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Abstract. In this paper we introduce a new probabilistic method to evaluate the
asymptotic behavior of the principal eigenvalue for the Neumann Laplacian in a
region from which many small holes have been deleted and on which the Dirichlet
boundary condition has been imposed. We assume that the centers of the holes form

a regular lattice with spacing δ → 0. If there are n = n(δ) holes, let {x(n)
j }n

j=1

denote their centers and let εn ∈ (0, δ
2
) denote the common length of their radii.

Define An = ∪n
j=1B̄εn (x

(n)
j ), where Br(x) denotes the open ball of radius r centered

at x ∈ Rd. We evaluate the asymptotic behavior of the principal eigenvalue λ
(n)
N

for −∆ in Ω − An with the Neumann boundary condition on ∂Ω and the Dirichlet
boundary condition on ∂An. Assuming that

{
limn→∞ nεd−2

n = α ∈ [0,∞], if d ≥ 3;

limn→∞ n
− log εn

= α ∈ [0,∞], if d = 2,

we prove that

lim
n→∞λ

(n)
N =





d(d−2)ωdα
|Ω| , if d ≥ 3;

2πα
|Ω| , if d = 2.

Let Ω ⊂ Rd, d ≥ 2, be a bounded domain with smooth boundary. For each

positive integer n, let {x(n)
j }n

j=1 be points in Ω. Let {εn}∞n=1 be a sequence of

positive numbers decreasing to 0, and define An = ∪n
j=1B̄εn(x(n)

j ), where Br(x)

denotes the open ball of radius r centered at x ∈ Rd. Denote by λ
(n)
N the principal

eigenvalue for −∆ in Ω−An with the Neumann boundary condition on ∂Ω and the
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Dirichlet boundary condition on ∂An, and denote by λ
(n)
D the principal eigenvalue

for −∆ in Ω − An with the Dirichlet boundary condition on both ∂Ω and ∂An.

In the sequel we will refer to these two situations as the Neumann case and the

Dirichlet case respectively.

For the Dirichlet case with d = 3, Kac showed that if the points {x(n)
j }n

j=1

are independently distributed according to the uniform distribution on Ω, and

limn→∞ nεn = α ∈ [0,∞], then the principal eigenvalue λ
(n)
D satisfies

lim
n→∞

λ
(n)
D = λD +

4πα

|Ω| in probability,

where λD is the principal eigenvalue for −∆ in Ω with the Dirichlet boundary

condition on ∂Ω, and |Ω| is the volume of Ω [5]. Kac used probabilistic methods

involving the asymptotics of the Wiener sausage. (See Simon [12, chapter 22] for a

good exposition of this method, some of whose details are omitted in Kac’s paper.)

Still assuming that d = 3 and that limn→∞ nεn = α ∈ [0,∞], but choos-

ing the points {x(n)
j }n

j=1 independently according to a density function V (with
∫
Ω

V (x)dx = 1), Rauch and Taylor [11] and Ozawa [7] showed for the Dirichlet case

that

lim
n→∞

λ
(n)
D = λV

D in probability,

where λV
D is the principal eigenvalue for −∆+4παV in Ω with the Dirichet bound-

ary condition on ∂Ω. Rauch and Taylor used functional analytic methods and the

Feynman-Kac formula, whereas Ozawa used Green’s function perturbation meth-

ods. (In the above-cited results, the actual constant appearing in the papers differs

by a factor of 2 because the operator 1
2∆ is used instead of ∆.)

The first treatment of the Neumann case was in a paper by Rauch [10] where

the following bounds were obtained for λ
(n)
N when d = 3: λ

(n)
N ≤ cnεn, for small

nεn and some c > 0, and, if the holes satisfy a kind of even spacing assumption,

λ
(n)
N ≥ c1nεn − c2, for all n and some positive constants c1, c2. Later Chavel

and Feldman [1] proved that if the points {x(n)
j }n

j=1 are independently distributed
2



according to the uniform distribution on Ω, and if
{ limn→∞ nεd−2

n = α ∈ [0,∞], if d ≥ 3;
limn→∞ n

− log εn
= α ∈ [0,∞], if d = 2,

then

lim
n→∞

λ
(n)
N =

{ d(d−2)ωdα
|Ω| in probability, if d ≥ 3;

2πα
|Ω| in probability, if d = 2,

where ωd is the volume of the unit ball in Rd. Chavel and Feldman used Wiener

sausage techniques along with delicate analytic estimates that go back to Mi-

nakshisundaram and Weyl [6] for the fundamental solution of the heat equation

in a domain with the Neumann boundary condition.

In this paper, we use completely different probabilistic methods to obtain the

deterministic version of the above result of Chavel and Feldman under the assump-

tion of deterministic lattice spacing, which we now describe. In the future we hope

to apply the methods developed here to treat eigenvalue asymptotics for other

problems in domains with many small holes.

For δ > 0, consider the δ-lattice in Rd consisting of all points of the form δx

where x ∈ Rd has integral coefficients. A lattice point contained in Ω will be

called a boundary point if at least one of its nearest neighbors in the lattice is not

contained in Ω, and will be called an interior point otherwise. Let n = n(δ) denote

the number of interior lattice points. Clearly,

(1.1) lim
δ→0

nδd = |Ω|.

In the sequel it will be more natural to treat n rather than δ as the independent

parameter, even though it is possible that certain positive integers may not be

realizable through the above scheme and even though a particular n corresponds

to more than one value of δ. Denote the interior lattice points by {x(n)
j }n

j=1 (the

order of the labeling is arbitrary), and for ε = εn ∈ (0, δ
2 ), let

An ≡ ∪n
j=1B̄εn(x(n)

j ).

By construction, the balls {B̄εn(x(n)
j )}n

j=1 are disjoint and do not intersect the

boundary ∂Ω. Note that

w − lim
n→∞

1
n

n∑

j=1

δ
x
(n)
j

= the uniform distribution on Ω.
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Recall that ωd is the volume of the unit ball in Rd.

Theorem 1. Assume that

{ limn→∞ nεd−2
n = α ∈ [0,∞], if d ≥ 3;

limn→∞ n
− log εn

= α ∈ [0,∞], if d = 2.

Then

lim
n→∞

λ
(n)
N =

{ d(d−2)ωdα
|Ω| , if d ≥ 3;

2πα
|Ω| , if d = 2.

In light of the above-cited work of Rauch and Taylor and of Ozawa, we expect

that in the Neumann case, if instead of imposing lattice-spacing, one assumed that

1
n

∑n
j=1 δ

x
(n)
j

converged weakly to a probability measure with density V , then λ
(n)
N

would converge to the principal eigenvalue for −∆ + cdαV in Ω with the Neumann

boundary condition on ∂Ω, where cd = d(d − 2)ωd, if d ≥ 3, and c2 = 2π. In

fact, we can show that for any choice of {x(n)
j }n

j=1 which maintain an appropriate

minimal spacing, lim supn→∞ λ
(n)
N is less than or equal to the answer obtained in

Theorem 1 (see the end of section 2). This is consistent with the above-stated

expectation since it is easy to see from the Rayliegh-Ritz formula that the principal

eigenvalue λN (cdαV ) for −∆ + cdαV in Ω with the Neumann boundary condition

on ∂Ω, where V ≥ 0 satisfies
∫
Ω

V (x)dx = 1, is maximized when V ≡ 1
|Ω| is the

uniform density.

With the Neumann boundary condition and d = 3, the problem can be viewed as

an idealized model for the cooling effect of crushed ice: consider an insulated con-

tainer filled with a liquid occupying the region Ω and containing n spherical coolers

of radius εn which are centered at the points {x(n)
j }n

j=1 and maintain temperature

0. Then heat flow in Ω starting from a temperature distribution f ≥ 0 (and with

diffusion coefficient normalized to 1) is modeled by

ut = ∆u, x ∈ Ω, t > 0;

u(x, 0) = f(x), x ∈ Ω;

∂u

∂N
= 0 on ∂Ω;

u = 0 on ∂An,
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where N denotes the unit outward normal to Ω at ∂Ω. The exponential decay rate

of the solution is then equal to the principal eigenvalue λ
(n)
N . Since the volume of

the holes is on the order nε3n and the surface area is on the order nε2n, while the

shift of the principal eigenvalue is on the order nεn, one concludes that crushed ice

is a more effective coolant than ice cubes. This model was suggested by Rauch [10].

Our approach is almost completely probabilistic, but as already noted, it is

completely different from the methods of Kac and of Chavel and Feldman, which

utilized the Wiener sausage. We use the probabilistic representation for the prin-

cipal eigenvalue; namely, λ
(n)
N is the exponential decay rate in t of the probability

that a normally reflected Brownian motion in Ω has not hit An by time t. The proof

involves large deviations, but its most novel part exploits Hasminskii’s representa-

tion for the invariant measure of a recurrent Markov process along with Theorem

2 below.

We now recall the probabilistic representation of the principal eigenvalue. Let

X(t) be a Brownian motion in Ω with normal reflection at ∂Ω. Denote by Px the

probability measure corresponding to the reflected Brownian motion starting from

x ∈ Ω̄. Let τAn = inf{t ≥ 0 : X(t) ∈ ∂An}. Then

(1.2)

lim
t→∞

1
t

log Px(τAn > t) = lim
t→∞

1
t

log sup
z∈Ω̄−An

Pz(τAn > t) = −1
2
λ

(n)
N , for x ∈ Ω̄−An.

To verify (1.2), recall that the semigroup T
(n)
t for the operator − 1

2∆ on Ω−An with

the Neumann boundary condition on ∂Ω and the Dirichlet boundary condition on

∂An can be represented by

(T (n)
t f)(x) = Ex(f(X(t)); τAn > t) =

∫

Ω−An

p(n)(t, x, y)f(y)dy,

where p(n)(t, x, y) = Px(X(t) ∈ dy, τAn > t). Letting φ
(n)
0 > 0 denote the eigen-

function corresponding to the principal eigenvalue 1
2λ

(n)
N for − 1

2∆, we have

Px(τAn > t) = (T (n)
t 1)(x) ≥ 1

supy∈Ω−An
φ

(n)
0 (y)

(Ttφ
(n)
0 )(x)

=
1

supy∈Ω−An
φ

(n)
0 (y)

φ
(n)
0 (x) exp(−1

2
λ

(n)
N t).
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Thus,

(1.3) lim inf
t→∞

1
t

log P (n)
x (τAn

> t) ≥ −1
2
λ

(n)
N , for x ∈ Ω̄−An.

On the other hand, using the semigroup property and the fact that p(n)(t, z, x)

is symmetric in z and x by self-adjointness, we have for t > 1,

(1.4)

Pz(τAn
> t) =

∫

Ω−An

p(n)(t, z, y)dy

=
∫

Ω−An

dy

∫

Ω−An

dx p(n)(1, z, x)p(n)(t− 1, x, y)

≤ sup
x∈Ω−An

p(n)(1, z, x)

φ
(n)
0 (x)

∫

Ω−An

dy

∫

Ω−An

dx φ
(n)
0 (x)p(n)(t− 1, x, y)

= sup
x∈Ω−An

p(n)(1, z, x)

φ
(n)
0 (x)

(
∫

Ω−An

φ
(n)
0 (y)dy) exp(−1

2
λ

(n)
N (t− 1)).

By the Hopf maximum principal, there exists a δ > 0 such that

(1.5) φ
(n)
0 (x) ≥ δdist(x, ∂An).

As a function of t > 0 and of z or x, p(n)(t, z, x) is a smooth solution to the heat

equation ut = 1
2∆u in Ω−An with the homogeneous Neumann boundary condition

on ∂Ω and the homogeneous Dirichlet boundary condition on ∂An; thus,

(1.6)
p(n)(1, z, x) = 0, for z ∈ Ω−An and x ∈ ∂An;

sup
z,x∈Ω−An

|∇xp(n)(1, z, x)| < ∞.

From (1.5) and (1.6) we have

(1.7) sup
z,x∈Ω−An

p(n)(1, z, x)

φ
(n)
0 (x)

< ∞.

From (1.4) and (1.7) we conclude that

(1.8) lim sup
t→∞

1
t

log sup
z∈Ω̄−An

Pz(τAn > t) ≤ −1
2
λ

(n)
N .

Now (1.2) follows from (1.3) and (1.8).

We now present a result which is used in the proof of Theorem 1 and which may

be of independent interest. Fix a positive integer N0 ≥ 1 and consider N0 pairs
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of concentric nonoverlapping balls compactly imbedded in Ω. To be concrete, let

{yj}N0
j=1 ⊂ Ω and let {Rj}N0

j=1 and {Lj}N0
j=1 be positive numbers satisfying B̄Rj

(yj) ⊂
BLj

(yj) ⊂ B̄Lj
(yj) ⊂ Ω, for all j, and B̄Li

(yi) ∩ B̄Lj
(yj) = ∅, for i 6= j. Let AR =

∪N0
j=1B̄Rj

(yj) and AL = ∪N0
j=1B̄Lj

(yj). Let X(t) and Px be as above. As is well-

known, X(t) is positive recurrent and its invariant probability measure is normalized

Lebesgue measure in Ω. (The invariant density satisfies the homogeneous adjoint

equation. The operator 1
2∆ in Ω with the Neumann boundary condition is self-

adjoint, and clearly positive constants satisfy the homogeneous adjoint equation.)

