
THE BEHAVIOR OF THE LIFE SPAN FOR

SOLUTIONS TO ut = ∆u + a(x)up IN Rd

Ross G. Pinsky

Technion-Israel Institute of Technology
Department of Mathematics

Haifa, 32000, Israel
e-mail: pinsky@techunix.technion.ac.il

Abstract. Let T ∗(λ, φ) denote the life span of the positive, bounded solution u(x, t)
to ut = ∆u + a(x)up in Rd with initial condition u(x, 0) = λφ(x), where 0 � a(x) ∈
Cα(Rd), 0 � φ(x) ∈ Cb(R

d), p > 1, and λ > 0 is a parameter. We consider “small”

initial data: 0 � φ(x) ≤ δ exp(−γ|x|2), where δ, γ > 0, and “large” initial data:
c1 ≤ φ(x) ≤ c2, where c1, c2 > 0.

The life span may satisfy T ∗(λ, φ) = ∞, for λ sufficiently small, or T ∗(λ, φ) < ∞,
for all λ > 0, in which case limλ→0 T ∗(λ, φ) = ∞. This dichotomy depends on φ, a,
p and d; explicit conditions are known and are stated in the paper. For all choices of
φ, a, p and d, one has limλ→∞ T ∗(λ, φ) = 0.

In this paper, we study the asymptotic behavior of T ∗(λ, φ) as λ → 0 in the case
that T ∗(λ, φ) < ∞, for all λ > 0, and we study the asymptotic behavior of T ∗(λ, φ)
as λ → ∞. For two reasons, the asymptotic behavior of the life span is much more
delicate in the case λ → 0 than in the case λ →∞. First of all, in order to consider
the asymptotics as λ → 0, one must begin by restricting to those values of φ, a, p, and
d for which T ∗(λ, φ) < ∞, for all λ > 0. As might be suspected, when φ, a, p, and d
are borderline cases for the property T ∗(λ, φ) < ∞, for all λ > 0, the asymptotic rate
of growth of T ∗(λ, φ) is much faster. Second of all, since T ∗(λ, φ) →∞ as λ → 0, the
order of the asymptotics will depend on the global behavior of a and φ as well as on
the dimension d. In contrast, when λ →∞, we have T ∗(λ, φ) → 0, and the order of
the asymptotics will not depend globally on a and φ; indeed, it turns out that as long
as the supports of φ and a have a common interior point, then the asymptotic order
of the life span is the same as for the ordinary differential equation v′ = vp. The case
in which a positive distance separates the supports of φ and a is more interesting.
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1. Introduction and statement of results. In this paper, we consider
bounded, positive solutions to the Cauchy problem

(1.1)
ut = ∆u + a(x)up, x ∈ Rd, t ∈ (0, T )

u(x, 0) = λφ(x), x ∈ Rd,

where 0 � a(x) ∈ Cα(Rd), 0 � φ(x) ∈ Cb(Rd), p > 1, and λ > 0 is a parameter.
The above conditions on a and φ will hold throughout the paper without further
mention. For most of the paper, we will consider the following two classes of initial
data:

Class S. 0 � φ(x) ≤ δ exp(−γ|x|2), where δ, γ > 0.

Class L. c1 ≤ φ(x) ≤ c2, where c1, c2 > 0.

Class L contains the largest admissible initial data since we are considering
bounded solutions, and Class S contains all sufficiently small initial data. It can
be shown that any solution with initial data from Class L becomes unbounded
instantaneously if a is unbounded; thus we will always assume that a is bounded
in the case of initial data from Class L, or more generally, when the initial data
is unspecified. We will assume that a grows no faster than polynomially in the
case of initial data from Class S. Under these conditions, it follows easily from the
general theory of evolution equations [8] that there exists a unique bounded solu-
tion u(x, t) = u(t, x; λ, φ) to (1.1) defined on a maximal time interval [0, T ∗), where
T ∗ ≡ T ∗(λ, φ) ∈ (0,∞], and such that limt→T∗ supx∈Rd u(x, t) = ∞, if T ∗ < ∞.
We will call T ∗(λ, φ) the life span of the solution.

The life span may satisfy T ∗(λ, φ) = ∞, for λ sufficiently small, or T ∗(λ, φ) < ∞,
for all λ > 0, in which case limλ→0 T ∗(λ, φ) = ∞. This dichotomy depends on φ,
a, p and d; explicit conditions are known and will be stated below. For all choices
of φ, a, p and d, one has limλ→∞ T ∗(λ, φ) = 0.

In this paper, we study the asymptotic behavior of T ∗(λ, φ) as λ → 0 in the
case that T ∗(λ, φ) < ∞, for all λ > 0, and we study the asymptotic behavior of
T ∗(λ, φ) as λ → ∞. For two reasons, the asymptotic behavior of the life span is
much more delicate in the case λ → 0 than in the case λ →∞. First of all, in order
to consider the asymptotics as λ → 0, one must begin by restricting to those values
of φ, a, p, and d for which T ∗(λ, φ) < ∞, for all λ > 0. As might be suspected,
when φ, a, p, and d are borderline cases for the property T ∗(λ, φ) < ∞, for all
λ > 0, the asymptotic rate of growth of T ∗(λ, φ) is much faster. Second of all, since
T ∗(λ, φ) → ∞ as λ → 0, the order of the asymptotics will depend on the global
behavior of a and φ as well as on the dimension d. In contrast, when λ → ∞,
we have T ∗(λ, φ) → 0, and the order of the asymptotics will not depend globally
on a and φ; indeed, it turns out that as long as the supports of φ and a have a
common interior point, then the asymptotic order of the life span is the same as
for the ordinary differential equation v′ = vp. The case in which a positive distance
separates the supports of φ and a is more interesting.

When we consider φ from Class S, it will be convenient to define the following
possible conditions on a(x) 	 0.

Condition Am,m ≥ −2.

c1|x|m ≤ a(x) ≤ c2|x|m, for |x| sufficiently large and c1, c2 > 0.
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Condition Bm,m < −1.

a(x) ≤ c|x|m, for |x| sufficiently large and some c > 0.

Condition C−2.

a(x) ≥ c|x|−2, for |x| sufficiently large and some c > 0.

We now state two results from the recent paper [9] which determine when
T ∗(λ, φ) < ∞, for all λ > 0. The first result treats initial data φ from Class S
and the second one treats initial data φ from Class L.

Theorem S. Let m ≥ −2 and assume that a satisfies Condition Am if m > −2
and Condition B−2 if m = −2.
i. Let d ≥ 2.

a. If 1 < p ≤ 1 + 2+m
d , then T ∗(λ, φ) < ∞, for all φ 	 0 and all λ > 0.

b. If p > 1 + 2+m
d , then for every φ in Class S there exists a λ0 > 0 such that

T ∗(λ, φ) = ∞, for λ < λ0.

ii. Let d = 1.
a. If m > −1 and 1 < p ≤ 3 + m, or if −2 ≤ m ≤ −1 and 1 < p ≤ 2, then

T ∗(λ, φ) < ∞, for all φ 	 0 and all λ > 0.
b. If m > −1 and p > 3 + m, or if −2 ≤ m ≤ −1 and p > 2, then for every φ

in Class S there exists a λ0 > 0 such that T ∗(λ, φ) = ∞, for λ < λ0.

Remark 1. In light of Theorem S, we define a critical exponent p∗ = p∗(d,m) for
initial data in Class S as follows:
(1.2)

p∗ = p∗(d,m) =





1 + 2+m
d ,

if d ≥ 2 and a satisfies Condition Am,m > −2,

or if d = 1 and a satisfies Condition Am,m > −1;

2,
if d = 1 and a satisfies Condition Am,−2 < m < −1,

or Condition Bm,m = −2.

If d ≥ 2 and a satisfies Condition B−2, we don’t define a critical exponent since T ∗

can be infinite for all p > 1.

Remark 2. In the case m = 0 and p 6= p∗ = 1 + 2
d , the above result goes back to

Fujita [3]. The case m = 0 and p = p∗ was solved by Kobayashi, Sino, and Tanaka
[5] and by Aronson and Weinberger [1]. For m > 0 and p 6= p∗, the result follows
from the work of Bandle and Levine [2] together with the work of Levine and Meier
[7].

