ρ, τ)dρ, 0 ≤ t ≤ T . Using the

explicit formula for q(N) in (3.1), one can verify the uniform parabolic Har-

nack inequality. Indeed, in the case that N is an integer, the above heat

equation is just the radial form of the standard heat equation on RN , and it

is well-known that the uniform Harnack inequality holds in this case [10].)

The following key a priori lower bound on solutions to (1.13)-(1.16) in the

case that 1 < p ≤ 1 + (2+M)+

N will be used to prove the theorem. Then we

will come back to prove the lemma.

Lemma 1. Let w be a solution to (1.13)-(1.16) on a time interval 0 < t < T ,

with 1 < p ≤ 1 + (2+M)+

N and N > 2. Then for some K,C > 0,

(3.4) w(r, t) ≥ Ct−
N
2 log(1 + t) exp(−Kr

2

t
), for 2 < t < T, r > r0 + 1.

Remark. The proof of Lemma 1 makes use of (3.3). If N = 2, a weaker

lower bound holds for q̄(N,r0) in terms of q(N). This weaker bound is enough

to prove (3.4) when N = 2 with the restriction that r ≥ t
1
2 . See Lemma 2

and (4.2). As the proof of Theorem 1 below shows, it is enough to have the

estimate (3.4) for r ≥ t
1
2 .

In light of the above remark, (3.4) holds for all N ≥ 2 and r ≥ t
1
2 . We

now use this to prove the theorem.

Proof of Theorem 1. Assume that w(r, t) is a global solution to (1.13)-(1.16).

For n > r0 + 1, define

Fn(t) =
∫ 2n

n
w(r, t)φ(n)(r)rN−1dr,

where φ(n) > 0, normalized by
∫ 2n
n φ(n)(r)rN−1dr = 1, is the eigenfunction

corresponding to the principal eigenvalue λn > 0 for the operator −( d2

dr2 +
N−1

r
d
dr ) = −r1−N d

drr
N−1 d

dr on (n, 2n) with the Dirichlet boundary condition

at the endpoints. For an appropriate value of n, we will show that Fn blows



16 ROSS PINSKY

up in finite time, thereby contradicting the assumption that w is a global

solution.

From the outset, we assume that n is sufficiently large so that (1.15)

holds for r ≥ n. Simple scaling shows that λn is on the order 1
n2 as n →

∞. In particular then, there exists a constant c > 0 such that λn ≤ c
n2 .

Since φ(n)(n) = φ(n)(2n) = 0, one has (φ(n))′(n) ≥ 0 and (φ(n))′(2n) ≤ 0.

Using the facts in this paragraph, integrating by parts and using Jensen’s

inequality, we have

(3.5)

F ′
n(t) =

∫ 2n

n
wt(r, t)φ(n)(r)rN−1dr

=
∫ 2n

n

(
wrr(r, t) +

N − 1
r

wr(r, t) + â(r)wp(r, t)
)
φ(n)(r)rN−1dr

=
∫ 2n

n
(rN−1wr(r, t))rφ

(n)(r)dr +
∫ 2n

n
â(r)wp(r, t)φ(n)(r)rN−1dr

≥
∫ 2n

n
(rN−1φ(n)

r (r))rw(r, t)dr + c1n
M

∫ 2n

n
wp(r, t)φ(n)(r)rN−1dr

= −λnFn(t) + c1n
M

∫ 2n

n
wp(r, t)φ(n)(r)rN−1dr

≥ − c

n2
Fn(t) + c1n

MF p
n(t).

The function − c
n2x + c1n

Mxp is both positive and increasing for x >

( c
c1

)
1

p−1n
−M+2

p−1 . Therefore, if there exists an n and a Tn for which Fn(Tn) >

( c
c1

)
1

p−1n
−M+2

p−1 , then it follows from (3.5) and the fact that p > 1 that Fn(t)

will blow up at some finite value of t. From Lemma 1 and the remark

following it, we obtain w(r, n2) ≥ C1n
−N log n, for n ≤ r ≤ 2n and some

C1 > 0. Thus, Fn(n2) ≥ C1n
−N log n. Since 1 < p ≤ 1 + (2+M)+

N , one can

choose n sufficiently large so that Fn(n2) ≥ C1n
−N log n > ( c

c1
)

1
p−1n

−M+2
p−1 .

�

Proof of Lemma 1. The solution W to the corresponding linear problem

Wt = Wrr + N−1
r Wr with the Dirichlet boundary condition at r = r0 and
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with initial data ψ is given by

(3.6) W (r, t) =
∫ ∞

r0

q̄(N,r0)(t, r, ρ)ψ(ρ)dρ.