Define inductively stopping times σ1 = inf{t ≥ 0 : X(t) ∈ ∂AL}, ηn = inf{t >

σn : X(t) ∈ ∂AR}, and σn+1 = inf{t > ηn : X(t) ∈ ∂AL}, for n ≥ 1. Note

that under Px with x ∈ ∂AL
n , we have η1 = inf{t ≥ 0 : X(t) ∈ ∂AR

n }. Then

(X(σ1), X(η1), X(σ2), X(η2), ...) is a Markov process on ∂AL ∪ ∂AR. Since the

process is irreducible and defined on a compact state space, it possesses a unique

invariant probability measure. From this it follows that there exist probability

measures mR on ∂AR and mL on ∂AL such that PmR(X(σ1) ∈ ·) = mL and

PmL(X(η1) ∈ ·) = mR. The following result gives an explicit calculation of these

measures as well as an evaluation of the expected length of one cycle; that is, of

EmRη1 = EmRσ1 + EmLη1.

Theorem 2.

i. The conditional distribution of mR on ∂BRj (yj) and of mL on ∂BLj (yj) is

uniform. Furthermore

(1.9) mR(∂BRj (yj)) = mL(∂BLj (yj)) =





(R2−d
j

−L2−d
j

)−1

∑N0
k=1

(R2−d
k

−L2−d
k

)−1
, if d ≥ 3;

(log
Lj
Rj

)−1

∑N0
k=1

(log
Lk
Rk

)−1
, if d = 2.

ii. The expected time for one cycle is given by

(1.10) EmRη1 =





2|Ω|
d(d−2)ωd

∑N0
j=1

(R2−d
j

−L2−d
j

)−1
, if d ≥ 3;

|Ω|
π
∑N0

j=1
(log

Lj
Rj

)−1
, if d = 2.

We prove Theorem 2 in section 2. In section 3 we construct the probabilistic
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setup for the proof of Theorem 1, state three propositions and proof Theorem 1

based on those propositions. The three propositions are proved in sections 4-7.

We conclude this section with a couple of additional historical notes. In fact,

the papers of Rauch and Taylor and of Ozawa showed that for each m, the m-th

eigenvalue for −∆ in Ω − An with the Dirichlet boundary condition on both ∂Ω

and ∂An (arranged in nondecreasing order and counting multiplicities) converges

to the m-th eigenvalue for −∆ + 4παV in Ω with the Dirichlet boundary condition

on ∂Ω. Kac also showed this in the particular case he treated (V ≡ 1
|Ω| .) This is

the so-called Lenz shift.

In a related work, Papanicolaou and Varadhan [8] showed that when Ω = R3 and

1
n

∑n
j=1 δ

x
(n)
j

converges weakly to a probability measure with compactly supported

density V , then the solution to the Cauchy problem for ut = ∆u in R3 − An with

the Dirichlet boundary condition on ∂An and compactly supported initial data

converges in an appropriate sense to the solution of ut = ∆u− 4παV u in R3 with

the same initial data.

2. Proof of Theorem 2.

i. We use the notation in the paragraph preceding Theorem 2. It is enough to prove

that with mL and mR as prescribed in the theorem, PmL(X(η1) ∈ ·) = mR. The

other equality, PmR(X(σ1) ∈ ·) = mL, follows automatically by symmetry.

For f ∈ C(∂AR), let uf denote the solution to

(2.1)

1
2
∆uf = 0 in Ω−AR;

uf = f on ∂AR;

∂uf

∂N
= 0 on ∂Ω.

Letting τAR = inf{t ≥ 0 : X(t) ∈ ∂AR}, we have the probabilistic representation

uf (x) = Exf(X(τAR)), for x ∈ Ω − AR. From its definition, η1 = τAR under Px

with x ∈ ∂AL; thus,

(2.2) uf (x) = Exf(X(η1)), for x ∈ ∂AL.
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Let v = {vj}N0
j=1 be positive constants satisfying

∑N0
j=1 vj = 1, and for each j ∈

{1, ..., N0}, let rj(t), 0 ≤ t ≤ 1, be an increasing, smooth function satisfying rj(0) =

Rj and rj(1) = Lj . Letting (r, θ) denote polar coordinates in Rd and letting σ

denote Lebesgue surface measure on the unit sphere Sd−1, normalized to be a

probability measure, define

Hv(t) =
N0∑

j=1

vj

∫

Sd−1
uf (yj + (rj(t), θ))dσ(θ).

Let Γt ≡ ∪N0
j=1Brj(t)(yj) and for t ∈ [0, 1], let σv,t denote the probability measure

on ∂Γt ≡ ∪N0
j=1∂Brj(t)(yj) whose conditional distribution on each ∂Brj(t)(yj) is

uniform and which satisfies σv,t(∂Brj(t)(yj)) = vj . Note that ∂Γ0 = ∂AR and

∂Γ1 = ∂AL. From the boundary condition on uf it follows that

(2.3) Hv(0) =
∫

∂AR

fdσv,0,

and from (2.2) it follows that

(2.4) Hv(1) = Eσv,1f(X(η1)).

Note that if

(2.5) vj =





(R2−d
j

−L2−d
j

)−1

∑N0
k=1

(R2−d
k

−L2−d
k

)−1
, if d ≥ 3;

(log
Lj
Rj

)−1

∑N0
k=1

(log
Lk
Rk

)−1
, if d = 2,

then σv,0 and σv,1 will be equal to mR and mL respectively as they are defined in

(1.9). We will show that if v is chosen as in (2.5), then Hv(t) is constant in t, and

thus Hv(1) = Hv(0). It will then follow from (2.3) and (2.4) that EmLf(X(η1)) =
∫

∂AR fdmR. Since f is an arbitrary continuous function on ∂AR
n , it will follow that

PmL(X(η1) ∈ ·) = mR, completing the proof.

It remains to show that Hv(t) is constant if v is chosen as in (2.5). For the

time being, we continue to consider v as arbitrary. Treating yj as a constant, let

vf (r, θ) = uf (yj + (r, θ)). In the sequel, when N appears in an integral over the

boundary of a domain, it will denote the outward unit normal to the domain. Let
9



ω̂d denote the Lebesgue surface measure of Sd−1. Using the generic notation S for

the standard Lebesgue surface measure on a (d− 1)− dimensional hyperspace and

recalling that σ is normalized Lebesgue surface measure on Sd−1, we have

(2.6)

H ′
v(t) =

N0∑

j=1

vj

∫

Sd−1

∂vf

∂r
(rj(t), θ)r′j(t)dσ(θ)

=
1
ω̂d

N0∑

j=1

vj

r′j(t)

rd−1
j (t)

∫

∂Brj(t)(yj)

∂uf

∂N
(x)dS(x).

Suppose v = {vj}N0
j=1 is chosen so that for some c > 0

(2.7) vj

r′j(t)

rd−1
j (t)

= c, for all t ∈ [0, 1] and j = 1, 2, ..., N0.

If (2.7) holds, then we have from (2.6), (2.1) and the divergence theorem that

H ′
v(t) =

c

ω̂d

∫

∂Γt

∂uf

∂N
(x)dS(x)

= − c

ω̂d

∫

Ω−Γt

∆u(x)dx +
c

ω̂d

∫

∂Ω

∂uf

∂N
(x)dS(x) = 0.

Choosing rj(t) = (R2−d
j (1−t)+L2−d

j t)
1

2−d , if d ≥ 3, and rj(t) = exp((1−t) log Rj +

t log Lj), if d = 2, one can now check that (2.7) will hold if vj is chosen as in (2.5).

ii. We exploit Hasminskii’s representation for the invariant measure of a recurrent

Markov process. (See [4] where the construction is carried out in the case of a

diffusion on all of Rd; the same construction works for any recurrent, irreducible

Markov process.) The invariant probability measure for the normally reflected

Brownian motion is normalized Lebesgue measure. By Hasminskii’s representation

the invariant probability measure (normalized Lebesgue measure) has the following

representation:

(2.8)
|C|
|Ω| =

EmR

∫ η1

0
1C(X(t))dt

EmRη1
, for C ⊂ Ω.

In particular, if we choose C = AR, then
∫ η1

0
1C(X(t))dt =

∫ σ1

0
1C(X(t))dt, so we

obtain from (2.8)

(2.9) EmRη1 =
|Ω|
|AR|EmR

∫ σ1

0

1AR(X(t))dt.
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From part (i) we have

(2.10)

EmR

∫ σ1

0

1AR(X(t))dt

=





1∑N0
k=1

(R2−d
k

−L2−d
k

)−1

∑N0
j=1(R

2−d
j − L2−d

j )−1Exj

∫ σ1

0
1AR(X(t))dt, if d ≥ 3;

1∑N0
k=1

(log
Lk
Rk

)−1

∑N0
j=1(log Lj

Rj
)−1Exj

∫ σ1

0
1AR(X(t))dt, if d = 2,

for any choice of xj ∈ ∂BRj
(yj), j = 1, 2, ..., N0.

From the standard probabilistic representation of solutions of elliptic pde’s, it fol-

lows that

(2.11) uj(Rj) = Exj

∫ σ1

0

1AR(X(t))dt, for xj ∈ ∂BRj (yj),

where uj(r) is the solution to

(2.12)

1
2
u′′j +

d− 1
2r

u′j = −1[0,Rj ](r), r ∈ [0, Lj ];

u′j(0) = 0, uj(Lj) = 0.

Writing the left hand side of (2.12) in the form 1
2rd−1 (rd−1u′j)

′, solving separately

on [0, Rj ] and on [Rj , Lj ], and matching the solutions and their first derivatives at

Rj , we obtain

(2.13) uj(Rj) =

{ 2
d(d−2)R

d
j (R2−d

j − L2−d
j ), if d ≥ 3;

R2
j log Lj

Rj
, if d = 2.

Now (1.10) follows from (2.9)-(2.11), (2.13) and the fact that |AR| = ωd

∑N0
k=1 Rd

k.

¤

3. Probabilistic Set Up, Statement of Three Propositions and Proof

of Theorem 1. In the sequel, the notation f ∼ g will be used to indicate that

there exist constants c1, c2 > 0 such that c1g ≤ f ≤ c2g. We will always assume

that α ∈ (0,∞) since the cases α = 0 and α = ∞ follow from the other cases by

comparison. By (1.1) and the fact that we have deleted boundary lattice points,

the distance between any x
(n)
i and x

(n)
j or between x

(n)
j and ∂Ω is at least cn−

1
d

for some c > 0. Since α ∈ (0,∞), εn ∼ n−
1

d−2 when d ≥ 3. Thus, when d ≥ 3,

we may choose Ln = Cn
2

d(d−2) , with an appropriate C > 0, so that the balls
11



{B̄Lnεn(x(n)
j )}n

j=1 are disjoint and do not intersect the boundary ∂Ω. When d = 2,

we have limn→∞ n
− log εn

= α, and we can choose Ln = C
εn

n−
1
2 , for an appropriate

C > 0, so that the balls {B̄Lnεn
(x(n)

j )}n
j=1 are disjoint and do not intersect the

boundary ∂Ω. Note that Lnεn ∼ n−
1
d , for all d ≥ 2. Fix κ ∈ (0, 1

2 ] and let

Rn = κLn.

The parameter κ will remain fixed until section 6 when we will need to let κ → 0.

Thus, in our notation until section 6, we will suppress the dependence on κ. We

record some of the above facts for later reference.

(3.1)

Lnεn ∼ n−
1
d , d ≥ 2;

Ln =

{
Cn

2
d(d−2) , if d ≥ 3;

C
εn

n−
1
2 if d = 2;

Rn = κLn, κ ∈ (0,
1
2
].

From now on we work with n sufficiently large so that Rn > 1. Let AR
n and

AL
n denote the collection of holes thickened by a factor of Rn and Ln respectively;

that is, AR
n = ∪n

j=1B̄Rnεn(x(n)
j ) and AL

n = ∪n
j=1B̄Lnεn(x(n)

j ). Define inductively

stopping times σ1 = inf{t ≥ 0 : X(t) ∈ ∂AL
n}, ηm = inf{t ≥ σm : X(t) ∈ ∂AR

n },
and σm+1 = inf{t ≥ ηm : X(t) ∈ ∂AL

n}, m = 1, 2, ... . Note that under Pz

with z ∈ ∂AL
n , the stopping time η1 is the first hitting time of ∂AR

n . Consider

the sequence X(σ1), X(η1), X(σ2), X(η2), ... under the following Markov transition

measure: let the transition from X(σm) to X(ηm) be according to the distribution

Pz(X(η1) ∈ ·), when z = X(σm) ∈ ∂AL
n , and let the transition from X(ηm) to

X(σm+1) be according to the conditional distribution Pz(X(σ1) ∈ ·|σ1 < τAn)

when z = X(ηm) ∈ ∂AR
n . Since the above process is defined on the compact

state space ∂AR
n ∪ ∂AL

n , it possesses an invariant probability measure. Thus, there

exist probability measures m1,n and m2,n on ∂AR
n and ∂AL

n respectively such that

Pm1,n(X(σ1) ∈ ·|σ1 < τAn) = m2,n(·) and Pm2,n(X(η1) ∈ ·) = m1,n(·).
Define

(3.2) ρn = Pm1,n(σ1 < τAn)
12



and

(3.3)

µn = Em1,n
(σ1|σ1 < τAn

) + Em2,n
η1 = Em1,n

(η1|σ1 < τAn
) = Em1,n

(η1|η1 < τAn
).