Theorem L. i. Let d = 1 or 2, p > 1, and a 	 0. Then T ∗(λ, φ) < ∞, for all φ
in Class L and all λ > 0.
ii. Let d ≥ 3 and p > 1.

a. If a is bounded and satisfies satisfies C−2, then T ∗(λ, φ) < ∞, for all φ in
Class L and all λ > 0.

b. If a satisfies B−2−ε for some ε > 0, then for every φ in Class L there exists
a λ0 > 0 such that T ∗(λ, φ) = ∞, for λ < λ0.
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In light of the above results, when we study the asymptotic behavior of T ∗(λ, φ)
as λ → 0, we will assume that the conditions of Theorem S, i-a or ii-a, or Theorem
L, i or ii-a are in effect.

In the sequel, the notation T ∗(λ, φ) ∼ f(λ) as λ → 0 (λ →∞) means that there
exist positive constants c1, c2 > 0 such that c1f(λ) ≤ T ∗(λ, φ) ≤ c2f(λ) for λ > 0
sufficiently small (large).

We will prove the following two theorems concerning the asymptotics of T ∗(λ, φ)
as λ → 0.

Theorem 1. Let T ∗(λ, φ) denote the blow-up time of the solution to (1.1). Assume
that the initial data φ belong to Class S. If d ≥ 2, let m > −2, and if d = 1, let
m ≥ −2. Assume that a satisfies Condition Am, if m > −2, and Condition B−2,
if m = −2. Let p∗ = p∗(d, m) be as in (1.2).
i. Let p ∈ (1, p∗).

a. If (d,m) 6= (1,−1), then

T ∗(λ, φ) ∼ λ
2(1−p)

d(p∗−p) , as λ → 0.

b. If (d,m) = (1,−1) (in which case p∗ = 2), then there exist constants c1, c2 > 0
such that

c1

(| log λ|) 2
2−p

λ
2(1−p)
2−p ≤ T ∗(λ, φ) ≤ c2λ

2(1−p)
2−p , for small λ.

ii. Let p = p∗.
a. If (d,m) 6= (1,−1), then there exists a constant c1 > 0 and for every ε > 0, a

constant c2 > 0 such that

c1λ
1−p∗ ≤ log T ∗(λ, φ) ≤ c2λ

1−p∗−ε, for small λ.

b. If (d,m) = (1,−1) (in which case p∗ = 2), then there exists a constant c1 > 0
and for every ε > 0, a constant c2 > 0 such that

c1λ
− 1

2 ≤ log T ∗(λ, φ) ≤ c2λ
− 1

2−ε, for small λ.

Theorem 2. Let T ∗(λ, φ) denote the life span of the solution to (1.1) and assume
that the initial data φ belong to Class L.
i. Let d = 1.

a. If a satisfies Condition Am, m ∈ (−1, 0], then

T ∗(λ, φ) ∼ λ
2(1−p)
2+m , as λ → 0.

b. If a satisfies Condition A−1, then there exists a constant c1 > 0 and for every
ε > 0 a constant c2 > 0 such that

c1
λ2(1−p)

| log λ|2 ≤ T ∗(λ, φ) ≤ c2
λ2(1−p)

| log λ|2−ε
, for small λ.

c. If a satisfies Condition B−1−ε for some ε > 0, then

T ∗(λ, φ) ∼ λ2(1−p), as λ → 0.
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ii. Let d = 2.
a. If a satisfies Condition Am, m ∈ (−2, 0], then

T ∗(λ, φ) ∼ λ
2(1−p)
2+m , as λ → 0.

b. If a satisfies Condition A−2, then there exists a constant c1 > 0 and for every
ε > 0 a constant c2 > 0 such that

c1λ
1−p
2 ≤ log T ∗(λ, φ) ≤ c2λ

1−p
2 −ε, for small λ.

c. If a satisfies Condition B−2−ε, for some ε > 0, then there exists a constant
c1 > 0 and for each ε > 0 a constant c2 > 0 such that

c1λ
1−p ≤ log T ∗(λ, φ) ≤ c2λ

1−p−ε, for small λ.

iii. Let d ≥ 3.
a. If a satisfies Condition Am, m ∈ (−2, 0], then

T ∗(λ, φ) ∼ λ
2(1−p)
2+m , as λ → 0.

b. If a satisfies Condition A−2, then there exists a constant c1 > 0 and for each
ε > 0 a constant c2 > 0 such that

c1λ
1−p ≤ log T ∗(λ, φ) ≤ λ1−p−ε, for small λ.

Remark. In the case that a(x) ≡ 1, which corresponds to m = 0 and to Condition
A0 in Theorems 1 and 2, Lee and Ni [6] studied T ∗(λ, φ) as λ → 0. Let I(l),
l ≥ 0, denote the class of initial data φ satisfying 0 < lim inf |x|→∞ |x|lφ(x) ≤
lim sup|x|→∞ |x|lφ(x) < ∞. Let p∗ = p∗(d, 0) = 1 + 2

d . If 1 < p ≤ p∗, then as a
particular case of Theorem S, or by the results cited in Remark 2 following Theorem
S, it follows that T ∗(λ, φ) < ∞, for all λ > 0 and all φ 	 0. When p > 1 + 2

d ,
Lee and Ni showed that if φ belongs to I(l) for some l, then T ∗(λ, φ) < ∞, for
all λ > 0 if and only if l < 2

p−1 . They then obtained the following asymptotic

behavior for T ∗(λ, φ) as λ → 0: If 1 < p < p∗ and l > d, then T ∗(λ, φ) ∼ λ
2(1−p)

d(p∗−p) .
If p = p∗ and l > d, then log T ∗(λ, φ) ∼ λ1−p. When 1 < p < p∗ and l = d,

they obtained T ∗(λ, φ) ∼ (λ log 1
λ )

2(1−p)
d(p∗−p) ; for p = p∗ and l = d, they obtained

log T ∗(λ, φ) ∼ λ
1−p

p . When 1 < p ≤ p∗ and 0 ≤ l < d, and when p > p∗ and

l < 2
p−1 , they obtained T ∗(λ, φ) ∼ λ

2(1−p)

d(p∗−p+ d−l
d

(p−1)) .
Maintaining the assumption a(x) ≡ 1, Gui and Wang [4] improved on the asymp-

totics of Lee and Ni in certain particular cases as follows. Under the condition
lim|x|→∞ φ(x) = φ∞ > 0, they showed that limλ→0 λp−1T ∗(λ, φ) = 1

p−1φ
−(p−1)
∞ .

Under the condition that φ(x) is radially symmetric, obeys certain regularity condi-
tions, and satisfies
lim |x| → ∞|x|lφ(x) = L > 0, where 0 < l < min( 2

p−1 , d), they showed that

limλ→0 λ
2(p−1)

d(p∗−p+ d−l
d

(p−1)) T ∗(λ, φ) exists and is positive.
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The results we’ve obtained above in Theorems 1 and 2 for the asymptotics of
T ∗(λ, φ) in the case of general a(x) are restricted to small initial data (Class S) and
large initial data (Class L). Before one can study the asymptotics of T ∗(λ, φ) for
intermediate sized initial data of class I(l), l > 0, one must first prove a theorem
for intermediate sized initial data analogous to Theorems S and L for small and
large initial data, in order to determine for which values of l (depending on m, p,
and d), it will be true that T ∗(λ, φ) < ∞, for all λ > 0.

We now turn to the asymptotics for T ∗(λ, φ) as λ →∞.

Theorem 3. Let T ∗(λ, φ) denote the life span of the solution to (1.1). Assume
that a is bounded and let φ be arbitrary bounded initial data.
i. If there exists an x0 ∈ Rd such that a(x0), φ(x0) > 0, then

T ∗(λ, φ) ∼ λ1−p, as λ →∞.

ii. If dist(supp(a), supp(φ)) > 0, then

T ∗(λ, φ) ∼ (log λ)−1, as λ →∞.