By comparison, the solution w to (1.13)-(1.16) satisfies

(3.7) w ≥W.

On the other hand, the solution w to (1.13)-(1.16) satisfies the inequality

(3.8)

w(r, t) ≥
∫ ∞

r0

q̄(N,r0)(t, r, ρ)ψ(ρ)dρ+
∫ t

0
ds

∫ ∞

r0

dρ q̄(N,r0)(t−s, r, ρ)â(ρ)wp(ρ, s).

(See [12] and [13], where it is also shown that under appropriate conditions,

(3.8) holds with an equality.) Without loss of generality, we assume that

r0 + 2 is contained in the support of ψ appearing in (3.6). From (3.1)-(3.3)

and (3.6)-(3.8) it then follows that

(3.9)

w(r, t) ≥ c1

∫ t

0
ds

∫ ∞

r0+1
dρ q(N)(K1(t−s), r, ρ)â(ρ)qp

(N)(K1s, ρ, r0+2), r > r0+1,

for some K1, c1 > 0.

In the case that N is an integer, which we denote by N0, q(N0) is just the

standard N0-dimensional Gaussian heat kernel in radial coordinates, and

(3.9) can be converted back to N0-dimensional Euclidean coordinates. In

[12], the right hand side of (3.9) (converted to Euclidean coordinates and

with some other inessential differences) was shown to satisfy the inequality

(3.10)

∫ t
2

1
ds

∫ ∞

r0+1
dρ q(N0)(K1(t− s), r, ρ)â(ρ)qp

(N0)(K1s, ρ, r0 + 2) ≥ Ct1−
N0
2

p+M
2 exp(−Kr2

t ), if p < 1 + 2+M
N0

,

Ct−
N0
2 log(1 + t) exp(−Kr2

t ), if p = 1 + 2+M
N0

,

for t > 2, r > r0 + 1,

where K,C > 0. Recall that we are assuming that M > −2. Note that

1 − N0
2 p + M

2 > −N0
2 , if p < 1 + 2+M

N0
, and 1 − N0

2 p + M
2 = −N0

2 , if p =

1+ 2+M
N0

. Thus, from (3.9) and (3.10) it follows immediately that (3.4) holds
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for N = N0. (For (3.10) and (3.4) with N = N0, see the statements and

proofs of [12, Lemma 2, Proposition 1 and Lemma 3]. The spatial integral

in [12] is over all of RN0 , which would correspond here to ρ > 0. But one

could have worked just as well with |x| > r0 + 1 in [12], so the restriction

here to ρ > r0 + 1 in the spatial integral causes no problem.)

We now proceed to demonstrate that (3.10), and consequently also (3.4),

continue to hold in the case that N0 is replaced by any non-integral N > 2.

We write N = N0 − β, where N0 ≥ 3 is an integer and β ∈ (0, 1). Let

Kν(x) ≡ (x
2 )−νIν(x), and note from the definition of Iν in (3.2) that Kν(x)

is decreasing in ν. Thus, we have from (3.1),

(3.11)

q(N)(t, r, ρ) = exp(−r
2 + ρ2

4t
)

ρN−1

2t(rρ)
N
2
−1

(
rρ

2t
)

N
2
−1KN

2
−1(

rρ

2t
)

= exp(−r
2 + ρ2

4t
)

ρN0−1

2t(rρ)
N0
2
−1

(
rρ

2t
)

N0
2
−1KN

2
−1(

rρ

2t
)

(
ρ−β

(rρ)−
β
2

(
rρ

2t
)−

β
2

)

≥ (2t)
β
2

ρβ
q(N0)(t, r, ρ).

From (3.11) we have

(3.12)

q(N)(K1(t− s), r, ρ)qp
(N)(K1s, ρ, r0 + 2)

≥ C1
t

β
2

ρβ
s

β
2
pq(N0)(K1(t− s), r, ρ)qp

(N0)(K1s, ρ, r0 + 2),

for 1 ≤ s ≤ t

2
, 0 ≤ ρ <∞,

for some C1 > 0. From (4.8) we have

(3.13)∫ t
2

1
ds

∫ ∞

r0+1
dρ q(N)(K1(t− s), r, ρ)â(ρ)qp

(N)(K1s, ρ, r0 + 2) ≥

C1t
β
2

∫ t
2

1
ds

∫ ∞

r0+1
dρ ρ−βs

β
2
pq(N0)(K1(t− s), r, ρ)â(ρ)qp

(N0)(K1s, ρ, r0 + 2).