In sections 4-7 we will prove the following three propositions.

Proposition 1.

λ
(n)
N ≤ 2

| log ρn|
µn

.

Proposition 2.

lim
n→∞

| log ρn|
µn

=

{
d(d−2)ωdα

2|Ω| , if d ≥ 3;
πα
|Ω| , if d = 2.

Remark. Note that whereas µn and ρn depend on the suppressed parameter κ,

limn→∞
| log ρn|

µn
does not depend on κ.

Proposition 3. Assume that limn→∞
| log ρn|

µn
∈ (0,∞). Then

lim inf
n→∞

λ
(n)
N ≥ 2 lim

n→∞
| log ρn|

µn
.

Proof of Theorem 1. Since we are assuming that α ∈ (0,∞), it follows from

Proposition 2 that the assumption in Proposition 3 holds. Thus,

lim
n→∞

λ
(n)
N ≤

{ d(d−2)ωdα
|Ω| , if d ≥ 3

2πα
|Ω| , if d = 2

follows directly from Propositions 1 and 2 while

lim
n→∞

λ
(n)
N ≥

{ d(d−2)ωdα
|Ω| , if d ≥ 3

2πα
|Ω| , if d = 2

follows directly from Propositions 3 and 2. ¤

The proof of Proposition 1 only requires the ergodic theorem and is given in

section 4. The proofs of Propositions 2 and 3 use Theorem 2. The proof of Propo-

sition 2, which in our opinion is the most novel and interesting part of the proof of

Theorem 1, is given in section 5. The rather intricate and delicate proof of Propo-

sition 3 accounts for over half the length of the paper. The proof, which uses three
13



auxiliary lemmas, is given in section 6, while the auxiliary lemmas are proved in

section 7.

An inspection of the proofs of Propositions 1 and 2 reveals that they do not

require the lattice-spacing assumption, but only a minimal spacing assumption to

insure that the construction of the collection of nonoverlapping balls AL
n may be

carried out. One can verify that the following minimal spacing assumption (along

with the fact that α ∈ (0,∞)) is enough:




limn→∞min1≤i,j≤n n
1

d−2 dist(x(n)
i , x

(n)
j ) = ∞

and limn→∞min1≤j≤n n
1

d−2 dist(x(n)
j , ∂Ω) = ∞, if d ≥ 3;

limn→∞min1≤i,j≤n
1
n log dist(x(n)

i , x
(n)
j ) = 0

and limn→∞min1≤j≤n
1
n log dist(x(n)

j , ∂Ω) = 0, if d = 2.

Thus, with this minimal spacing assumption, we have

lim sup
n→∞

λ
(n)
N ≤

{ d(d−2)ωdα
|Ω| , if d ≥ 3;

2πα
|Ω| , if d = 2.

4. Proof of Proposition 1. Letting η0 = 0, we note that for each k, the random

variables {ηj − ηj−1}k
j=1 and the random variables {X(ηj)}k

j=0 have the same dis-

tribution under Pm1,n(·|ηl < τAn < ηl+1) as they have under Pm1,n(·|ηl < τAn), for

any l ≥ k, and this distribution does not depend on l. Furthermore, {ηj−ηj−1}k
j=1

and {X(ηj)}k
j=0 are stationary sequences under the above measures. The proof of

this follows from the invariance of m1,n and from the crucial fact that Pz(σ1 < τAn)

is the same for all z ∈ ∂AR
n . Therefore, there exists a probability measure, which we

will denote by P stat(·), under which {ηj − ηj−1}∞j=1 and {X(ηj)}∞j=0 are stationary

and such that

P stat({ηj − ηj−1}k
j=1 ∈ ·, {X(ηj)}k

j=0 ∈ · )

= Pm1,n({ηj − ηj−1}k
j=1 ∈ ·, {X(ηj)}k

j=0 ∈ · |ηk < τAn),

for all k ≥ 1. In fact, {ηj − ηj−1}∞j=1 is ergodic under P stat(·). Indeed, the

dependence of the random variables {ηj − ηj−1}∞j=1 enters only through the hitting

locations {X(ηj)}∞j=0 and this latter sequence is ergodic since it is easily seen to

satisfy a uniform Doeblin condition. From the definition of µn it follows that

(4.1) Estat(ηj − ηj−1) = µn.
14



Using the strong Markov property, the fact that Pz(σ1 < τAn
) is the same for

all z ∈ ∂AR
n , and the invariance of m1,n, it follows that for t > 0 and any positive

integer k, we have

(4.2)
Pm1,n(τAn > t) ≥ Pm1,n(τAn > ηk > t) = Pm1,n(τAn > ηk)Pm1,n(ηk > t|τAn > ηk)

= Pm1,n
(τAn

> ηk)P stat(ηk > t),

while from (3.2) we have

(4.3) Pm1,n(τAn > ηk) = ρk
n.

Fix ε > 0. For each t > 0, let kt be an integer such that

(4.4) lim
t→∞

t

kt
= µn − ε.

We write

(4.5) P stat(ηkt > t) = P stat(
1
kt

kt∑

j=1

(ηj − ηj−1) >
t

kt
).

Letting t → ∞ in (4.5), using (4.4) and (4.1), and applying the ergodic theorem

gives

(4.6) lim
t→∞

P stat(ηkt > t) = 1.

From (4.2)-(4.4) and (4.6) we obtain

(4.7) lim inf
t→∞

1
t

log Pm1,n(τAn > t) ≥ −| log ρn|
µn − ε

.

The proposition now follows from (4.7), (1.2) and the fact that ε > 0 is arbitrary.

¤

5. Proof of Proposition 2. We begin with an estimate for | log ρn|. From (3.2)

it follows that ρn is equal to the probability that a d-dimensional Brownian motion

starting from a point on ∂BRnεn(0) will hit ∂BLnεn(0) before hitting ∂Bεn(0). This

probability is (εn)2−d−(Rnεn)2−d

(εn)2−d−(Lnεn)2−d = 1−R2−d
n

1−L2−d
n

, if d ≥ 3, and log ε−log Rnεn

log εn−log Lnεn
= log Rn

log Ln
, if

15



d = 2. From (3.1) it follows that limn→∞ ρn = 1; therefore limn→∞
| log ρn|
1−ρn

= 1,

and we conclude that

(5.1)





limn→∞
1−L2−d

n

R2−d
n −L2−d

n
| log ρn| = 1, if d ≥ 3;

limn→∞
log Ln

log Ln
Rn

| log ρn| = 1, if d = 2.

Now we must estimate µn defined in (3.3). Note that whereas | log ρn| only

involves Brownian motion in a ball, µn includes the term Em2,n
η1, and this term

depends on the reflecting Brownian motion in the entire domain with holes Ω −
An. We circumvent this problem by exploiting Hasminskii’s representation for

the invariant measure of a recurrent Markov process, as was done in the proof of

Theorem 2-ii. We apply Hasminskii’s construction to the original unconditioned

normally reflected Brownian motion. The same argument that led to the existence

of m1,n and m2,n leads to the existence of probability measures M1,n and M2,n on

∂AR
n and ∂AL

n respectively satisfying PM1,n(X(σ1) ∈ ·) = M2,n and PM2,n(X(η1) ∈
·) = M1,n. The invariant probability measure for the normally reflected Brownian

motion in Ω is normalized Lebesgue measure. By Hasminskii’s construction, the

invariant probability measure (normalized Lebesgue measure) has the following

representation:
|C|
|Ω| =

EM1,n

∫ η1

0
1C(X(t))dt

EM1,nη1
, for C ⊂ Ω.

In particular, if we choose C = AR
n , then

∫ η1

0
1C(X(t))dt =

∫ σ1

0
1C(X(t))dt, so we

have

(5.2) EM1,nη1 =
|Ω|
|AR

n |
EM1,n

∫ σ1

0

1AR
n
(X(t))dt.

A crucial point now is that

(5.3) mi,n = Mi,n.

In fact, after making the appropriate changes in notation, both m1,n and M1,n are

distributed according to the distribution of mR in (1.9) and both m2,n and M2,n are

distributed according to the distribution of mL in (1.9). (The changes in notation

are x
(n)
j in place of yj , Rnεn in place of Rj , Lnεn in place of Lj , and n in place

16



of N0.) For Mi,n, this claim follows directly from Theorem 2. To prove the claim

for mi,n, recall that m1,n and m2,n are the unique pair of probability measures

satisfying Pm1,n
(X(σ1) ∈ ·|σ1 < τAn

) = m2,n(·) and Pm2,n
(X(η1) ∈ ·) = m1,n(·).

When m1,n and m2,n are as prescribed in (1.9), the second equation above holds

by Theorem 2 and the first one holds by symmetry.

It follows from the definitions that

(5.4) EM1,n
η1 = EM1,n

σ1 + EM2,n
η1.

From (5.3), (5.4) and (3.3), we obtain

(5.5) µn = EM1,n
η1 + Em1,n

(σ1|σ1 < τAn
)− EM1,n

σ1.

From (5.2) and (5.5) we conclude that

(5.6) µn =
|Ω|
|AR

n |
EM1,n

∫ σ1

0

1AR
n
(X(t))dt + Em1,n(σ1|σ1 < τAn)− EM1,nσ1.

We have now obtained an expression for µn which can be calculated explicitly since

it only depends on Brownian motion in balls.

The first expectation on the right hand side of (5.6) is the expected amount of

time a Brownian motion starting from a point on ∂BRnεn(0) spends in BRnεn(0)

before exiting BLnεn(0). The second expectation is the expected exit time from

BLnεn(0) for a Brownian motion starting from a point on ∂BRnεn(0) and condi-

tioned to exit BLnεn(0) before hitting Bεn(0), and the third expectation is the

expected exit time from BLnεn(0) for a Brownian motion starting from a point on

∂BRnεn(0).

We first calculate EM1,n

∫ σ1

0
1AR

n
(X(t))dt. Let A = 1

2
d2

dr2 + d−1
2r

d
dr and let u1,n =

u1,n(r), be the solution to the following elliptic problem:

Au1,n = −1[0,Rnεn](r), r ∈ [0, Lnεn];

u′1,n(0) = 0, u1,n(Lnεn) = 0;

Then it follows from the standard probabilistic representation of solutions of elliptic

pde’s that

(5.7) u1,n(Rnεn) = EM1,n

∫ σ1

0

1AR
n
(X(t))dt.

17



Writing Au1,n = 1
2rd−1 (rd−1u′1,n)′, solving separately on [0, Rnεn] and on [Rnεn, Lnεn],

and matching the solutions and their first derivatives at Rnεn, we obtain

(5.8) u1,n(Rnεn) =

{
2

d(d−2) (Rnεn)d((Rnεn)2−d − (Lnεn)2−d), if d ≥ 3;

(Rnεn)2 log Ln

Rn
, if d = 2.

Using (5.7) and (5.8) along with the fact that |AR
n | = nωd(Rnεn)d, we obtain after

some cancellations

(5.9)
|Ω|
|AR

n |
EM1,n

∫ σ1

0

1AR
n
(X(t))dt =





2|Ω|(R2−d
n −L2−d

n )

d(d−2)ωdnεd−2
n

, if d ≥ 3;

|Ω|
nπ log Ln

Rn
, if d = 2.

We will show below that

(5.10)

Em1,n
(σ1|σ1 < τAn

)− EM1,n
σ1 = o(

|Ω|
|AR

n |
EM1,n

∫ σ1

0

1AR
n
(X(t))dt), as n →∞.

From (5.10) and (5.6) it follows that the first term on the right hand side of (5.6)

gives the leading order of µn. We now complete the proof of the proposition and

then return to show (5.10).

Consider first the case d ≥ 3. Since limn→∞ nεd−2
n = α ∈ (0,∞), it follows from

(5.1), (5.6), (5.9) and (5.10) that

lim
n→∞

| log ρn|
µn

= lim
n→∞

R2−d
n − L2−d

n

1− L2−d
n

d(d− 2)ωdnεd−2
n

2|Ω|(R2−d
n − L2−d

n )
=

d(d− 2)ωdα

2|Ω| ,

which concludes the proof of the proposition when d ≥ 3.

Now consider the case d = 2. By (3.1) and the assumption on εn, we have

limn→∞ 1
n log Ln = 1

α . Thus, we conclude from (5.1), (5.6), (5.9) and (5.10) that

lim
n→∞

| log ρn|
µn

= lim
n→∞

log Ln

Rn

log Ln

nπ

|Ω| log Ln

Rn

=
πα

|Ω| ,

which completes the proof of the proposition in the case d = 2.