Remark 1. In the case a(x) ≡ 1, Theorem 3(i) was proved in Lee and Ni [6] and
then improved upon in Gui and Wang [4] where it was shown that limλ→∞ λp−1T ∗(λ, φ) =

1
p−1 ||φ||1−p

∞ . Note that λ1−p ||φ||1−p
∞

p−1 is the exact life span for the ordinary differential
equation v′(t) = vp(t) with v(0) = λ||φ||∞.

Remark 2. One can show that if φ belongs to Class S, then Theorem 3 continues
to hold when a is polynomially bounded. We leave this to the reader.

The proofs of Theorems 1, 2 and 3 will be given in sections 2, 3, and 4 respectively.
In the sequel, we will use the notation

p(t, x, y) = (4πt)−
d
2 exp(−|y − x|2

4t
).

We conclude this section by noting the following well-known integral representation
which holds for bounded solutions u(x, t) to (1.1):

(1.3) u(x, t) = λ

∫

Rd

p(t, x, y)φ(y)dy +
∫ t

0

∫

Rd

p(t− s, x, y)a(y)up(y, s)dyds.

2. Proof of Theorem 1. We begin with the proof of the upper bounds. For the
case 1 < p < p∗, we will need the following simple lemma which follows easily from
(1.3).

Lemma 1. Let u(x, t) satisfy (1.1). Then for any t0 ∈ (0, T ), there exists a c > 0
such that

(2.1) u(x, t) ≥ λct−
d
2 exp(−|x|

2

2t
), for t ∈ [t0, T ), x ∈ Rd.

Proof. The proof can be found in [9]. ¤
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In order to treat the case p = p∗, we will need the following important refinement
of Lemma 1.

Lemma 2. Let u(x, t) satisfy (1.1) and assume that p = p∗, where p∗ = p∗(d,m)
is as in (1.2). Then for any t0 ∈ (0, T ) and any positive integer k, there exists a
constant Ck such that

(2.2) u(x, t) ≥ Ckλpk

t−
d
2 (log(1 + t))

∑k−1
j=0 pj

exp(−|x|
2

t
), for t ∈ [t0, T ), x ∈ Rd.

Furthermore, if (d,m) = (1,−1), in which case p∗ = 2, the inequality (2.2) also
holds with the exponent

∑k−1
j=0 pj replaced by 2

∑k−1
j=0 pj.

Proof. Most of the work has already been done in [9, Proposition 1]. It was proven
there that if p = p∗ and if

(2.3) u(x, t) ≥ ct−
d
2 exp(−|x|

2

t
), for t ∈ [t0, T ), x ∈ Rd,

then (2.2) holds with λ = 1 and k = 1. The method of proof consisted of inserting
the estimate in (2.3) into the righthand side of (1.3) and then doing some analysis.
It is trivial to check the proof and verify that if c is replaced by λc in (2.3), then
(2.2) holds with k = 1. Since (2.3) with c replaced by λc holds automatically
by Lemma 1, the proof of Lemma 2 is complete in the case k = 1. One now
proceeds by induction, taking the improved estimate (2.2) for any positive interger
k, and inserting it in (1.3). Applying the same analysis in [9] noted above to get
from (2.3) to (2.2) with k = 1, one obtains (2.2) with k replaced by k + 1. (In
order to see this more clearly, we note that if one defines l(s) = ps + 1, then the
exponent of the logarithmic term in (2.2) is just the (k − 1)-th iterate of l(1); that
is l(k−1)(1) =

∑k−1
j=0 pj . The point is that whenever one has an estimate of the form

u(x, t) ≥ cλrt−
d
2 (log(1+t))s exp(− |x|2

t ), for some constant c, then the analysis noted

above will improve that estimate to u(x, t) ≥ Cλrpt−
d
2 (log(1 + t))ps+1 exp(− |x|2

t ),
for some constant C.

In the special case that (d, m) = (1,−1), the analysis in [9] can be refined as
follows. Equation (2.35) in [9] which followed directly from Lemma 4 in that paper
(the same lemma appears as Lemma 3 farther along in this paper), reads as follows
in the case (d,m) = (1,−1):

∫
R

p(τ, 0, y)a(y)dy ≥ c1τ
− 1

2 , for τ ≥ 1. However, that
lemma in fact gives the stronger inequality

∫
R

p(τ, 0, y)a(y)dy ≥ c1τ
− 1

2 log(1 + τ),
for τ ≥ 1. Using this stronger inequality and proceeding as above, one obtains (2.2)
with the exponent

∑k−1
j=0 pj replaced by 2

∑k−1
j=0 pj . ¤

We can now give the
Proof of the upper bound. Recall that p∗(d,m) = 1 + 2+m

d , if d ≥ 2 and m > −2,
or if d = 1 and m ≥ −1. However, if d = 1 and m ∈ [−2,−1), then p∗(d,m) = 2 >
1+ 2+m

d . We will prove Theorem 1 under the assumption that p∗(d,m) = 1+ 2+m
d ,

that is, under the assumption that d ≥ 2 and m > −2 or that d = 1 and m ≥ −1.
Afterwards, we will describe how to handle the exceptional case d = 1 and m ∈
[−2,−1). Thus, in what follows below, we assume that 1 < p ≤ p∗ = 1 + 2+m

d .
Let Dn = {x ∈ Rd : n < |x| < 2n}, if d ≥ 2, and Dn = {x ∈ R : n < x < 2n},

if d = 1. Let µn > 0 denote the principal eigenvalue of −∆ in Dn, and let ψn
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denote the corresponding positive eigenfunction, normalized by
∫

Dn
ψn(x)dx = 1.

Note that since Dn contains a d-dimensional cube of length kn for an appropriate
constant k ∈ (0, 1), it follows that there exists a constant c > 0 such that

(2.4) µn ≤ c

n2
.

By assumption, a(x) satisfies Condition Am for some m > −2; thus there exists an
n0 such that

(2.5.) a(x) ≥ c1|x|m, for |x| ≥ n0.

From now on, we will always assume that n ≥ n0. Define

Fn(t) =
∫

Dn

u(x, t)ψn(x)dx, for 0 ≤ t < T ∗(λ, φ).

Let ν(x) denote the outward unit normal to Dn at x ∈ ∂Dn. Integrating by parts,
using (2.4), (2.5), and the fact that ψn = 0 and ∇ψn · ν ≤ 0 on ∂Dn, and applying
Jensen’s inequality, we obtain

(2.6)
F ′n(t) =

∫

Dn

ut(x, t)ψn(x)dx =
∫

Dn

(∆u(x, t) + a(x)up(x, t))ψn(x)dx

≥ −µnFn(t) + c1n
m

∫

Dn

up(x, t)ψn(x)dx ≥ − c

n2
Fn(t) + c1n

mF p
n(t).

Assume for the moment that we can find a time tn such that

(2.7)
cFn(tn)

n2
≤ 1

2
c1n

mF p
n(tn).

Since the expression 1
2c1n

mzp− c
n2 z is an increasing function of z for z ≥ z0, where

z0 is the positive root of the aforementioned expression, it follows from (2.6) that
(2.7) also holds if tn is replaced by any t ∈ (tn, T ∗(λ, φ)). Using this observation
along with (2.6) and (2.7), we obtain

(2.8) F ′n(t) ≥ 1
2
c1n

mF p
n(t), for t ∈ [tn, T ∗(λ, φ)).

Integrating (2.8) gives

(2.9)
F 1−p

n (t)
p− 1

≤ F 1−p
n (tn)
p− 1

− 1
2
c1n

m(t− tn), for t ∈ [tn, T ∗(λ, φ)).

Since the right hand side of (2.9) is equal to 0 when t = tn + 2F 1−p
n (tn)

c1(p−1)nm , it follows
from (2.9) that Fn(t) and consequently supDn

u(x, t) must blow up by this value of
t; that is,

(2.10) T ∗(λ, φ) ≤ tn +
2F 1−p

n (tn)
c1(p− 1)nm

.
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From (2.7) and (2.10), we obtain

(2.11) T ∗(λ, φ) ≤ tn +
n2

c(p− 1)
.

We now choose a tn for which (2.7) holds. We consider the cases 1 < p < p∗ and
p = p∗ separately. For the case 1 < p < p∗, we use Lemma 1 to conclude that there
exists a C > 0 such that u(x, n2) ≥ Cλn−d, for n < |x| < 2n; thus

(2.12) Fn(n2) ≥ Cλn−d.