Note that the only difference between the terms appearing inside the

double integral on the right hand side of (3.13) and the terms appearing

inside the double integral on the left hand side of (3.10) is the addition of
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the factors ρ−β and s
β
2 . Translating the setup and notation in the proof of

(3.10) in [12] to the present situation, we note that the integration over ρ

introduced a term of the form ((t − s)r(s, t))
M
2 , where r(s, t) = s

s+pK2(t−s) ,

for some K2 > 0, and the exponent M
2 was a consequence of â being on

the order ρM . Since â(ρ) is replaced by ρ−β â(ρ) in (3.13), in the present

situation we obtain a term of the form ((t − s)r(s, t))
M
2
−β

2 ; see [12, (2.34)-

(2.37)]. Thus, whereas in the penultimate step in the proof of (3.10) in [12]

we obtained∫ t
2

1
ds

∫ ∞

r0+1
dρ q(N0)(K1(t− s), r, ρ)â(ρ)qp

(N0)(K1s, ρ, r0 + 2) ≥

C2 exp(−Kr
2

t
)
∫ t

2

1
s−

N0
2

p(r(s, t))
N0
2

+M
2 (t− s)

M
2 ds,

for some K > 0 (see [12, (2.37)]), we obtain here

(3.14)

t
β
2

∫ t
2

1
ds

∫ ∞

r0+1
dρ ρ−βs

β
2
pq(N0)(K1(t− s), r, ρ)â(ρ)qp

(N0)(K1s, ρ, r0 + 2)

≥ C2t
β
2 exp(−Kr

2

t
)
∫ t

2

1
s−

N0
2

p+β
2
p(r(s, t))

N0
2

+M
2
−β

2 (t− s)
M
2
−β

2 ds.

Making the change of variables u = s
t and recalling that N0 − β = N , we

have

(3.15)

t
β
2

∫ t
2

1
s−

N0
2

p+β
2
p(r(s, t))

N0
2

+M
2
−β

2 (t− s)
M
2
−β

2 ds =

t1+M
2
−N

2
p

∫ 1
2

1
t

u
N
2

+M
2
−N

2
p(u+ pK2(1− u))−

N
2
−M

2 (1− u)
M
2
−β

2 du.

If p < 1+ 2+M
N , then N

2 +M
2 −

N
2 p > −1 and the integral on the right hand side

of (3.15) is bounded in t. However if p = 1 + 2+M
N , then N

2 + M
2 −

N
2 p = −1

and that integral is on the order of log t. Using this fact along with (3.13)-

(3.15), we conclude that (3.10) holds with the integer N0 replaced by non-

integral N . From this and (3.9) we then also obtain (3.4) with the integer

N0 replaced by non-integral N . This completes the proof of Lemma 1.

�
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4. Proof of Theorem 4

Note that (1.13)-(1.16) with N equal to an integer is the radial version of

(1.8)-(1.9) (with N and M identified with n and m). Thus, in fact, Lemma

1 and the proof of Theorem 1 given in section 3 give a proof of Theorem 4

in the case n ≥ 3. If we prove the equivalent of Lemma 1 for n = 2, then

we will also have a proof of Theorem 4 for n = 2. In fact, as the proof of

Theorem 1 showed, it suffices to have the estimate on w(r, t) in Lemma 1

for r ≥ t
1
2 . Thus, it suffices to prove the following result.

Lemma 2. Let w be a solution to (1.8) with n = 2 on a time interval

0 < t < T , with 1 < p ≤ 1 + (2+m)+

2 . Then for some K,C > 0,

(4.1) w(x, t) ≥ Ct−1 log(1 + t) exp(−K|x|
2

t
), for |x| > t

1
2 and 5 < t < T.

Proof. We assume that m > −2 since otherwise there is nothing to prove.

Let p(t, x, y) = (4πt)−1 exp(− |y−x|2
4t ) denote the heat kernel for the Lapla-

cian on R2, and let p̄r0(t, x, y) denote the corresponding heat kernel for the

Laplacian on R2− B̄r0 with the Dirichlet boundary condition at |x| = r0. It

was shown in [4] that for appropriate constants c0,K0 > 0, one has

(4.2)

p̄r0(t, x, y) ≥ c0
log(1 + |x|) log(1 + |y|)(

log(1 +
√
t) + log(1 + |x|)

) (
log(1 +

√
t) + log(1 + |y|

)p(K0t, x, y),

for |x| > r0 + 1, |y| > r0 + 1, t > 0.

We now follow to a significant degree the proof of blow-up in [12]. Similar

to [12, Lemma 1], we have

(4.3)

w(x, t) ≥
∫

R2−B̄r0

p̄r0(t, x, y)φ(y)dy+
∫ t

0

∫
R2−B̄r0

p̄r0(t−s, x, y)a(y)wp(y, s)dyds.