In remains to prove (5.10). Recall that because of symmetry, the particular

measures m1,n and M1,n on the left hand side of (5.10) play no role, and recall that

ρn = Pm1,n(σ1 < τAn). We have

(5.11)
Em1,n(σ1|σ1 < τAn)− EM1,nσ1 = (

1
ρn

− 1)Em1,n(σ1, σ1 < τAn)

− EM1,n(σ1; σ1 > τAn),
18



and by the strong Markov property,

(5.12) EM1,n(σ1; σ1 > τAn) = (1− ρn)(Em1,n(τAn |τAn < σ1) + Eεne1σ1),

where e1 is a unit vector in Rd.

Now let u2,n be the solution to

Au2,n = −1, r ∈ [0, Lnεn];

u′2,n(0) = 0, u2,n(Lnεn) = 0.

It follows from the standard probabilistic representation of solutions of elliptic pde’s

that

u2,n(r) = Ere1σ1, for 0 ≤ r ≤ Lnεn.

A straightforward calculation reveals that

u2,n(r) =
1
d
((Lnεn)2 − r2).

Thus,

(5.13) Ere1σ1 ≤ 1
d
(Lnεn)2, for 0 ≤ r ≤ Lnεn.

Since limn→∞ ρn = 1, it follows from (5.13) that

(5.14) (
1
ρn

− 1)Em1,n(σ1, σ1 < τAn) + (1− ρn)Eεne1σ1 = o((Lnεn)2), as n →∞.

Since Ln = κRn for some κ ∈ (0, 1
2 ], the right hand side of (5.9) is on the order

L2−d
n , when d ≥ 3. Recalling from (3.1) that Lnεn ∼ n−

1
d and that Ln ∼ n

2
d(d−2) ,

it follows that L2−d
n ∼ (Lnεn)2. In the case d = 2, the right hand side of (5.9) is on

the order 1
n . From (3.1), (Lnεn)2 = O( 1

n ). Thus, we conclude that the right hand

side of (5.9) is on the order (Lnεn)2 for all d ≥ 2. Using this with (5.14), it follows

that

(5.15)
(

1
ρn

− 1)Em1,n(σ1, σ1 < τAn) + (1− ρn)Eεne1σ1

= o(
|Ω|
|AR

n |
EM1,n

∫ σ1

0

1AR
n
(X(t))dt), as n →∞.

19



In light of (5.11), (5.12) and (5.15) and the fact that the right hand side of (5.9) is

on the order (Lnεn)2, to complete the proof of (5.10) it is enough to show that

(5.16) (1− ρn)Em1,n
(τAn

|τAn
< σ1) = o((Lnεn)2), as n →∞.

We calculate Em1,n(τAn |τAn < σ1). Let

(5.17) hn(r) =





r2−d−(Lnεn)2−d

(εn)2−d−(Lnεn)2−d , if d ≥ 3;

log Lnεn
r

log Ln
, if d = 2,

and let u3,n denote the solution to

(5.18)
Au3,n = −hn(r), r ∈ [εn, Lnεn];

u3,n(εn) = u3,n(Lnεn) = 0.

Note that hn(r) = Pre1(τAn < σ1), for r ∈ [εn, Lnεn], and that hn(Rnεn) = 1− ρn.

Then it follows from the standard probabilistic representation of solutions of elliptic

pde’s and from the connection between conditioned diffusions and h-transforms [9,

section 7.2]) that
u3,n(Rnεn)
hn(Rnεn)

= Em1,n(τAn |τAn < σ1).

Thus,

(5.19) (1− ρn)Em1,n(τAn |τAn < σ1) = u3,n(Rnεn).

Writing Au3,n = 1
2rd−1 (rd−1u′1,n)′ and using (5.17), we solve for u3,n in (5.18) to

obtain

(5.20)
u3,n(r) = − r4−d − ε4−d

n

(4− d)(ε2−d
n − (Lnεn)2−d)

+
(r2 − ε2n)(Lnεn)2−d

d(ε2−d
n − (Lnεn)2−d)

+
r2−d − ε2−d

n

(L2−d
n − 1)ε2−d

n

(
ε2n(L4−d

n − 1)
(4− d)(1− L2−d

n )
− ε2n(L2

n − 1)L2−d
n

d(1− L2−d
n )

)

when d = 3 or d ≥ 5. One solves similarly for d = 2 and for d = 4. Substituting

r = Rnεn in (5.20), one finds that u3,n(Rnεn) = O(ε2nL4−d
n ) for d = 3 and d ≥ 5.

For d = 4, it turns out that u3,n(Rnεn) = O(ε2 log Ln). Therefore, it follows from

(5.19) that (5.16) holds when d ≥ 3. When d = 2, it turns out that u3,n(Rnεn) =

O(L2
nε2n

log Lnεn

log Ln
). From (3.1) and the fact that limn→∞ n

− log εn
= α, it follows that
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limn→∞
log Lnεn

log Ln
= 0. Therefore, it follows from (5.19) that (5.16) also holds when

d = 2. ¤

6. Proof of Proposition 3. Recall from (3.1) that Rn = κLn, for some κ ∈
(0, 1

2 ]. Until now we have worked with an arbitrary fixed κ and have suppressed

the dependence on κ. In this section we will need to let κ → 0, so we will use the

notation Rn,κ, µn,κ, ρn,κ and AR
n,κ. Of course, mi,n and the hitting times σj and

ηj now also depend on κ, but we will continue to suppress this dependence.

Letting η0 = 0, we write

(6.1) Pm1,n(τAn > t) =
∞∑

k=0

Pm1,n(τAn > t, ηk < τAn < ηk+1).

By the same reasoning as in (4.2) and (4.3) we have

(6.2)

Pm1,n(τAn > t, ηk < τAn < ηk+1) = (1− ρn,κ)ρk
n,κPm1,n(τAn > t|ηk < τAn < ηk+1).

Let β ∈ (0, 1). We divide the sum on the right hand side of (6.1) into three parts—

one with k > t
µn,κ

, one with k ≤ β t
µn,κ

and one with β t
µn,κ

< k ≤ t
µn,κ

. Using (6.2)

we have

(6.3)

∑

k> t
µn,κ

Pm1,n(τAn > t, ηk < τAn < ηk+1) ≤
∑

k> t
µn,κ

(1− ρn,κ)ρk
n,κ

≤ ρ
t

µn,κ
n,κ = exp(− t

µn,κ
| log ρn,κ|).

In order to treat the other two parts of the sum, we need three lemmas. Let

µn,κ,x = Ex(η1|η1 < τAn) = Ex(η1|η1 < τAn < η2), for x ∈ ∂AR
n,κ,

and note that µn,κ =
∫

∂AR
n,κ

µn,κ,xm1,n(dx). The main import of the first lemma

is that under Px(· |η1 < τAn), η1
(Lnεn)2 is stochastically dominated by a geometric

random variable with parameter pκ independent of x ∈ Ω̄ − An, and that µn,κ,x

depends very little on x ∈ ∂AR
n,κ if x is not near ∂Ω and κ is small.

Lemma 1. i. There exists a C0 > 0 independent of κ such that

µn,κ ≥ C0(Lnεn)2;
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ii. There exists a pκ ∈ (0, 1) independent of n such that

Px(η1 > k(Lnεn)2)|η1 < τAn
) = Px(η1 > k(Lnεn)2)|η1 < τAn

< η2)

< (1− pκ)k, for all x ∈ Ω−An and k = 1, 2, ...;

thus, µn,κ = Em1,n
(η1|η1 < τAn

) ≤ 1−pκ

pκ
(Lnεn)2.

iii. There exists a γn(l, κ) satisfying limκ→0 liml→∞ limn→∞ γn(l, κ) = 0 such that

µn,κ,x ≤ (1 + γn(l, κ))µn,κ, for all x ∈ ∂AR
n,κ which satisfy dist(x, ∂Ω) > lLnεn.

Lemma 2. For each n, there exists a cn independent of κ and a tn such that

Px(τAn > t|τAn < η1) ≤ exp(−cnt), for x ∈ ∂AR
n,κ and t > tn,

where lim
n→∞

cn = ∞.

The third lemma concerns the locations {X(ηm)}∞m=0 of the reflected Brownian

motion at the hitting times {ηm}∞m=0, and states that in an appropriate scale the

probability that any fixed positive proportion of the first k locations will be close

to the boundary ∂Ω decays asymptotically fast as k →∞.

Lemma 3. Assume that limn→∞
| log ρn,κ|

µn,κ
∈ (0,∞). For l > 0, let Dn,l = {x ∈ Ω̄ :

dist(x, ∂Ω) ≤ lLnεn). For each q ∈ (0, 1), for each l > 0 and for each κ ∈ (0, 1
2 ],

there exists a ζn(q, l, κ) satisfying limn→∞ ζn(q, l, κ) = ∞, and a kn such that

Pm1,n
(
1
k

k−1∑

j=0

1Dn,l
(X(ηj)) ≥ q |ηk < τAn < ηk+1)

≤ exp(−ζn(q, l, κ)µn,κk), for k ≥ kn.

We now return to the proof of the proposition. The proof of the lemmas is

postponed until the next section. We first treat the interval 0 ≤ k ≤ β t
µn,κ

. Let

Mn,x(λ) = Ex(exp(λη1)|η1 < τAn < η2), for x ∈ ∂AR
n,κ. Lemma 1-ii indicates that

η1
(Lnεn)2 under Px(· |η1 < τAn < η2) is stochastically dominated by a geometric

random variable with parameter pκ. Using this in conjunction with Lemma 1-i, it

follows that for any λ > 0 and sufficiently large n, M ′
n,x(λ) = Ex(η1 exp(λη1)|η1 <

τAn < η2) satisfies M ′
n,x(λ) ≤ Cλ,κµn,κ, for all x ∈ ∂AR

n,κ and some Cλ,κ ∈ (1,∞).
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Let Nn(λ) = Ex(exp(λτAn
)|τAn

< η1), for x ∈ ∂AR
n,κ. (By symmetry, the ex-

pression is independent of x ∈ ∂AR
n,κ.) By Lemma 2, it follows that for any

λ > 0 and sufficiently large n, N ′
n(λ) = Ex(τAn

exp(λτAn
)|τAn

< η1) satisfies

N ′
n(λ) ≤ Ĉn,λ,κ, for some Ĉn,λ,κ ∈ (1,∞). Since M ′

n,x(λ) and N ′
n(λ) are increas-

ing, we have log Mn,x(λ) ≤ λM ′
n,x(λ) and log Nn(λ) ≤ λN ′

n(λ). Thus, there exists

an nλ such that

(6.4)

{
Ex(exp(λη1)|η1 < τAn

< η2) ≤ exp(λCλ,κµn,κ)

Ex(exp(λτAn
)|τAn

< η1) ≤ exp(λĈn,λ,κ),

for x ∈ ∂AR
n,κ, λ > 0 and n ≥ nλ.

By Chebyshev’s inequality, we have for λ > 0,

(6.5)

Pm1,n(τAn > t|ηk < τAn < ηk+1) ≤ exp(−λt)Em1,n(exp(λτAn)|ηk < τAn < ηk+1).

Denoting by {Ft}t≥0 the filtration induced by X(·) and using (6.4) for the inequality

below, we have

(6.6)
Em1,n(exp(λτAn); ηk < τAn < ηk+1)

= Em1,nEm1,n(exp(λτAn)1{ηk<τAn <ηk+1}|Fηk
)

= Em1,nEm1,n(exp(λ(τAn − ηk) + λ

k∑

j=1

(ηj − ηj−1))1{ηk<τAn<ηk+1}|Fηk
)

= Em1,n exp(λ
k∑

j=1

(ηj − ηj−1))1{ηk<τAn}Em1,n(exp(λ(τAn − ηk))1{τAn<ηk+1}|Fηk
)

= Em1,n exp(λ
k∑

j=1

(ηj − ηj−1))1{ηk<τAn}EX(ηk)(exp(λτAn)|τAn < η1)×

PX(ηk)(τAn < η1)

≤ exp(λĈn,λ,κ)Em1,n(exp(λ
k∑

j=1

(ηj − ηj−1)); ηk < τAn < ηk+1).

From (6.6) we conclude that

(6.7)

Em1,n(exp(λτAn)|ηk < τAn < ηk+1)

≤ exp(λĈn,λ,κ)Em1,n(exp(λ
k∑

j=1

(ηj − ηj−1))|ηk < τAn < ηk+1).
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Using (6.4) for the inequality below, we estimate the expectation on the right hand

side of (6.7) by writing

(6.8)

Em1,n(exp(λ
k∑

j=1

(ηj − ηj−1)); ηk < τAn < ηk+1)

= Em1,n
Em1,n

(exp(λ
k∑

j=1

(ηj − ηj−1))1{ηk<τAn<ηk+1}|Fηk−1)

= Em1,n
exp(λ

k−1∑

j=1

(ηj − ηj−1))1{ηk−1<τAn}EX(ηk−1)(exp(λη1)1η1<τAn <η2)

= Em1,n exp(λ
k−1∑

j=1

(ηj − ηj−1))1{ηk−1<τAn}EX(ηk−1)(exp(λη1)|η1 < τAn < η2)×

PX(ηk−1)(η1 < τAn < η2)

≤ exp(λCλ,κµn,κ)Em1,n(exp(λ
k−1∑

j=1

(ηj − ηj−1)); ηk < τAn < ηk+1),

for λ > 0 and n ≥ nλ.