Choosing tn = n2 and using (2.12), we see that (2.7) will be satisfied if n = n(λ) is
chosen such that

λp−1 = αnd(p−1)−m−2 = αnd(p−p∗), for α sufficiently large,

or equivalently, if

(2.13) n2 = αλ
2(1−p)

d(p∗−p) .

We conclude then that (2.11) holds if tn = n2 and n2 satisfies (2.13). Substituting
this in (2.11) gives

T ∗(λ, φ) ≤ const.λ
2(1−p)

d(p∗−p) ,

which completes the proof of the upper bound in the case 1 < p < p∗.
We now turn to the case p = p∗. We use Lemma 2 to conclude that for any posi-

tive integer k, there exists a constant Ck > 0 such that u(x, n2) ≥ Ckλpk

n−d(log(1+
n2))

∑k−1
j=0 pj

, for n < |x| < 2n; thus

(2.14) Fn(n2) ≥ Ckλpk

n−d(log(1 + n2))
∑k−1

j=0 pj

.

Choosing tn = n2, using (2.14), and recalling that p = p∗ = 1 + 2+m
d , we see that

(2.7) will be satisfied if n = n(λ) is chosen such that

(2.15) λpk

(log(1 + n2))
∑k−1

j=0 pj ≥ αk, for αk sufficiently large.

It follows that (2.15) will be satisfied if

(2.16) n2 ≥ exp(βλqk), for β > 0 sufficiently large, where qk = − pk

∑k−1
j=0 pj

.

Thus, (2.11) holds if tn = n2 and n2 satisfies (2.16) for some positive integer k.
Substituting this into (2.11) and using the fact that limk→∞ qk = 1 − p, it follows
that for every ε > 0, there exists a constant β > 0 such that

(2.17) T ∗(λ, φ) ≤ const. exp(βλ1−p−ε),

which completes the proof of the upper bound in the case p = p∗, except when
(d,m) = (1,−1). When (d,m) = (1,−1), it follows from Lemma 2 that the expo-
nent

∑k−1
j=0 pj appearing in (2.14) may be replaced by 2

∑k−1
j=0 pj , and thus, by the
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same analysis as above, we obtain the estimate T ∗(λ, φ) ≤ const. exp(βλ
1−p
2 −ε) =

const. exp(βλ−
1
2−ε), where the last equality follows since p = p∗(1,−1) = 2.

We now discuss how to handle the exceptional case d = 1 and m ∈ [−2,−1),
in which case p∗(d,m) = 2. We define Dn = (−n, n) and maintain all the other
definitions. If (2.6) were to hold with m replaced by −1, then continuing the proof

as before, we would obtain the desired result; namely that T ∗(λ, φ) ≤ cλ
2(1−p)
d(2−p) , if

1 < p < 2, and that T ∗(λ, φ) satisfies (2.17), if p = 2. In order to replace m by −1
in (2.6), we must show that

(2.18)
∫

Dn

a(x)up(x, t)ψn(x)dx ≥ c1n
−1

∫

Dn

up(x, t)ψn(x)dx, for some c1 > 0.

We have ψn(x) = π
4n cos(πx

2n ). Using this, it is not hard to show that (2.18) holds
for all a satisfying 0 � a(x) ≤ c|x|−1, as long as for each t, u(x, t) is nonincreasing
on (0,∞) and nondecreasing on (−∞, 0). Now it was shown in [9] that u(x, t) is an
even function which decreases on (0,∞) if a and ψ are both even and nonincreasing
on (0,∞). This completes the proof for these special choices of a and ψ. For the
general case, we may assume without loss of generality that there exists a point
x0 ∈ R such that a(x0), ψ(x0) 6= 0. (Indeed if not, then we just consider the function
v(x, t) ≡ u(x, t + 1), which satisfies the same differential equation and has strictly
positive initial data.) Then one can choose â and ψ̂ which satisfy â ≤ a and ψ̂ ≤ ψ

and such that â(x0 + x) and ψ̂(x0 + x) are even functions of x, nonincreasing for
x ∈ (0,∞). Let û(x, t) denote the solution corresponding to â and φ̂ and let T̂ ∗(φ̂, λ)
denote its life span. From the special case above, we conclude that T̂ ∗(φ̂, λ) satisfies

the inequality in (2.17), if p = 2, and that T̂ ∗(φ̂, λ) ≤ cλ
2(1−p)
d(2−p) , if 1 < p < 2. By

the maximum principle, û(x, t) ≤ u(x, t); thus T ∗(λ, φ) ≤ T̂ ∗(φ, λ), and the upper
bound obtained for T̂ ∗(φ̂, λ) holds also for T ∗(λ, φ). ¤

We now turn to the
Proof of the lower bound. For the proof, we will need the following three lemmas
from advanced calculus which appear as Lemmas 4,5, and 6 in [9].

Lemma 3. (i) Let m > −d. If a(x) ≥ 0 satisfies c̃1|x|m ≤ a(x) ≤ c̃2|x|m for large
|x| and for constants c̃1, c̃2 > 0, then for any t0 > 0, there exist constants c1, c2 > 0
such that

c1t
m
2 ≤

∫

Rd

p(t, 0, y)a(y)dy ≤ c2t
m
2 , for t ≥ t0.

(ii) If a(x) ≥ 0 satisfies c̃1|x|−d ≤ a(x) ≤ c̃2|x|−d for large |x| and for constants
c̃1, c̃2 > 0, then for any t0 > 0, there exist constants c1, c2 > 0 such that

c1t
− d

2 log(1 + t) ≤
∫

Rd

p(t, 0, y)a(y)dy ≤ c2t
− d

2 log(1 + t), for t ≥ t0.

(iii) Let m < −d. If a(x) 	 0 satisfies a(x) ≤ C(1 + |x|)m, for some constant
C > 0, then for any t0 > 0, there exist constants c1, c2 > 0 such that

c1t
− d

2 ≤
∫

Rd

p(t, 0, y)a(y)dy ≤ c2t
− d

2 , for t ≥ t0.
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Lemma 4. For each m > 0, there exists a constant c > 0 such that
∫

Rd

p(t, x, y)(1 + |y|)mdy ≤ c(1 + t
m
2 + |x|m), for x ∈ Rd, t > 0.

Lemma 5. For m ≤ 0 and t > 0, the function H(x) ≡ ∫
Rd p(t, x, y)(1 + |y|)mdy

attains its maximum at x = 0.

We can now give the
Proof of the lower bound. To prove that a given number T provides a lower bound for
T ∗(λ, φ), we will make the following argument. Define u0(x, t) = λ

∫
Rd p(t, x, y)φ(y)dy,

where φ belongs to Class S, and

(2.19) un+1(x, t) = u0(x, t) +
∫ t

0

∫

Rd

p(t− s, x, y)a(y)up
n(y, s)dyds, n ≥ 0.

By induction, un+1(x, t) ≥ un(x, t). If

u(x, t) ≡ lim
n→∞

un(x, t) < ∞, for x ∈ Rd and t ∈ [0, T ),

then it follows from the monotone convergence theorem and (2.19) that u satisfies
(1.3) for x ∈ Rd and t ∈ (0, T ); hence T ∗(λ, φ) ≥ T . Thus, to obtain an estimate
of the form T ∗(λ, φ) ≥ T , it is enough to show that if

(2.20) φ(y) ≤ δp(k, 0, y),

for k, δ > 0, then

(2.21) sup
n

un(x, t) < ∞, for x ∈ Rd, t ∈ [0, T ).

To obtain (2.21), we consider the inductive hypothesis

(2.22) un(x, t) ≤ cp(t + k, 0, x), for x ∈ Rd, t ∈ [0, T ),

where c = c(λ) > 0. Note that from (2.20), it follows that (2.22) holds for n = 0
with c = λδ and T = ∞. To complete the proof of the lower bound, we will verify
the inductive step above for an appropriate choice of c = c(λ) and for T = T (λ)
satisfying the requirements of the theorem.