The first term on the right hand side of (4.3), which is the solution of the

corresponding linear problem, constitutes a lower bound for w. Thus, using
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(4.2), we have similar to [12, Lemma 2],

(4.4)

w(x, t) ≥ ct−1 exp(− |x|2

2K0t
)

log(1 + |x|)(
log(1 +

√
t) + log(1 + |x|)

) (
log(1 +

√
t)
) ,

for some c > 0. Note that for |x| ≥ t
1
2 , |y| ≥ t

1
4 and t ≥ 1, the expression

log(1+|x|) log(1+|y|)
(log(1+

√
t)+log(1+|x|))(log(1+

√
t)+log(1+|y|) is bounded and bounded away from

0. Thus, substituting the estimate (4.4) into the second term on the right

hand side of (4.3), and using (4.2) and (1.9), it follows that for some C > 0,

(4.5)
w(x, t) ≥ C

t

∫ 1
2
t

t
1
2

∫
|y|>t

1
4

s−p|y|m exp(−|y − x|2

Ct
) exp(− |y|

2p

2K0s
)dyds,

for |x| ≥ t
1
2 and large t.

Performing some algebraic manipulations similar to those in [12, p.166], one

has for t, s ≥ 1 and some c > 0,

(4.6) exp(−|y − x|2

Ct
) exp(− |y|

2p

2K0s
) ≥ exp(−|x|

2

ct
) exp(−|y|

2

cs
).

Recalling that m > −2 and that n = 2, it is not hard to show, similar to

[12, Lemma 4], that for some k > 0,

(4.7)
∫
|y|>t

1
4

|y|m exp(−|y|
2

cs
)dy ≥ ks1+

m
2 , for s ≥ t

1
2 .

From (4.5)-(4.7), we obtain for some k1 > 0,

(4.8) w(x, t) ≥ k1

t
exp(−|x|

2

ct
)
∫ 1

2
t

t
1
2

s1+
m
2
−pds, for |x| ≥ t

1
2 and large t.

By assumption, 1 < p ≤ 1 + 2+m
2 = 2 + m

2 ; thus, 1 + m
2 − p ≥ −1. Conse-

quently, for some k2 > 0 and t ≥ 5, we have

(4.9)
∫ 1

2
t

t
1
2

s1+
m
2
−pds ≥ k2 log t.

Now (4.1) follows from (4.8) and (4.9). �
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5. Proofs of Theorem 2 and Corollary 1

Proof of Theorem 2. It is known that λ0;D(−∆ + V ) is non-increasing in D

and that λ0;D(−∆ + V ) = limk→∞ λ0;Dk
(−∆ + V ), if Dk ↑ D [11, chapter

4]. These properties of λ0;D(−∆ + V ) allow us to assume without loss of

generality that the domainD in the statement of the theorem is bounded and

has a smooth boundary. As such, λ0;D(−∆ + V ) < 0 is in fact the principal

eigenvalue for −∆+V in D with the Dirichlet boundary condition. Let ψ0 >

0, normalized by
∫
D ψ0(x)dx = 1, denote the corresponding eigenfunction.

Assume now that u(r, t) is a global solution to (1.4) for some p > 1.

Define

(5.1) F (t) =
∫

D
u(x, t)ψ0(x)dx.

We will show that F blows up at some finite time, thereby contradicting the

assumption that u is a global solution. Note that ψ0 vanishes on ∂D and

that ∇ψ0 · ν ≤ 0 on ∂D, where ν is the unit outward normal to D at ∂D.

Also, by assumption infx∈D a(x) ≥ δ, for some δ > 0. Integrating by parts,

and using Jensen’s inequality and the facts above, we have

(5.2)
F ′(t) =

∫
D
ut(x, t)ψ0(x)dx =

∫
D

(∆u− V v + aup)(x)ψ0(x)dx

≥ −λ0;D(−∆ + V )F (t) + δF p(t) ≥ δF p(t).

Although the initial data φ of u may vanish identically on D, one certainly

has F (t) > 0 for t > 0. Thus, it follows from (5.2) and the fact that p > 1

that F blows up at some finite time. �

Proof of Corollary 1. It is well-known that λ0;Rn−{0}(−∆ + γ
|x|2 ) < 0 if

γ > (n−2)2

4 [11, pp. 153-154]. Let Bk = {x ∈ Rn : |x| < k}. Recalling

the facts noted in the first line of the proof of Theorem 2, it follows that

λ0;Bk−B̄ε
(−∆+ γ

|x|2 ) < 0, for sufficiently large k and sufficiently small ε > 0.

Since a is continuous and positive by assumption, it follows that a is bounded

away from 0 on Bk − B̄ε. Thus, the corollary follows from Theorem 2. �
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