Since Em1,n(exp(λ
∑k−1

j=1 (ηj − ηj−1))|ηl < τAn < ηl+1) is independent of l ≥ k − 1,

it follows from (6.8) that

Em1,n(exp(λ
k∑

j=1

(ηj − ηj−1))|ηk < τAn < ηk+1)

≤ exp(λCλ,κµn,κ)Em1,n
(exp(λ

k−1∑

j=1

(ηj − ηj−1))|ηk−1 < τAn < ηk),

and thus by induction we conclude that

(6.9)
Em1,n(exp(λ

k∑

j=1

(ηj − ηj−1))|ηk < τAn < ηk+1) ≤ exp(kλCλ,κµn,κ),

for λ > 0 and n ≥ nλ.

Using (6.2), (6.5),(6.7) and (6.9), we obtain

(6.10)∑

0≤k≤β t
µn,κ

Pm1,n(τAn > t, ηk < τAn < ηk+1) ≤ exp(λĈn,λ,κ) exp(−λ(1− βCλ,κ)t),

for λ > 0 and n ≥ nλ.

We now obtain an estimate for the part of the sum with β t
µn,κ

< k ≤ t
µn,κ

.

Recalling that τAn − ηk under Pm1,n(· |ηk < τAn < ηk+1) is distributed like τAn
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under Pm1,n
(· |τAn

< η1) and using Lemma 2, we have for δ ∈ (0, 1
3 ),

(6.11)

Pm1,n
(τAn

> t|ηk < τAn
< ηk+1)

= Pm1,n
(ηk + (τAn

− ηk) > t|ηk < τAn
< ηk+1)

≤ Pm1,n(ηk > (1− δ)t|ηk < τAn < ηk+1)

+ Pm1,n
(τAn

− ηk > δt|ηk < τAn
< ηk+1)

≤ Pm1,n(ηk > (1− δ)t|ηk < τAn < ηk+1) + exp(−cnδt), for t > tn,

where lim
n→∞

cn = ∞.

To estimate the first term on the right hand side of (6.11), we will break it into

four parts. Recalling the definition of Dn,l in Lemma 3, let

(6.12) Bn,l,q,k = {1
k

k−1∑

j=0

1Dn,l
(X(ηj)) ≥ q}.

Let M > 0. Since

{ηk > (1− δ)t} ⊂ {
k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)) > (1− 3δ)t}

∪ {
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1≤M(Lnεn)2}1Dn,l
(X(ηj−1)) > δt}

∪ {
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2}1Dn,l
(X(ηj−1)) > δt},

we have

(6.13)

Pm1,n(ηk > (1− δ)t|ηk < τAn < ηk+1)

≤ Pm1,n(
k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)) > (1− 3δ)t|ηk < τAn < ηk+1)

+ Pm1,n(
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1≤M(Lnεn)2}1Dn,l
(X(ηj−1)) > δt, Bc

n,l,q,k|

ηk < τAn < ηk+1) + Pm1,n(Bn,l,q,k|ηk < τAn < ηk+1)

+ Pm1,n(
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2} > δt|ηk < τAn < ηk+1).

Using Lemma 1-i for the second inequality below, it follows from the definition

of Dn,l and Bn,l,q,k that
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1≤M(Lnεn)2}1Dn,l
(X(ηj−1)) < q

t

µn,κ
M(Lnεn)2 ≤ tqM

C0
,

on Bc
n,l,q,k, if k ≤ t

µn,κ
.
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Thus, the second term on the right hand side of (6.13) satisfies

(6.14)
Pm1,n(

k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1≤M(Lnεn)2}1Dn,l
(X(ηj−1)) > δt,Bc

n,l,q,k|

ηk < τAn
< ηk+1) = 0, if

qM

C0
≤ δ and k ≤ t

µn,κ
.

By Lemma 3, the third term on the right hand side of (6.13) satisfies

(6.15)

Pm1,n(Bn,l,q,k|ηk < τAn < ηk+1) ≤ exp(−tβζn(q, l, κ)), if k ≥ β
t

µn,κ
and t ≥ tn,

where lim
n→∞

ζn(q, l, κ) = ∞.

Applying Chebyshev’s inequality to the last term on the right hand side of (6.13),

we have for λ > 0

(6.16)

Pm1,n(
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2} > δt|ηk < τAn < ηk+1)

≤ exp(−λδt)Em1,n(exp(λ
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2})|ηk < τAn < ηk+1).

Noting from Lemma 1-ii that η1
(Lnεn)2 1{η1>M(Lnεn)2} under Px(· |η1 < τAn < η2) is

stochastically dominated by a geometric random variable multiplied by the indicator

of the set where it is greater than M , the same considerations that led to (6.4) give

(6.17)
Ex(exp(λη11{η1>M(Lnεn)2})|η1 < τAn < η2) ≤ exp(λCλ,κ,Mµn,κ),

for x ∈ ∂AR
n,κ, λ > 0 and n ≥ nλ, where lim

M→∞
Cλ,κ,M = 0.

Using (6.17) for the inequality below, we estimate the expectation on the right hand
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side of (6.16) by writing

(6.18)

Em1,n
(exp(λ

k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2}); ηk < τAn
< ηk+1)

= Em1,n
exp(λ

k−1∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2})1{ηk−1<τAn}×

EX(ηk−1) exp(λη11{η1>M(Lnεn)2})1{η1<τAn <η2}

= Em1,n
exp(λ

k−1∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2})1{ηk−1<τAn}×

EX(ηk−1)(exp(λη11{η1>M(Lnεn)2})|η1 < τAn < η2)PX(ηk−1)(η1 < τAn < η2)

≤ exp(λCλ,κ,Mµn,κ)×

Em1,n(exp(λ
k−1∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2}); ηk < τAn < ηk+1),

for λ > 0 and n ≥ nλ.

Since Em1,n(exp(λ
∑k−1

j=1 (ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2})|ηl < τAn < ηl+1) is inde-

pendent of l ≥ k − 1, it follows from (6.18) that

Em1,n(exp(λ
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2})|ηk < τAn < ηk+1)

≤ exp(λCλ,κ,Mµn,κ)×

Em1,n(exp(λ
k−1∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2})|ηk−1 < τAn < ηk),

and thus by induction we conclude that

(6.19)
Em1,n(exp(λ

k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2})|ηk < τAn < ηk+1)

≤ exp(kλCλ,κ,Mµn,κ), for λ > 0 and n ≥ nλ, where lim
M→∞

Cλ,κ,M = 0.

Now (6.16) and (6.19) give

(6.20)

Pm1,n(
k∑

j=1

(ηj − ηj−1)1{ηj−ηj−1>M(Lnεn)2} > δt|ηk < τAn < ηk+1)

≤ exp(−λ(δ − Cλ,κ,M )t),

for λ > 0, n ≥ nλ, and k ≤ t

µn,κ
, where lim

M→∞
Cλ,κ,M = 0.

Finally we turn to the first term on the right hand side of (6.13). Let x ∈ Dc
n,l ∩

∂AR
n,κ. By Lemma 1-ii, η1

(Lnεn)2 under Px(· |η1 < τAn) is stochastically dominated
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by a geometric random variable with parameter pκ, and by Lemma 1-iii, µn,κ,x =

Ex(η1|η1 < τAn
) ≤ (1 + γn(l, κ))µn,κ, where limκ→0 liml→∞ limn→∞ γn(l, κ) = 0.

Thus, since Ex(exp(λη1)|η1 < τAn
) = 1 +

∑∞
j=1 Ex(ηj

1|η1 < τAn
)λj , it follows that

(6.21)

Ex(exp(λη1)|η1 < τAn
) ≤ ψn,l,κ(λ) ≡ 1 + µn,κ(1 + γn(l, κ))λ +

∞∑

j=2

bj,κ((Lnεn)2λ)j ,

for x ∈ Dc
n,l ∩ ∂AR

n,κ,

where bj,κ is the j-th moment of a geometric random variable with parameter pκ.

Applying Chebyshev’s inequality to the first term on the right hand side of (6.13),

we have for λ > 0

(6.22)

Pm1,n(
k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)) > (1− 3δ)t|ηk < τAn < ηk+1)

≤ exp(−λ(1− 3δ)t)Em1,n(exp(λ
k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)))|ηk < τAn < ηk+1).

Using (6.21) for the inequality below, we estimate the right hand side of (6.22) by

writing

(6.23)

Em1,n(exp(λ
k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1))); ηk < τAn < ηk+1)

= Em1,n exp(λ
k−1∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)))1{ηk−1<τAn}×

(1Dn,l
(X(ηk−1))PX(ηk−1)(η1 < τAn < η2)+

1Dc
n,l

(X(ηk−1))EX(ηk−1) exp(λη1)1{η1<τAn <η2})

= Em1,n exp(λ
k−1∑

j=1

(ηj − ηj−1))1Dc
n,l

(X(ηj−1)))1{ηk−1<τAn}×
(
1Dn,l

(X(ηk−1)) + 1Dc
n,l

(X(ηk−1))EX(ηk−1)(exp(λη1)|η1 < τAn < η2)
)
×

PX(ηk−1)(η1 < τAn < η2)

≤ ψn,l,κ(λ)Em1,n(exp(λ
k−1∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1))); ηk < τAn < ηk+1).

Since Em1,n(exp(λ
∑k−1

j=1 (ηj − ηj−1)1Dc
n,l

(X(ηj−1)))|ηl < τAn < ηl+1) is indepen-
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dent of l ≥ k − 1, it follows from (6.23) that

Em1,n
(exp(λ

k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)))|ηk < τAn
< ηk+1)

≤ ψn,l,κ(λ)Em1,n
(exp(λ

k−1∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)))|ηk−1 < τAn
< ηk),

and thus by induction we conclude that

(6.24) Em1,n
(exp(λ

k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)))|ηk < τAn
< ηk+1) ≤ ψk

n,l,κ(λ).

Let

(6.25) Λn,l,κ(λ) = log ψn,l,κ(λ)

and let

(6.26) In,l,κ(y) = sup
λ>0

(λy − Λn,l,κ(λ))

denote the Fenchel-Legendre transform of the convex function Λn,l,κ.

From (6.22), (6.24), (6.25) and the fact that

ρk
n,κ = exp(−k| log ρn,κ|) = exp(−t(1− 3δ)

| log ρn,κ|
t(1−3δ)

k

),

we obtain

(6.27)

ρk
n,κPm1,n(

k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)) > (1− 3δ)t|ηk < τAn < ηk+1)

≤ exp(−t(1− 3δ)

(
| log ρn,κ|+ λ t(1−3δ)

k − Λn,l,κ(λ)
t(1−3δ)

k

)
).

From (6.26) and the fact that λ > 0 in (6.27) is arbitrary, it follows that

ρk
n,κPm1,n(

k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)) > (1− 3δ)t|ηk < τAn < ηk+1)

≤ exp(−t(1− 3δ)
(

inf
y>0

| log ρn,κ|+ In,l,κ(y)
y

)
),
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and thus

(6.28)

∑

β t
µn,κ

<k≤ t
µn,κ

ρk
n,κ×

Pm1,n
(

k∑

j=1

(ηj − ηj−1)1Dc
n,l

(X(ηj−1)) > (1− 3δ)t|ηk < τAn
< ηk+1)

≤ t

µn,κ
exp(−t(1− 3δ)

(
inf
y>0

| log ρn,κ|+ In,l,κ(y)
y

)
).

From (6.2), (6.11), (6.13)-(6.15), (6.20) and (6.28), we conclude that

(6.29)∑

β t
µn,κ

≤k≤ t
µn,κ

Pm1,n(τAn > t, ηk < τAn < ηk+1) ≤ exp(−cnδt) + exp(−tβζn(q, l, κ))

+ exp(−λ(δ − Cλ,κ,M )t) +
t

µn,κ
exp(−t(1− 3δ)

(
inf
y>0

| log ρn,κ|+ In,l,κ(y)
y

)
),

if
qM

C0
≤ δ, for n ≥ nλ and t ≥ tn, where lim

n→∞
cn = ∞,

lim
n→∞

ζn(q, l, κ) = ∞, and lim
M→∞

Cλ,κ,M = 0.

Recall from the remark following Proposition 2 that limn→∞
| log ρn,κ|

µn,κ
does not de-

pend on κ ∈ (0, 1
2 ]. Thus in the sequel, we will sometimes suppress the κ appearing

in this expression. We will show that

(6.30) lim inf
κ→0

lim inf
l→∞

lim inf
n→∞

inf
y>0

| log ρn,κ|+ In,l,κ(y)
y

= lim
n→∞

| log ρn|
µn

.

Before proving (6.30), we complete the proof of the proposition. From (6.1), (6.3),

(6.10) and (6.29), we have

(6.31)

lim sup
t→∞

1
t

log Pm1,n(τAn > t)

≤ −min(
| log ρn,κ|

µn,κ
, λ(1− βCλ,κ), cnδ, βζn(q, l, κ), λ(δ − Cλ,κ,M ),

(1− 3δ) inf
y>0

| log ρn,κ|+ In,l,κ(y)
y

), for any λ, l,M > 0, q, β ∈ (0, 1)

and δ ∈ (0,
1
3
) satisfying

qM

C0
≤ δ, and sufficiently large n depending on λ.