In the sequel C will denote a positive constant whose value will change from
term to term. Using (2.19), (2.20), and (2.22), we obtain

(2.23)
un+1(x, t) ≤ λδp(t + k, 0, x)

+ cpC

∫ t

0

∫

Rd

p(t− s, x, y)a(y)(k + s)−
d
2 p exp

(
− p|y|2

4(k + s)

)
dyds.

Using the equality

exp
(
−|y − x|2

4(t− s)
− p|y|2

4(k + s)

)

= exp
(
− 1

4(t− s)R(s, t)
|y −R(s, t)x|2

)
exp

(
−pR(s, t)|x|2

4(k + s)

)
,
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where R(s, t) = k+s
k+s+p(t−s) , (2.23) can be rewritten as

(2.24)

un+1(x, t) ≤ λδp(t + k, 0, x)

+ cpC

∫ t

0

∫

Rd

p(R(s, t)(t− s), R(s, t)x, y)a(y)(k + s)−
d
2 p(R(s, t))

d
2

× exp
(
−pR(s, t)|x|2

4(k + s)

)
dyds.

At this stage in the proof, we must consider two cases separately. The first
case is when m > 0, that is when a satisfies Condition Am with m > 0, and the
second case is when m ≤ 0, that is when a satisfies either Condition Am with
m ∈ (−2, 0], or Condition Bm with m = −2. We treat the case m > 0 first.
By assumption, a(x) ≤ C(1 + |x|)m, for some m > 0. We may assume in fact
that a(x) = C(1 + |x|)m; indeed, it follows by induction that replacing a(x) by
C(1 + |x|)m just increases un+1. Carrying out the integration over Rd in (2.24)
with this choice of a, and using Lemma 4 with t and x replaced by R(s, t)(t − s)
and R(s, t)x, the final term on the right hand side of (2.24) reduces to

(2.25)
cpC

∫ t

0

(k + s)−
d
2 p(R(s, t))

d
2

[
1 + (R(s, t))

m
2 (t− s)

m
2 + (R(s, t))m|x|m]

× exp
(
−pR(s, t)|x|2

4(k + s)

)
ds.

Multiplying outside the integral in (2.25) by the factor
exp

(
− |x|2

4(t+k)

)
, multiplying inside the integral by its reciprocal, and simplifying

the argument in the exponential term, (2.25) may be rewritten as
(2.26)

cpC exp
(
− |x|2

4(t + k)

) ∫ t

0

(k + s)−
d
2 p(R(s, t))

d
2 [1 + (R(s, t))

m
2 (t− s)

m
2 + (R(s, t))m|x|m]

× exp
(
− (p− 1)R(s, t)|x|2

4(t + k)

)
ds.

We now write (R(s, t))m|x|m exp
(
− (p−1)R(s,t)|x|2

4(t+k)

)
= (R(s, t))

m
2 z

m
2 exp

(
− (p−1)z

4(t+k)

)
,

where
z = R(s, t)|x|2. Differentiating and using the fact that p > 1, it is easy to check
that as a function of z > 0, the expression z

m
2 exp

(
− (p−1)z

4(t+k)

)
attains its maximum

at z = 2(t+k)m
(p−1) . The maximum value then is ( 2(t+k)m

(p−1) )
m
2 exp(−m

2 ). From this it
follows that

(2.27)
(R(s, t))m|x|m exp

(
− (p− 1)R(s, t)|x|2

4(t + k)

)
≤ C(R(s, t))

m
2 (t + k)

m
2 ,

for all x ∈ Rd, t > 0, and 0 < s < t.

From (2.27) and the fact that p > 1, it follows that the expression in (2.26) is
smaller than
(2.28)

cpC exp(− |x|2
4(t + k)

)

×
[∫ t

0

(k + s)−
d
2 p(R(s, t))

d
2 ds +

∫ t

0

(k + s)−
d
2 p(R(s, t))

d
2 + m

2 [(t− s)
m
2 + (t + k)

m
2 ]ds

]
.
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We now carry out the integration in (2.28), making the change of variables u = s
t .

Recalling that p ≤ p∗ = 1 + 2+m
d , recalling that R(s, t) = k+s

k+s+p(t−s) , and noting
that k + t ≤ k + tu + pt(1− u) < p(k + t), for u ∈ [0, 1], we have
(2.29)∫ t

0

(k + s)−
d
2 p(R(s, t))

d
2 ds =

∫ 1

0

(k + tu)−
d
2 p

(
k + tu

k + tu + pt(1− u)

) d
2

tdu

= (t + k)−
d
2

∫ 1

0

(k + tu)
d
2 (1−p)

(
k + t

k + tu + pt(1− u)

) d
2

tdu

≤ C(t + k)−
d
2

∫ 1

0

(k + tu)
d
2 (1−p)du ≤





C(t + k)−
d
2 , if p > 1 + 2

d

C(t + k)−
d
2 log(t + k), if p = 1 + 2

d

C(t + k)1−p d
2 , if p < 1 + 2

d

and
(2.30)∫ t

0

(k + s)−
d
2 p(R(s, t))

d
2 + m

2
[
(t− s)

m
2 + (t + k)

m
2
]
ds

=
∫ 1

0

(k + tu)−
d
2 p

(
k + tu

k + tu + pt(1− u)

) d
2 + m

2 [
t

m
2 (1− u)

m
2 + (t + k)

m
2
]
tdu

≤ C(t + k)−
d
2

∫ 1

0

(k + tu)(1−p) d
2 + m

2 tdu ≤
{

C(t + k)−
d
2 + d

2 (p∗−p), if p < p∗

C(t + k)−
d
2 log(t + k), if p = p∗.

From (2.25), (2.26), (2.28), (2.29), and (2.30), we conclude now that if p <
p∗, then the final term on the right hand side of (2.24) is smaller than cpC(t +
k)−

d
2 + d

2 (p∗−p) exp
(
− |x|2

4(t+k)

)
, and if p = p∗, then the final term on the right hand

side of (2.24) is smaller than cpC(t + k)−
d
2 log(t + k) exp

(
− |x|2

4(t+k)

)
. Substituting

this in (2.24), we obtain

(2.31)
un+1(x, t) ≤ λδp(t + k, 0, x) + cpC(t + k)−

d
2 + d

2 (p∗−p) exp
(
− |x|2

4(t + k)

)

=
(
λδ + cpC(t + k)

d
2 (p∗−p)

)
p(t + k, 0, x), for x ∈ Rd, t ≥ 0, if p < p∗,

and

(2.32)
un+1(x, t) ≤ λδp(t + k, 0, x) + cpC(t + k)−

d
2 log(t + k) exp

(
− |x|2

4(t + k)

)

= (λδ + cpC log(t + k)) p(t + k, 0, x), for x ∈ Rd, t ≥ 0, if p = p∗.

Choosing c = c(λ) = 2λδ, we find that the inequality λδ + cpC(t + k)
d
2 (p∗−p) ≤ c

will hold for small λ as long as

t ≤ T = T (λ) ≡
{

Cλ
2(1−p)

d(p∗−p) , if p < p∗

exp(−Cλ1−p), if p = p∗.
12



It then follows from (2.31) and (2.32) that

un+1(x, t) ≤ cp(t + k, 0, x), for x ∈ Rd, t ∈ [0, T ).

This verifies the inductive hypothesis (2.22) and proves that T ∗(λ, φ) ≥ T (λ).

We now turn to the case m ∈ [−2, 0], that is, the case in which a satisfies
Condition Am with m ∈ (−2, 0] or Condition Bm with m = −2. (Recall that the
case in which a satisfies Condition B−2, is allowed only if d = 1.) By assumption,
a(x) ≤ C(1 + |x|)m, for some m ∈ [−2, 0]. As before, we may assume in fact that
a(x) = C(1 + |x|)m. With this choice of a, it follows from Lemma 5 that the inside
integral,

∫
Rd p (R(s, t)(t− s), R(s, t)x, y) (1 + |y|)mdy, appearing on the right hand

side of (2.24), attains its maximum as a function of x when x = 0. Thus, the final
term on the right hand side of (2.24) is less that or equal to

(2.33)
cpC

∫ t

0

∫

Rd

p (R(s, t)(t− s), 0, y) (1 + |y|)m(k + s)−
d
2 p(R(s, t))

d
2

× exp
(
−pR(s, t)|x|2

4(k + s)

)
dyds.

We now appeal to Lemma 3 to carry out the integration over y in (2.33). Us-
ing Lemma 3, whose inequalities hold for, say, t ≥ 1, along with the fact that∫

Rd p(t, 0, y) (1 + |y|)m
dy ≤ 1, for t ∈ [0, 1] and m ≤ 0, it follows that

(2.34)

∫

Rd

p(t, 0, y)(1+|y|)mdy ≤





Ct
m
2 , for t > 0,

if m ∈ (−2, 0] and d ≥ 2 or

m ∈ (−1, 0] and d = 1

Ct−
1
2 for t > 0, if m ∈ [−2,−1) and d = 1

Ct−
1
2 log(2 + t), for t > 0, if m = −1 and d = 1

.

We will complete the proof under the assumption that m ∈ (−2, 1] and d ≥ 2 or
that m ∈ (−1, 0] and d = 1, and leave it to the reader to complete the proof in
the two other cases spelled out in (2.34), using the very same argument. Applying
(2.34) with t replaced by R(s, t)(t − s), it follows that the expression in (2.33) is
less than or equal to

(2.35) cpC

∫ t

0

(R(s, t)(t− s))
m
2 (k + s)−

d
2 p(R(s, t))

d
2 exp

(
−pR(s, t)|x|2

4(k + s)

)
ds.

Since p > 1 and since R(s,t)
k+s = 1

k+s+p(t−s) ≥ 1
k+pt , for s ∈ [0, t], it follows that

exp
(
−pR(s,t)|x|2

4(k+s)

)
≤ exp

(
− |x|2

4(t+k)

)
. Therefore, the expression in (2.35) is less than

or equal to

(2.36) cpC exp(− |x|2
4(t + k)

)
∫ t

0

(R(s, t)(t− s))
m
2 (k + s)−

d
2 p(R(s, t))

d
2 ds.

We now carry out the integration in (2.36), making the substitution u = s
t .

Recalling that 1 < p ≤ p∗ = 1 + 2+m
d , that m ∈ (−2, 0], and that R(s, t) =
13



k+s
k+s+p(t−s) , and using the fact that k + t ≤ k + tu + pt(1 − u) < p(k + t), for
u ∈ [0, 1], we have

(2.37)

∫ t

0

(R(s, t)(t− s))
m
2 (k + s)−

d
2 p(R(s, t))

d
2 ds

≤ Ct
m
2

(t + k)
m
2 + d

2

∫ 1

0

(k + tu)
m
2 +(1−p) d

2 (1− u)
m
2 tdu

≤ C(t + k)−
d
2

∫ 1

0

(k + tu)
m
2 +(1−p) d

2 (1− u)
m
2 tdu

≤ C(t + k)−
d
2 + d

2 (p∗−p).

From (2.24), (2.33), (2.35), (2.36), and (2.37), we conclude that

(2.38) un+1(x, t) ≤
(
λδ + cpC(t + k)

d
2 (p∗−p)

)
p(t + k, 0, x).

The rest of the proof is now the same as in the case m > 0, starting after (2.32).¤

3. Proof of Theorem 2. We begin with the
Proof of the upper bound. We will prove the upper bound under the assumption
that a satisfies Condition Am for some m ≥ −1, if d = 1, and that a satisfies
Condition Am for some m ≥ −2, if d ≥ 2. After the completion of the proof we will
describe how to prove the exceptional cases in which d = 1 and a satisfies Condition
B−1−ε for some ε > 0, or d = 2 and a satisfies Condition B−2−ε, for some ε > 0.

As in the proof of the upper bound in Theorem 1, we define Dn = {x ∈ Rd :
n < |x| < 2n}, if d ≥ 2, and Dn = {x ∈ R : n < x < 2n}, if d = 1, we let µn > 0
denote the principal eigenvalue of −∆ in Dn, we let ψn denote the corresponding
positive eigenfunction, normalized by

∫
Dn

ψn(x)dx = 1, and we define Fn(t) =∫
Dn

u(x, t)ψn(x)dx, for 0 ≤ t < T ∗(λ, φ). The analysis made between (2.4) and
(2.11) shows that (2.11) holds as long as (2.7) holds.

We break the rest of the proof up into two cases. The first case is when d = 1
and a satisfies Condition Am for some m > −1, or d ≥ 2 and a satisfies Condition
Am for some m > −2. In this case, we choose tn = 0. Since u(x, 0) ≥ kλ for
some constant k > 0, we have Fn(0) ≥ kλ. It then follows that (2.7) will hold with
tn = 0 as long as (kλ)p−1 ≥ 2c

c1
n−m−2. Thus, we may choose n2 = k1λ

2(1−p)
m+2 , for

sufficiently large k1. Choosing n2 as above, substituting it in (2.11), and setting
tn = 0 completes the proof of the upper bound.

For the case in which either d = 1 and a satisfies Condition A−1, d = 2 and
a satisfies Condition A−2, or d ≥ 3 and a satisfies Condition A−2, as well as for
the exceptional case d = 2 and a satisfies Condition B−2−ε, we need the following
lemma.

Lemma 6. Let u(x, t) satisfy (1.1) and assume that the initial data φ belong to
Class L.
i. Let d = 1 and let a satisfy Condition A−1. Then for any positive integer k, there
exists a constant c > 0 such that

u(x, t) ≥ cλpk

exp(−x2

ct
)
(
(t + 1)

1
2 log(1 + t)

)(
∑k−1

j=0 pj)

.
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ii. Let d = 2 and a satisfy Condition A−2. Then for any positive integer k, there
exists a constant c > 0 such that

u(x, t) ≥ cλpk

exp(−|x|
2

ct
)(log(1 + t))2(

∑k−1
j=0 pj).

iii. Let either d ≥ 3 and a satisfy Condition A−2, or d = 2 and a satisfy Condition
B−2−ε, for some ε > 0. Then for any positive integer k, there exists a constant
c > 0 such that

u(x, t) ≥ cλpk

exp(−|x|
2

ct
)(log(1 + t))(

∑k−1
j=0 pj).

Proof. The proofs, which rely on Lemma 3, are similar; thus we will only prove
(i). In the sequel, c will denote a positive constant whose value will change from
term to term. By Lemma 3 and the assumption on a,

(3.1)
∫

R

p(s, x, y)a(y)dy ≥ c(s + 1)−
1
2 log(1 + s), for s > 0.

Since φ belongs to Class L, the first term on the right hand side of (1.3) is larger
or equal to cλ and thus u(x, t) ≥ cλ. Substituting this into the second term on the
right hand side of (1.3), and using (3.1), we obtain

u(x, t) ≥ cλp

∫ t

0

∫

R

p(t− s, x, y)a(y)dyds

≥ cλp

∫ t

t0

(s + 1)−
1
2 log(1 + s)ds ≥ cλp(t + 1)

1
2 log(1 + t),

which proves the lemma in the case k = 1. We now proceed by induction, assuming
the estimate to hold for a positive integer k. Taking this estimate, and substituting
again into the second term on the right hand side of (1.3), using (3.1), and recalling
that c changes from line to line, we obtain

u(x, t) ≥ cλpk+1
∫ t

0

∫

R

p(t− s, x, y)a(y) exp(−px2

cs
)
(
(s + 1)

1
2 log(1 + s)

)∑k
j=1 pj

dyds

≥ cλpk+1
∫ t

0

∫

R

(4π(t− s))−
1
2 exp(− y2

2(t− s)
) exp(− x2

2(t− s)
− px2

cs
)

× a(y)
(
(s + 1)

1
2 log(1 + s)

)∑k
j=1 pj

dyds

≥ cλpk+1
∫ t

0

(1 + t− s)−
1
2 log(1 + t− s)

(
(s + 1)

1
2 log(1 + s)

)∑k
j=1 pj

× exp(− x2

2(t− s)
− px2

cs
)ds

≥ cλpk+1
exp(−x2

ct
)
∫ t

2

t
4

(1 + s)
1
2 (

∑k
j=1 pj−1)(log(1 + s))

∑k
j=0 pj

ds

≥ cλpk+1
exp(−x2

ct
)
(
(1 + t)

1
2 log(1 + t)

)∑k
j=0 pj

.
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¤
We now prove the upper bound when d = 1 and a satisfies Condition A−1. As

above, c will denote a positive constant whose value changes from term to term. By
Lemma 6-i, it follows that Fn(t) ≥ cλpk

((1 + t)
1
2 log(1 + t))

∑k−1
j=0 pj

, for some c > 0.
Recalling that m = −1 in the present case, it follows then that (2.7) will hold with
tn = n2, if we choose n to satisfy

(3.2)
[
((1 + n2)

1
2 log(1 + n2))

∑k−1
j=0 pj

λpk
]p−1

≥ c

n
.