For fixed δ ∈ (0, 1
3 ), choose λ ≥ 2

δ limn→∞
| log ρn|

µn
, then choose β ≤ 1

2Cλ,κ
and M

sufficiently large so that Cλ,κ,M ≤ 1
2δ (which is possible because limM→∞ Cλ,κ,M =
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0), and then choose q sufficiently small so that qM
C0

≤ δ. Now let n → ∞, then let

l →∞ and then let κ → 0 . Since limn→∞ ζn(q, l, κ) = limn→∞ cn = ∞, it follows

from (6.30) and (6.31) that

(6.32) lim sup
n→∞

lim sup
t→∞

1
t

log Pm1,n
(τAn

> t) ≤ −(1− 3δ) lim
n→∞

| log ρn|
µn

.

The proposition now follows from (6.32), (1.2) and the fact that δ > 0 is arbitrary.

We now turn to the proof of (6.30). We recall the following well-known fact con-

cerning Fenchel-Legendre transforms, which follows without much difficulty from

(6.26): the function In,l,κ is nonnegative and strictly convex and satisfies

(6.33) In,l,κ(y) = νy − Λn,l,κ(ν) if Λ′n,l,κ(ν) = y.

We will show momentarily that for sufficiently large n, infy>0
| log ρn,κ|+In,l,κ(y)

y is

attained at some y ∈ (0,∞). Differentiating, we find that the minimum must

occur at a y which satisfies yI ′n,l,κ(y) − In,l,κ(y) = | log ρn,κ|. Let Hn,l,κ(y) =

yI ′n,l,κ(y) − In,l,κ(y). Then H ′
n,l,κ(y) = yI ′′n,l,κ(y). Since In,l,κ is strictly convex,

we conclude that the minimum is attained at the unique root of the equation

Hn,l,κ(y) = | log ρn,κ|. Denote this root by y∗n,l,κ. Recalling (6.21) and (6.25),

define

(6.34) µn,l,κ = Λ′n,l,κ(0) = µn,κ(1 + γn(l, κ)).

Then, from (6.33), In,l,κ(µn,l,κ) = 0 and it follows that

(6.35)
| log ρn,κ|

y∗n,l,κ

≤ inf
y>0

| log ρn,κ|+ In,l,κ(y)
y

≤ | log ρn,κ|
µn,l,κ

.

We now return to show that the infimum is indeed attained. Using the right hand

inequality in (6.35), which did not depend on the existence of an attained infimum,

along with (6.34) and the assumption in the proposition that limn→∞
| log ρn,κ|

µn,κ
∈

(0,∞), we conclude that

(6.36) sup
n≥1

inf
y>0

| log ρn,κ|+ In,l,κ(y)
y

< ∞.
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By Lemma 1-ii, limn→∞ sup{λ : Λn,l,κ(λ) < ∞} = ∞. Using this with (6.25) and

(6.26), it follows easily that limn→∞ lim infy→∞
In,l,κ(y)

y = ∞. From this and (6.36)

we conclude that the infimum is attained.

In light of (6.35), in order to complete the proof of (6.30) we need to analyze

y∗n,l,κ − µn,l,κ. Using (6.33), we can define y = yn,l,κ(ν) by

(6.37) In,l,κ(yn,l,κ(ν)) = νyn,l,κ(ν)− Λn,l,κ(ν) and Λ′n,l,κ(ν) = yn,l,κ(ν).

Differentiating the first equation in (6.37) and then using the second one gives

(6.38) I ′n,l,κ(yn,l,κ(ν))y′n,l,κ(ν) = yn,l,κ(ν) + νy′n,l,κ(ν)− Λ′n,l,κ(ν) = νy′n,l,κ(ν).

Differentiating the second equation in (6.37) gives

(6.39) y′n,l,κ(ν) = Λ′′n,l,κ(ν).

Since Λn,l,κ is strictly convex, y′n,l,κ(ν) 6= 0. Therefore, we conclude from (6.38)

and (6.39) that

(6.40) I ′n,l,κ(yn,l,κ(ν)) = ν.

Differentiating (6.40) gives I ′′n,l,κ(yn,l,κ(ν))y′n,l,κ(ν) = 1 and thus from (6.39)

(6.41) I ′′n,l,κ(yn,l,κ(ν)) =
1

Λ′′n,l,κ(ν)
.

We can now analyze y∗n,l,κ − µn,l,κ. Define ν∗n,l,κ by yn,l,κ(ν∗n,l,κ) = y∗n,l,κ and

note that yn,l,κ(0) = µn,l,κ. Since Hn,l,κ(µn,l,κ) = 0 and Hn,l,κ(y∗n,l,κ) = | log ρn,κ|,
we have

(6.42) | log ρn,κ| =
∫ y∗n,l,κ

µn,l,κ

H ′
n,l,κ(y)dy =

∫ ν∗n,l,κ

0

H ′
n,l,κ(yn,l,κ(ν))y′n,l,κ(ν)dν.

Recalling that H ′
n,l,κ(y) = yI ′′n,l,κ(y) and using (6.39) and (6.41), we conclude from

(6.42) that

(6.43) | log ρn,κ| =
∫ ν∗n,l,κ

0

yn,l,κ(ν)dν ≥ ν∗n,l,κµn,l,κ.

32



Now (6.39) and (6.43) yield

(6.44)

y∗n,l,κ − µn,l,κ = yn,l,κ(ν∗n,l,κ)− yn,l,κ(0) ≤ ν∗n,l,κ sup
ν∈[0,ν∗

n,l,κ
]

y′n,l,κ(ν)

≤ | log ρn,κ|
µn,l,κ

sup
ν∈[0,

| log ρn,κ|
µn,l,κ

]

Λ′′n,l,κ(ν).

From (6.34) and the assumption that limn→∞
| log ρn,κ|

µn,κ
∈ (0,∞), we can choose Sκ

so that

(6.45) Sκ ≥ sup
n,l≥1

| log ρn,κ|
µn,l,κ

.

Using (6.21) and (6.25), a direct calculation reveals that

(6.46) sup
ν∈[0,Sκ]

Λ′′n,l,κ(ν) ≤ cκ(Lnεn)4, for some cκ ∈ (0,∞) and n ≥ nκ.

From (6.44)-(6.46), (6.34) and Lemma 1-i, we conclude that

(6.47) lim
n→∞

y∗n,l,κ − µn,l,κ

µn,l,κ
= 0.

From (6.34), (6.35) and (6.47), we obtain

(6.48)
lim inf
n→∞

inf
y>0

| log ρn,κ|+ In,l,κ(y)
y

= (1 + γ(l, κ))−1 lim
n→∞

| log ρn,κ|
µn,κ

= (1 + γ(l, κ))−1 lim
n→∞

| log ρn|
µn

, where γ(l, κ) = lim
n→∞

γn(l, κ).

Letting l →∞ and κ →∞ in (6.48) and recalling from Lemma 1-iii that limκ→∞ liml→∞ γ(l, κ) =

0, we obtain (6.30). This completes the proof of Proposition 3. ¤

7. Proof of Lemmas 1-3. In this section, PWz will denote standard Wiener

measure for a free (non-reflected) d−dimensional Brownian motion starting from

z ∈ Rd.

Proof of Lemma 1. i. From the definitions it follows that

(7.1) Pm1,n(η1 ≥ (Lnεn)2|η1 < τAn) ≥ Pm2,n(η1 ≥ (Lnεn)2).

Let τs = inf{t ≥ 0 : |X(t)| = s} and let xn ∈ Rd satisfy |xn| = Ln. Since

dist(∂AR
n,κ, ∂AL

n) = (1−κ)Lnεn ≥ 1
2Lnεn, it follows from geometric considerations,

Brownian scaling and (7.1) that

Pm1,n(η1 ≥ (Lnεn)2|η1 < τAn) ≥ PW0 (τ 1
2 Lnεn

≥ (Lnε)2) = PW0 (τ 1
2
≥ 1) ≥ C0,
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where C0 > 0 is independent of n and κ. This proves part (i).

ii. By the strong Markov property it is enough to show that

(7.2) Px(η1 ≤ (Lnεn)2|η1 < τAn) ≥ pκ, for all x ∈ Ω−An,

for some ρκ > 0. We will show that for some c, cκ > 0

(7.3) Px(σ1 ≤ 1
2
(Lnεn)2|σ1 < τAn

) ≥ c, for all x ∈ AL
n −An

and

(7.4) Pz(τAR
n,κ

≤ 1
2
(Lnεn)2) ≥ cκ, for all z ∈ Ω−AR

n,κ,

where τAR
n,κ

= {inf t ≥ 0 : X(t) ∈ AR
n,κ}. Letting ρκ = ccκ, (7.2) now follows from

(7.3) and (7.4) along with the strong Markov property and the definitions of σ1 and

η1.

Consider first (7.3). Let τs be as in the proof of part (i). By Brownian scaling,

(7.3) is equivalent to

(7.5) PWx (τLn ≤
1
2
L2

n |τLn < τ1) ≥ c, for 1 < |x| < Ln.

Let

h(x) =





|x|2−d−1
(Ln)2−d−1

, if d ≥ 3;
log |x|
log Ln

, if d = 2.

Then h(x) = PWx (τLn < τ1), for 1 < |x| < Ln, and under PWx (· |τLn < τ1),

X(·) is a diffusion generated by the h-transformed operator 1
2∆h ≡ 1

2∆ + ∇h
h ∇.

Since everything is radial, the problem is one-dimensional. We will write h(r)

for h(|x|) with |x| = r. The generator of the radial part of Brownian motion is

1
2

d2

dr2 + d−1
2r

d
dr , while the generator of the radial part of the h-transformed process is

1
2

d2

dr2 + d−1
2r

d
dr + h′(r)

h(r)
d
dr . Since h′(r)

h(r) is positive, it follows from the Ikeda-Watanable

comparison theorem that τLn is stochastically smaller under Px(· |τLn < τ1) than

under Px(·). Consequently, (7.5) will follow if we show that

PWx (τLn ≤
1
2
L2

n) ≥ c, for 1 < |x| < Ln.
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But this last inequality holds by Brownian scaling.

We now turn to (7.4). It follows from the spacing assumption that

supz∈Ω−An
dist(z, {x(n)

j }n
j=1) ∼ n−

1
d . Thus, by (3.1), we can find a c0 > 0 such that

dist(z, {x(n)
j }n

j=1) ≤ c0Lnεn, for all z ∈ Ω. Let jn(z) be such that dist(z, x
(n)
jn(z)) ≤

c0Lnεn. We have

(7.6) Pz(τAR
n,κ

≤ 1
2
(Lnεn)2) ≥ Pz(X(

1
2
(Lnεn)2) ∈ BRn,κεn

(x(n)
jn(z))).

Letting τΩ = inf{t ≥ 0 : X(t) ∈ ∂Ω}, we have

(7.7)

Pz(X(
1
2
(Lnεn)2) ∈ BRn,κεn(x(n)

jn(z))) ≥ PWz (X(
1
2
(Lnεn)2) ∈ BRn,κεn(x(n)

jn(z)))

− PWz (τΩ <
1
2
(Lnεn)2).

It follows from the Gaussian density that

(7.8)

PWz (X(
1
2
(Lnεn)2) ∈ BRn,κεn(x(n)

jn(z)))

=
∫

BRn,κεn (x
(n)
jn(z))

(π(Lnεn)2)−
d
2 exp(− |y − z|2

(Lnεn)2
)dy ≥

(π(Lnεn)2)−
d
2 exp(− ((c0 + κ)Lnεn)2

(Lnεn)2
)(Rn,κεn)dωd

= π−
d
2 κdωd exp(−(c0 + κ)2).

As is well known ([9, Theorem 2.2.2-ii])

(7.9) PWz ( sup
s∈[0,t]

(|X(s)− z| > λ) ≤ c1 exp(−c2
λ2

t
),

for constants c1, c2 > 0 independent of t and λ. Thus, for l > 0,

(7.10)

PWz (τΩ <
1
2
(Lnεn)2) ≤ c1 exp(−2c2l

2), for all z ∈ Ω satisfying dist(z, ∂Ω) > lLnεn.

From (7.7), (7.8) and (7.10), it follows that for sufficiently large l there exists a

constant cl,κ > 0 such that

(7.11)

Pz(X(
1
2
(Lnεn)2) ∈ BRn,κεn(x(n)

jn(z))) ≥ cl,κ, for all n and all z ∈ Ω−AR
n,κ which satisfy

dist(z, Ω) > lLnεn.
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We now show that there exists a Cl,κ > 0 such that

(7.12)
Pz(X(

1
2
(Lnεn)2) ∈ BRn,κεn

(x(n)
jn(z))) ≥ Cl,κ, for all n and all z ∈ Ω−AR

n,κ

which satisfy dist(z, Ω) ≤ lLnεn.