Using the fact that
∑k−1

j=0 pj = pk−1
p−1 , we find that (3.2) will hold if n(log(1 +

n))1−p−k ≥ cλ1−p. Thus we may pick n = c λ1−p

| log λ|1−p−k . Substituting this along

with tn = n2 in (2.11), and using the fact that k can be chosen arbitrarily large,
it follows that for any ε > 0, there exists a c > 0 such that T ∗(λ, φ) ≤ c λ2(1−p)

| log λ|2−ε .
This proves the upper bound.

The proof for the case in which d = 2 and a satisfies Condition A−2 is identical
to the proof for the case in which d ≥ 3 and a satisfies Condition A−2, except
for the fact that in the former case one invokes Lemma 6-ii and in the latter case
Lemma 6-iii. Thus we will only prove the latter case. As before, c denotes a positive
constant whose value changes from term to term. Since m = −2, it follows that
(2.7) will hold as long as

(3.3) Fn(tn) ≥ c, for sufficiently large c, independent of n.

Thus, choose n = n0. (Recall from the line following (2.5) that we are always
assuming that n ≥ n0.) By Lemma 6-iii, Fn0(t) ≥ cλpk

(log(1 + t))
∑k−1

j=0 pj

. Thus
(3.3) will hold with n = n0 and tn0 = exp(cλ−qk), where qk = pk

∑k−1
j=0 pj

. Substituting

n = n0 and tn0 as above in (2.11) , we obtain log T ∗(λ, φ) ≤ cλ−qk . Since k is
arbitrary and limk→∞ qk = p− 1, it follows that for any ε > 0, there exists a c > 0
such that log T ∗(λ, φ) ≤ cλ1−p−ε. This proves the upper bound.

We now discuss how to handle the two exceptional cases. The case in which
d = 1 and a satisfies Condition B−1−ε, for some ε > 0, is treated exactly as we
treated the exceptional case d = 1 and m ∈ [−2,−1) in Theorem 2. Namely, in the
special case that a and φ are even functions, nonincreasing on (0,∞), the solution
u(x, t) is also even and nonincreasing on (0,∞) for each t ≥ 0. From this, it follows
that (2.18) holds, and thus (2.7) holds with m = −1. The rest of the proof now
continues like the proof above in the case m ∈ (−1, 0], except that one sets m = −1.
This gives the upper bound for these special a and φ, and the general case then
follows by the application of the maximum principle used to complete the proof of
the exceptional case in Theorem 2.

The case in which d = 2 and a satisfies Condition B−2−ε for some ε > 0 is treated
similarly. We consider the special case that a and φ are radially symmetric and
nonincreasing in |x| and let Dn = {x ∈ R2 : |x| < n}. In this case it can by shown
that u(x, t) is radially symmetric and decreasing in |x|, from which it is easy to
show that (2.18) holds with n−1 replaced by n−2. Thus, (2.7) holds with m = −2.
Noting that Lemma 6-(iii) holds for the case d ≥ 3 and a satisfying Condition A−2

as well as for the case at hand, the rest of the proof goes through just as the proof
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above in the case d ≥ 3 and a satisfying Condition A−2. This gives the upper
bound for these special a and φ. The general case follows by the application of the
maximum principle used to complete the proof of the exceptional case in Theorem
2.

We now turn to the
Proof of the lower bound. We will use the same type of idea used to prove the lower
bound in Theorem 1; however, the calculations are much simpler here. Define
u0(x, t) = λ

∫
Rd p(t, x, y)φ(y)dy, where φ belongs to Class L, and

(3.4) un+1(x, t) = u0(x, t) +
∫ t

0

∫

Rd

p(t− s, x, y)a(y)up
n(y, s)dyds, n ≥ 0.

By induction, un+1(x, t) ≥ un(x, t). If

u(x, t) ≡ lim
n→∞

un(x, t) < ∞, for x ∈ Rd and t ∈ [0, T ),

then it follows from the monotone convergence theorem and (3.4) that u satisfies
(1.3) for x ∈ Rd and t ∈ (0, T ); hence T ∗(λ, φ) ≥ T . Thus, to obtain an estimate
of the form T ∗(λ, φ) ≥ T , it is enough to show that if

(3.5) φ(y) ≤ δ,

for δ > 0, then

(3.6) sup
n

un(x, t) < ∞, for x ∈ Rd, t ∈ [0, T ).

To obtain (3.6), we consider the inductive hypothesis

(3.7) un(x, t) ≤ c for x ∈ Rd, t ∈ [0, T ),

where c = c(λ) > 0. Note that (3.7) holds for n = 0 with c = λδ and T = ∞.
To complete the proof of the lower bound, we will verify the inductive step above
for an appropriate choice of c = c(λ) and for T = T (λ) satisfying the requirements
of the theorem. In the sequel, C will denote a positive constant whose value will
change from term to term. By (3.4), (3.5) and (3.7), we have

(3.8) un+1(x, t) ≤ λδ + cp

∫ t

0

∫

Rd

p(t, x, y)a(y)dyds.

At this point, we apply Lemma 3. Since the proofs are very similar in all the
cases, we will content ourselves with proving the “typical case”—namely, the case
in which either d = 1 and a satisfies Condition Am,m ∈ (−1, 0], or d ≥ 2 and
a satisfies Condition Am,m ∈ (−2, 0]—and one of the exceptional cases. First
consider the “typical case” defined above. Then by Lemma 3 and (3.8), we obtain

(3.9) un+1(x, t) ≤ λδ + Ccp

∫ t

0

s
m
2 ds ≤ λδ + Ccpt

m
2 +1.

17



Choosing c = c(λ) = 2λδ, it follows that the inequality λδ +Ccpt
m
2 +1 ≤ c will hold

as long as t ≤ T = T (λ) = Cλ
2(1−p)
m+2 . It then follows from (3.9) that un+1(x, t) ≤ c,

for x ∈ Rd, t ∈ [0, T ). This verifies the inductive hypothesis (3.7) and proves that
T ∗(λ, φ) ≥ T (λ).

We now prove the lower bound in one of the exceptional cases—the case that
d = 1 and that a satisfies Condition A−1. Applying Lemma 3 to (3.8), we obtain

(3.10) un+1(x, t) ≤ λδ + Ccp

∫ t

0

s−
1
2 log(2 + s)ds ≤ λδ + Ccpt

1
2 log(2 + t).

Choosing c(λ) = 2λδ, it follows that the inequality λδ+Ccpt
1
2 log(2+t) ≤ c will hold

as long as t ≤ T = T (λ) = C λ2(1−p)

| log λ|2 . It then follows from (3.10) that un+1(x, t) ≤ c,
for x ∈ Rd, t ∈ [0, T ). This verifies the inductive hypothesis (3.7) and proves that
T ∗(λ, φ) ≥ T (λ). ¤
4. Proof of Theorem 3. Proof of part (i)—upper bound. Choose a smooth
bounded domain D ⊂ Rd for which

(4.1) c1 ≡ inf
x∈D

a(x) > 0, c2 ≡ inf
x∈D

φ(x) > 0.

Let µ > 0 denote the principal eigenvalue of −∆ in D and let ψ denote the corre-
sponding positive eigenfunction, normalized by

∫
D

ψ(x)dx = 1. Define

F (t) =
∫

D

u(x, t)ψ(x)dx, for 0 ≤ t < T ∗(λ, φ).