This will complete the proof since (7.4) follows from (7.6), (7.11) and (7.12). Clearly

it suffices to prove (7.12) for sufficiently large n (depending on l). Let {Uk}K
k=1 be

open sets in Rd satisfying ∂Ω ⊂ ∪K
k=1Uk. For each k, let (φ(k)

1 , ..., φ
(k)
d−1) be a

diffeomorphism from Uk ∩ ∂Ω to Rd−1. For r > 0, let Ωr = {x ∈ Ω : dist(x, ∂Ω) <

r}. Define φ
(k)
d (x) = dist(x, ∂Ω) and let φ(k) = (φ(k)

1 , ..., φ
(k)
d ). Let Rd

+ = {x ∈ Rd :

xd > 0}. By the compactness of ∂Ω, it follows that for some r0 > 0, each of the

maps φ(k) : Uk ∩ Ω̄r0 → R̄d
+ is a diffeomorphism which takes Uk ∩ ∂Ω into ∂Rd

+. It

follows from the construction that

(7.13) ∇φ
(k)
i ·N = 0 on Uk ∩ ∂Ω, for i = 1, ..., d− 1,

where N is the unit outward normal to Ω at ∂Ω.

Let f be a smooth function defined on R̄d
+ which satisfies ∂f

∂xd
= 0 on ∂Rd

+. Then

it follows from (7.13) that the function f(φ(k)) satisfies ∇(f(φ(k))) ·N = 0 on Uk ∩
∂Ω. Thus, from the martingale approach to reflected diffusions [13], we conclude

that f(φ(k)(X(t)))−∫ t

0
1
2∆(f(φ(k)))(X(s))ds is a local martingale up until the time

that X(t) exits Uk ∩ Ω̄. A direct calculation shows that ∆(f(φ(k))) = L(k)f , where

L(k) =
∑d

i,j=1 a
(k)
i,j

∂2

∂xi∂xj
+

∑d
i=1 b

(k)
i

∂
∂xi

with a
(k)
i,j = ∇φ

(k)
i ∇φ

(k)
j and b

(k)
i = ∆φ

(k)
i .

Thus, letting Y (k)(t) = φ(k)(X(t)), it follows that f(Y (k)(t))−∫ t

0
(L(k)f)(Y (k)(s))ds

is a local martingale until Y (k)(t) exits V̄k, where Vk = φ(k)(Uk) ∩ Rd
+. From the

martingale characterization of reflected diffusions, we conclude that Y (k)(t) is a

normally reflected L(k)-diffusion until exiting V̄k. Now let Wk = (V̄k ∪ (−Vk))int

and let L̂(k) be the extension of L to Wk obtained by continuing the coefficients

symmetrically about ∂Rd
+. Let Ŷ (k)(t) denote the non-reflected diffusion process

in Wk corresponding to L̂(k). We will denote probabilities for the Y (k) process by

Q
(k)
· and for the Ŷ (k) process by Q̂

(k)
· .

Clearly there exists a c > 0 such that for any ball B ⊂ Uk ∩ Ω, there exists a

ball B ⊂ φ(k)(B) ⊂ Vk satisfying |B| ≥ c|B|. Let τk be the exit time of Y (k) from
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V̄k and let τ̂k be the exit time of Ŷ (k) from Wk. Using symmetry considerations for

the equality below, we have for x ∈ Uk ∩ Ω and y = φ(x) ∈ Vk,

(7.14)
Px(X(t) ∈ B) ≥ Q(k)

y (Y (k)(t ∧ τk) ∈ B) = Q̂(k)
y (Ŷ (k)(t ∧ τ̂k) ∈ B ∪ (−B))

≥ Q̂(k)
y (Ŷ (k)(t ∧ τ̂k) ∈ B).

We use (7.14) to prove (7.12). Let B = BRn,κεn(x(n)
jn(z))) and t = 1

2 (Lnεn)2. Since

|B| ≥ c|B|, we have |B| ≥ C(Rn,κεn)d, for some C > 0. The diffusion measures

Q
(k)
· correspond to uniformly elliptic operators L(k); thus, their transition kernels

are bounded from above and below for small time by Gaussian kernels. In particular

then, inequalities of the type in (7.8) and (7.9) hold for the process Ŷ (k). Using this

along with the fact that τ̂k is independent of n whereas limn→∞ 1
2 (Lnεn)2 = 0 now

shows that for sufficiently large n the right hand side of (7.14) is bounded away

from 0 by a constant Cl,κ.

iii. By the definitions, we have

(7.16)
{

µn,κ,x = Ex(σ1|σ1 < τAn) + ExEX(σ1)(η1|σ1 < τAn), for x ∈ ∂AR
n,κ,

µn,κ = Em1,n(σ1|σ1 < τAn) + Em2,nη1.

By symmetry,

(7.17) Ex(σ1|σ1 < τAn) = Em1,n(σ1|σ1 < τAn), for all x ∈ ∂AR
n,κ.

Thus, to prove part (iii), we need to compare ExEX(σ1)(η1|σ1 < τAn) with Em2,nη1.

We introduce the following notation. For z ∈ AL
n , there exists a unique index jn(z)

such that z ∈ BLnεn(x(n)
jn(z)). Let U

(n)
j denote the uniform probability measure on

∂BLnεn(x(n)
j ). We will prove the following two estimates:

(7.18)
ExEX(σ1)(η1|σ1 < τAn) ≤ (1 + νn(κ))E

U
(n)
jn(x)

η1, for all x ∈ ∂AR
n,κ,

where lim
κ→0

lim
n→∞

νn(κ) = 0,

and

(7.19)
E

U
(n)
jn(x)

η1 ≤ (1 + bn(l, κ))Em2,nη1, for x ∈ ∂AR
n,κ satisfying dist(x, ∂Ω) > lLnεn,

where lim
l→∞

lim
n→∞

bn(l, κ) = 0.
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Part (iii) now follows from (7.16)-(7.19).

We first prove (7.18). For z ∈ AL
n , define θ(z) to be the angle made by the

segment from x
(n)
jn(z) to z; that is,

θ(z) =
z − x

(n)
jn(z)

|z − x
(n)
jn(z)|

∈ Sd−1.

Recall the definition of τs after (7.1). By Brownian scaling, Px(θ(X(σ1)) ∈ ·|σ1 <

τAn
), for x ∈ ∂AR

n,κ, is distributed like the distribution of the angular part of a

Brownian motion at time τ 1
κ

starting from the point on the unit circle with angular

part θ(x), and conditioned on τ 1
κ

< τ 1
Lnκ

. Using the skew product representation

for the angular part of a Brownian motion along with the fact that the density of

the distribution of X(t)
|X(t)| on Sd−1 under PW· converges pointwise and uniformly to

the uniform density as t →∞, it follows that Px(X(σ1) ∈ ·) = (1− ν̂n(κ))U (n)
jn(x) +

ν̂n(κ)V , where V is some distribution on ∂BLnεn(x(n)
jn(x)) (whose dependence on the

parameters we suppress) and where limκ→0 limn→∞ ν̂n(κ) = 0. Now (7.18) follows

from this along with the fact that

(7.20)
1
C

Ez1η1 ≤ Ez2η1 ≤ CEz1η1, for all z1, z2 ∈ ∂AL
n , where C is independent of n and κ.

To prove (7.20), let τAL
n

= inf{t ≥ 0 : X(t) ∈ ∂AL
n}. Recalling that τAR

n,κ
=

inf{t ≥ 0 : X(t) ∈ ∂AR
n,κ} and that κ ∈ (0, 1

2 ], the strong Markov property gives

Ezη1 = EzτAR

n, 1
2

+ ExEX(τ
AR

n, 1
2

)τAR
n,κ

, for z ∈ ∂AL
n . Thus, since Px(τAR

n,κ
< τAL

n
)

is the same for all x ∈ ∂AR
n, 1

2
, another application of the strong Markov property

shows that in order to prove (7.20) it is enough to show that

(7.21)

1
C

Ez1τAR

n, 1
2

≤ Ez2τAR

n, 1
2

≤ CEz1τAR

n, 1
2

, for all z1, z2 ∈ ∂AL
n ,

where C is independent of n.

Now, on the one hand, (7.4) with κ = 1
2 shows that

τ
AR

n, 1
2

(Lnεn)2 under Pz is stochastically

dominated by a geometric random variable with parameter independent of n and

independent of z ∈ ∂AL
n . On the other hand, since dist(z, ∂AR

n, 1
2
) = 1

2Lnεn, for
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z ∈ ∂AL
n , it follows from Brownian scaling that there exists c > 0 independent of

n and z ∈ ∂AL
n such that Pz(τAR

n, 1
2

≥ (Lnεn)2) ≥ c. Now (7.21) follows from these

facts.

We now turn to the proof of (7.19). Recall that a lattice point contained in Ω

is called a boundary lattice point if one of its nearest neighbor lattice points is not

in Ω, and recall that boundary lattice points were excluded in the construction of

the holes. Since the lattice spacing is on the order n−
1
d , and since Lnεn ∼ n−

1
d

by (3.1), it follows that there exists a c0 > 0 such that for any M > 0, the

sets BMLnεn(x(n)
j ) ∩ (Ω − An) with j satisfying dist(x(n)

j , ∂Ω) > (M + c0)Lnεn,

look identical—that is, they are all translations of one another. Trivially, we have

dist(x(n)
j , ∂Ω) ≥ dist(z, ∂Ω) − Lnεn, for z ∈ ∂BLnεn(x(n)

j ). In light of the above

facts, the following assertion holds:

(7.22)
Ez(η1; η1 ≤ M(Lnεn)2, sup

0≤s≤η1

dist(z, X(s)) ≤ MLnεn)

only depends on θ(z), for z ∈ ∂AL
n satisfying dist(z, ∂Ω) > (M + c0 + 1)(Lnεn).

From (7.9) we have

(7.23)
Pz( sup

0≤s≤M(Lnεn)2
dist(z,X(s)) > MLnεn) ≤ c1 exp(−c2M),

for z ∈ Ω satisfying dist(z, ∂Ω) > MLnεn,

and from (7.23) we have

(7.24)
Ez(η1; η1 ≤ M(Lnεn)2, sup

0≤s≤η1

dist(z, X(s)) > MLnεn)

≤ M(Lnεn)2c1 exp(−c2M), for z ∈ ∂AL
n satisfying dist(z, ∂Ω) > MLnεn.

By part (ii), η1
(Lnεn)2 under Pz(· ) with z ∈ ∂AL

n is dominated stochastically by a

geometric random variable with parameter pκ; thus,

(7.25)

Ez(η1; η1 > M(Lnεn)2) ≤ (Lnεn)2
∞∑

k=M

kpκ(1− pκ)k ≡ (Lnεn)2cκ,M , for z ∈ ∂AL
n .

From (7.24) and (7.25) we conclude that

(7.26)
Ezη1 − Ez(η1; η1 ≤ M(Lnεn)2, sup

0≤s≤η1

dist(z, X(s)) ≤ MLnεn) ≤ (Lnεn)2aκ,M ,

for z ∈ ∂AL
n satisfying dist(z, ∂Ω) > MLnεn, where lim

M→∞
aκ,M = 0.
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Since dist(z, ∂Ω) > (M + c0 + 1)Lnεn if dist(x(n)
j , ∂Ω) > (M + c0 + 2)Lnεn and

jn(z) = j,, it follows from (7.22) and (7.26) that

(7.27)
|E

U
(n)
i

η1 − E
U

(n)
j

η1| ≤ (Lnεn)2aκ,M ,

if dist(x(n)
i , ∂Ω), dist(x(n)

j , ∂Ω) > (M + c0 + 2)Lnεn.

If x ∈ ∂AR
n,κ satisfies dist(x, ∂Ω) > (M + c0 + 3)Lnεn, then dist(x(n)

jn(x), ∂Ω) >

(M + c0 + 2)Lnεn. Thus, it follows from (7.27) that

(7.28)
|E

U
(n)
jn(x)

η1 − E
U

(n)
j

η1| ≤ (Lnεn)2aκ,M , if dist(x(n)
j , ∂Ω) > (M + c0 + 2)Lnεn

and if x ∈ ∂AR
n,κ satisfies dist(x, ∂Ω) > (M + c0 + 3)Lnεn.

Let

Jn,l = {j ∈ {1, ..., n} : dist(x(n)
j , ∂Ω) > lLnεn}.

From the fact that limn→∞ Lnεn = 0, it is clear that

(7.29) lim
n→∞

|Jn,l|
n

= 1, for all l.

By Theorem 2-i, m2,n is distributed uniformly on ∂AL
n . (Indeed, the measures in

(1.9) are uniform if the {Rj}N0
j=1 and {Lj}N0

j=1 appearing there don’t depend on j,

and in our context N0 is equal to n and Rj and Lj are equal to Rn,κεn and Lnεn

respectively for all j.) Thus m2,n = 1
n

∑n
j=1 Un,j . Using this with (7.28) and (7.29),

we have

(7.30)
Em2,nη1 ≥ |Jn,M+c0+2|

n
(E

U
(n)
jn(x)

η1 − (Lnεn)2aκ,M ), if x ∈ ∂AR
n,κ satisfies

dist(x, ∂Ω) > (M + c0 + 3)Lnεn.