Let ν(x) denote the outward unit normal to D at x ∈ ∂D. Integrating by parts,
using (4.1) and the fact that ψ = 0 and ∇ψ · ν ≤ 0 on ∂D, and applying Jensen’s
inequality, we obtain

(4.2)
F ′(t) =

∫

D

ut(x, t)ψ(x)dx =
∫

D

(∆u(x, t) + a(x)up(x, t))ψ(x)dx

≥ −µF (t) + c1

∫

D

up(x, t)ψ(x)dx ≥ −µF (t) + c1F
p(t).

By (4.1), it follows that F (0) ≥ c2λ. Thus there exists a λ0 such that µF (0) ≤
1
2c1F

p(0), for λ ≥ λ0. From now on, we will always assume that λ ≥ λ0. Since
the expression −µz + 1

2c1z
p is an increasing function of z for z ≥ z0, where z0

is the positive root of the aforementioned expression, it then follows from (4.2)
that µF (t) ≤ 1

2c1F
p(t), for t ∈ [0, T ∗(λ, φ)). Thus we obtain from (4.2) that

F ′(t) ≥ 1
2c1F

p(t), for t ∈ [0, T ∗(λ, φ)). Integrating gives

(4.3)
F 1−p(t)
p− 1

≤ F 1−p(0)
p− 1

− 1
2
c1t ≤ (c2λ)1−p

p− 1
− 1

2
c1t.

Since the righthand side of (4.3) equals 0, when t = 2(c2λ)1−p

c1(p−1) , it follows that F (t)
must blow up by this value of t. This gives the upper bound T ∗(λ, φ) ≤ Cλ1−p, for
some constant C > 0.
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Proof of part (i)—lower bound. We argue exactly as we did from (3.4) until (3.8)
for the lower bound in Theorem 2. From (3.8), it follows that un+1 ≤ λδ + Ccpt,
for t ∈ [0, 1] and some C > 0. Choosing c = c(λ) = 2λδ, it follows that the
inequality λδ + Ccpt ≤ c will hold as long as t ≤ (δλ)1−p

C and t ≤ 1. Thus,
T ∗(λ, φ) ≥ const.λ1−p, for λ sufficiently large.

Proof of part (ii)—upper bound. Let D ⊂ Rd be a smooth bounded domain for
which

(4.4) c1 ≡ inf
x∈D

a(x) > 0.

Choose l such that l > dist(x, supp(φ)), for all x ∈ D. It then follows from (1.3)
that
(4.5)

u(x, t) ≥ λ

∫

Rd

1

(4πt)−
d
2

exp(−|y − x|2
4t

)φ(y)dy ≥ λCt−
d
2 exp(− l2

4t
), for x ∈ D, t > 0.

Now define F (t) exactly as in the proof of part(i) above. By (4.5),

(4.6) F (t0) ≥ λγ , for some γ > 0 and t0 =
C

log λ
, with C sufficiently large.

In particular then, there exists a λ0 such that the inequality µF (t) ≤ 1
2c1F

p(t)
holds for t = t0 and λ ≥ λ0 From now on, we assume that λ ≥ λ0. From (4.2), it
follows that the above inequality in fact holds for all t ≥ t0; thus F ′(t) ≥ 1

2c1F
p(t),

for t ≥ t0, and integrating gives

(4.7)
F 1−p(t)
p− 1

≤ F 1−p(t0)
p− 1

− 1
2
c1(t− t0).

As in the proof of part (i), the value of t for which the righthand side of (4.7) equals
zero constitutes an upper bound for T ∗(λ, φ). Thus, from (4.6) and (4.7), we obtain

T ∗(λ, φ) ≤ t0 +
2F 1−p(t0)
c1(p− 1)

≤ C

log λ
+

2λγ(1−p)

c1(p− 1)
≤ C1

log λ
,

which completes the proof of the upper bound.

Proof of part (ii)—lower bound. Let D1 = supp(φ) and D2 = supp(a). With-
out loss of generality, assume that a(x) ≤ 1 and φ(x) ≤ 1. Define u0(x, t) =
λ

∫
Rd p(t, x, y)φ(y)dy and

(4.8) un+1(x, t) = u0(x, t) +
∫ t

0

∫

Rd

p(t− s, x, y)a(y)up
n(y, s)dyds, n ≥ 0.

By induction, un+1(x, t) ≥ un(x, t). If

u(x, t) ≡ lim
n→∞

un(x, t) < ∞, for x ∈ D2 and t ∈ [0, T ),

then since a is supported on D2, it follows from (4.8) that u(x, t) ≡ lim
n→∞

un(x, t) <

∞, for x ∈ Rd and t ∈ [0, T ), and then it follows from the monotone convergence
19



theorem that u satisfies (1.3) for x ∈ Rd and t ∈ (0, T ); hence T ∗(λ, φ) ≥ T . Thus,
to obtain an estimate of the form T ∗(λ, φ) ≥ T , it is enough to show that

(4.9) sup
n

un(x, t) < ∞, for x ∈ D2, t ∈ [0, T ).

To obtain (4.9), we consider the inductive hypothesis

(4.10) un(x, t) ≤ c

∫

D1

p(2t, x, z)dz, x ∈ D2, t ∈ [0, T ).

Note that

(4.11)
∫

D1

p(t, x, z)dz ≤ 2
d
2

∫

D1

p(2t, x, z)dz;

thus (4.10) holds for n = 0 with c = 2
d
2 λ and T = ∞. To complete the proof of

the lower bound, we will verify the inductive step above for an appropriate choice
of c = c(λ) and for T = k

log λ , where k > 0.
From the assumption on a and φ, we have

(4.12)
un+1(x, t) = u0(x, t) +

∫ t

0

∫

Rd

p(t− s, x, y)a(y)up
n(y, s)dyds

≤ λ

∫

D1

p(t, x, z)dz +
∫ t

0

∫

D2

p(t− s, x, y)up
n(y, s)dyds.

We now use (4.10) and Jensen’s inequality to estimate up
n(y, s) appearing in (4.12).

It turns out that in order for the rest of the proof to work, the application of
Jensen’s inequality must be done with a little care as follows:
(4.13)

up
n(y, s) ≤ (c

∫

D1

p(2s, y, z)dz)p = (2
d
2 c

∫

D1

p(4s, y, z) exp(−|y − z|2
16s

)dz)p

≤ 2
pd
2 cp

∫

D1

p(4s, y, z) exp(−p
|y − z|2

16s
)dz = 2

pd
2 cp

∫

D1

(16πs)−
d
2 exp(−(p + 1)

|y − z|2
16s

)dz.

Using (4.13) and the fact that

|y − x|2
4(t− s)

+ (p + 1)
|y − z|2

16s

=
(p + 1)(t− s) + 4s

(p + 1)(t− s)s

∣∣∣∣y −
4xs + z(p + 1)(t− s)
(p + 1)(t− s) + 4s

∣∣∣∣
2

+
p + 1

4(p + 1)(t− s) + 16s
|x− z|2,

and integrating out over y, we obtain

(4.14)

∫ t

0

∫

D2

p(t− s, x, y)up
n(y, s)dyds

≤ Ccp

∫ t

0

∫

D1

(8πt)−
d
2 exp(− p + 1

4(p + 1)(t− s) + 16s
|x− z|2)dzds,
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for some C > 0. Since p > 1, we have

(4.15)
p + 1

4(p + 1)(t− s) + 16s
=

1
8t

+
(p + 1)t + (p− 3)s

2t (4(p + 1)(t− s) + 16s)
≥ 1

8t
+

γ

t
,

for some γ > 0. Letting l = dist(D1, D2) > 0, it follows from (4.14) and (4.15) that
(4.16)∫ t

0

∫

D2

p(t−s, x, y)up
n(y, s)dyds ≤ Ccpt exp(− lγ

t
)
∫

D1

p(2t, x, z)dz, for x ∈ D2, t > 0.

From (4.11), (4.12), and (4.16), we conclude that

(4.16) un+1(x, t) ≤
(

2
d
2 λ + Ccpt exp(− lγ

t
)
) ∫

D1

p(2t, x, z)dz.

Choosing c = c(λ) = 2
d+1
2 λ, we find that the inequality 2

d
2 λ + Ccpt exp(− lγ

t ) ≤ c

will hold if t ≤ T = T (λ) ≡ k
log λ , for k > 0 sufficiently small. ¤
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