Since dist(z, ∂AR
n,κ) = (Ln − Rn,κ)εn = (1 − κ)Lnεn ≥ 1

2Lnεn, for z ∈ ∂AL
n , it

follows from Brownian scaling that there exists a c > 0, independent of κ, such

that Pz(η1 ≥ (Lnεn)2) ≥ c, for all n and all z ∈ ∂AL
n . Thus,

(7.31) Em2,nη1 ≥ c(Lnεn)2.

From (7.30) and (7.31) we conclude that

(7.32)
E

U
(n)
jn(x)

≤ (
n

Jn,M+c0+2
+

aκ,M

c
)Em2,nη1,

for x ∈ ∂AR
n,κ satisfying dist(x, ∂Ω) > (M + c0 + 3)Lnεn.
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Recalling from (7.26) that limM→∞ aκ,M = 0, (7.19) now follows from (7.29) and

(7.32).

¤

Proof of Lemma 2. The distribution of τAn
under Px(· |τAn

< η1) with x ∈ ∂AR
n,κ

is the distribution of the hitting time of ∂Bεn
(0) by a d-dimensional Brownian

motion starting from a point on ∂BRn,κεn(0) and conditioned to hit ∂Bεn(0) be-

fore hitting ∂BLnεn
(0). This conditioned Brownian motion corresponds to the h-

transformed infinitesimal generator 1
2∆hn defined by 1

2∆hnf = 1
2

1
hn

∆(fhn), where

hn(x) =





|x|2−d−(Lnεn)2−d

(εn)2−d−(Lnεn)2−d , if d ≥ 3
log |x|−log Lnεn

log εn−log Lnεn
, if d = 2

is the probability that a Brownian motion starting from x with |x| ∈ [εn, ÃLnεn] will

hit ∂Bεn(0) before hitting ∂BLnεn(0). Similar to (1.2), we have Px(τAn > t |τAn <

η1) ≤ exp(−cnt) for large t and for cn less than the principal eigenvalue for − 1
2∆h

on BLnεn(0) − B̄εn(0) with the Dirichlet boundary condition on ∂BLnεn(0). The

principal eigenvalue is invariant under h-transforms [9, Theorem 4.3.3-iv]; thus, the

principal eigenvalue mentioned above coincides with that of − 1
2∆ on BLnεn(0) −

B̄εn(0) with the Dirichlet boundary condition on the entire boundary. Since the

volume of the annular domain BLnεn(0) − B̄εn(0) shrinks to 0 as n → ∞, the

principal eigenvalue approaches ∞ as n →∞.

¤

Proof of Lemma 3. We will assume that the statement in the lemma is not true

and come to a contradiction. If the lemma is not true, then we may assume without

loss of generality that there exist q0, l0, κ0, c0 > 0 and a kn such that

(7.33)

Pm1,n(
1
k

k−1∑

j=0

1Dn,l0
(X(ηj)) ≥ q0|ηk < τAn < ηk+1) ≥ exp(−c0µn,κ0k), for k ≥ kn.

(We say “without loss of generality” because the precise negation of the lemma is

that for infinitely many n, the inequality in (7.33) holds for infinitely many k.) We
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will use (7.33) to show that there exist q1, c1 > 0 such that

(7.34) lim inf
t→∞

1
t

log Pm1,n
(
1
t

∫ t

0

1D
n,l0+ 3

2
(X(s))ds ≥ q1) ≥ −c1, for all n.

Before proving that (7.34) follows from (7.33), we show how (7.34) leads to a

contradiction. Let Lt(·) = 1
t

∫ t

0
1{·}(X(s))ds denote the occupation measure for

the path X(·) up to time t. Let P(Ω̄) denote the space of probability measures

on Ω̄ and let Cn = {ν ∈ P(Ω̄) : ν(Dn,l0+
3
2
) ≥ q1}. Then Cn is compact in the

weak topology on P(Ω̄) since it is closed and Ω̄ is compact. Thus, by the Donsker

Varadhan large deviations theory [3, Theorems 1 and 5],

(7.35)
lim sup

t→∞
1
t

log Pm1,n(
1
t

∫ t

0

1D
n,l0+ 3

2
(X(s))ds ≥ q1)

= lim sup
t→∞

1
t

log Pm1,n(Lt ∈ Cn) ≤ − inf
ν∈Cn

I(ν),

where the I−function is given by

(7.36)

I(ν) =

{
1
2

∫
Ω
|∇f |2(x)dx, if (dν

dx )
1
2 = f ;

∞, if ν is not absolutely continuous w.r.t. Lebesgue measure on Ω̄.

From (7.34) and (7.35), it follows that for each n there exists a νn ∈ Cn such

that I(νn) ≤ c1. Since P(Ω̄) is compact, there exists a subsequence of {νn} which

converges to some ν0 ∈ P(Ω̄). It is easy to see from the alternative variational

definition of I [3, 1.12] that it is lower semicontinuous; thus,

(7.37) I(ν0) ≤ c1.

Note that the nested sequence {Dn,l0+
3
2
}∞n=1 of closed sets satisfies ∩∞n=1Dn,l0+

3
2

=

∂Ω. It then follows easily from weak convergence that ν0(∂Ω) ≥ q1, which shows

that ν0 is not absolutely continuous with respect to Lebesgue measure. This fact

in conjunction with (7.36) and (7.37) gives a contradiction.

We now return to prove that (7.34) follows from (7.33). Let δ > 0. For any
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q > 0, we have from (4.3)

(7.38)

Pm1,n
(
1
t

∫ t

0

1D
n,l0+ 3

2
(X(s))ds ≥ q)

≥ Pm1,n(
1
t

∫ t

0

1D
n,l0+ 3

2
(X(s))ds ≥ q | η[ δt

µn,κ0
] < τAn)Pm1,n(η[ δt

µn,κ0
] < τAn)

= ρ
[ δt

µn,κ0
]

n,κ0 Pm1,n
(
1
t

∫ t

0

1D
n,l0+ 3

2
(X(s))ds ≥ q | η[ δt

µn,κ0
] < τAn

).

From the geometry and from the fact that κ0 ∈ (0, 1
2 ], we have

(7.39) 1Dn,l0
(X(ηj−1))

∫ σj

ηj−1

1D
n,l0+ 3

2
(X(s))ds = 1Dn,l0

(X(ηj−1))(σj − ηj−1).

Recall the definition of Bn,l,q,k in (6.12). Defining η0 = 0 for convenience and using

(7.39), we have

(7.40)

Pm1,n(
1
t

∫ t

0

1D
n,l0+ 3

2
(X(s))ds ≥ q | η[ δt

µn,κ0
] < τAn)

≥ Pm1,n(
1
t

∫ η[ δt
µn,κ0

]

0

1D
n,l0+ 3

2
(X(s))ds ≥ q, η[ δt

µn,κ0
] ≤ t, Bn,l0,q0,[ δt

µn,κ0
]|η[ δt

µn,κ0
] < τAn)

≥ Pm1,n(
1
t

[ δt
µn,κ0

]∑

j=1

∫ σj

ηj−1

1D
n,l0+ 3

2
(X(s))ds ≥ q, η[ δt

µn,κ0
] ≤ t, Bn,l0,q0,[ δt

µn,κ0
]|η[ δt

µn,κ0
] < τAn)

≥ Pm1,n(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q, η[ δt

µn,κ0
] ≤ t, Bn,l0,q0,[ δt

µn,κ0
]|

η[ δt
µn,κ0

] < τAn).

Applying the universal inequality
Pm1,n(E1 ∩ E2|η[ δt

µn,κ0
] < τAn)

≥ Pm1,n
(E1|η[ δt

µn,κ0
] < τAn) + Pm1,n(E2|η[ δt

µn,κ0
] < τAn)− 1

to the events E1 = Bn,l0,q0,[ δt
µn,κ0

] ∩ { 1
t

∑[ δt
µn,κ0

]

j=1 (σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q}

and E2 = {η[ δt
µn,κ0

] ≤ t}, we have

(7.41)

Pm1,n(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q, η[ δt

µn,κ0
] ≤ t, Bn,l0,q0,[ δt

µn,κ0
] |η[ δt

µn,κ0
] < τAn)

≥ Pm1,n(Bn,l0,q0,[ δt
µn,κ0

],
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q|η[ δt

µn,κ0
] < τAn)

+ Pm1,n(η[ δt
µn,κ0

] ≤ t|η[ δt
µn,κ0

] < τAn)− 1.
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For the second probability on the right hand side of (7.41) we use Chebyshev’s

inequality and (6.9) to obtain the estimate

(7.42)

Pm1,n
(η[ δt

µn,κ0
] ≤ t|η[ δt

µn,κ0
] < τAn

) = 1− Pm1,n
(η[ δt

µn,κ0
] > t|η[ δt

µn,κ0
] < τAn

)

≥ 1− exp(−λt)Em1,n
(exp(λ

[ δt
µn,κ0

]∑

j=1

(ηj − ηj−1))|η[ δt
µn,κ0

] < τAn
)

≥ 1− exp(−λt(1− Cλ,κ0 [
δt

µn,κ0

]
µn,κ0

t
)), for λ > 0 and n ≥ nλ.

For the first probability on he right hand side of (7.41), we use (7.33) along with

the fact that

Pm1,n(
1
k

k−1∑

j=0

1Dn,l0
(X(ηj)) ≥ q0|ηk < τAn < ηk+1)

= Pm1,n(
1
k

k−1∑

j=0

1Dn,l0
(X(ηj)) ≥ q0|ηk < τAn)

to obtain the estimate

(7.43)

Pm1,n(Bn,l0,q0,[ δt
µn,κ0

],
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q|η[ δt

µn,κ0
] < τAn)

= Pm1,n(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q|Bn,l0,q0, [ δt

µn,κ0
], η[ δt

µn,κ0
] < τAn)×

Pm1,n(Bn,l0,q0,[ δt
µn,κ0

]|η[ δt
µn,κ0

] < τAn) ≥ exp(−c0µn,κ0 [
δt

µn,κ0

])×

Pm1,n(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q|Bn,l0,q0, [ δt

µn,κ0
], η[ δt

µn,κ0
] < τAn).

Let

B̂n,l,q,k = {{xj}k−1
j=0 :

k−1∑

j=0

1Dn,l
(xj) ≥ q}.
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Then we can write the probability on the right hand side of (7.43) as

(7.44)

Pm1,n(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q|Bn,l0,q0, [ δt

µn,κ0
], η[ δt

µn,κ0
] < τAn)

=
∫

B̂
n,l0,q0,[ δt

µn,κ0
]

Pm1,n
(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q|

Bn,l0,q0,[ δt
µn,κ0

], η[ δt
µn,κ0

] < τAn
, X(ηj−1) = xj−1, j = 1, ..., [

δt

µn,κ0

])dΓ,

where Γ is a probability measure on B̂n,l0,q0,[ δt
µn,κ0

]. (Γ depends on all the pa-

rameters, but we suppress this dependence.) Note that it is the conditioning on

the event Bn,l0,q0,[ δt
µn,κ0

] that causes Γ to be supported on B̂n,l0,q0,[ δt
µn,κ0

]. Once

we’ve conditioned on the locations {X(ηj−1)}
[ δt

µn,κ0
]

j=1 , the random variables {(σj −
ηj−1)1Dn,l0

(X(ηj−1))}
[ δt

µn,κ0
]

j=1 become independent regardless of the rest of the con-

ditioning. Since {xj−1}
[ δt

µn,κ0
]

j=1 ∈ B̂n,l0,q0,[ δt
µn,κ0

], we have (σj−ηj−1)1Dn,l0
(X(ηj−1))

= σj − ηj−1 for at least [q0[ δt
µn,κ0

]] of the indices j between 1 and [ δt
µn,κ0

], almost

surely. From Brownian scaling and the definitions, it follows that under the above

conditional probability the random variable σj−ηj−1
(Lnεn)2 is distributed as follows. For

x ∈ Rd with |x| = 1, let Q
(n)
x denote the distribution of the exit time from B1(0)−

B̄ 1
Ln

(0) of a Brownian motion starting from κ0(1, 0, ..., 0) and conditioned to exit

the above region at x. Then σj−ηj−1
(Lnεn)2 is distributed like

∫
∂B1(0)

Q
(n)
x mj(dx), where

mj(dx) is a probability measure on ∂B1(0) whose dependence on {xi−1}
[ δt

µn,κ0
]

i=1 has

been suppressed. Clearly we can find a distribution Q which is supported on (0,∞)

and which is stochastically dominated by Q
(n)
x for all x ∈ ∂B1(0) and all large n.

Thus, letting {Wj}∞j=1 be an IID Q-distributed sequence of random variables on

some probability space with probability measure P, and letting Sk =
∑k

j=1 Wj , it
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follows from the above discussion that

(7.45)

Pm1,n
(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q|

Bn,l0,q0,[ δt
µn,κ0

], η[ δt
µn,κ0

] < τAn
, X(ηj−1) = xj−1, j = 1, ..., [

δt

µn,κ0

])

≥ P(
S[q0[

δt
µn,κ0

]]

t
≥ q

(Lnεn)2
), for {xj−1}

[ δt
µn,κ0

]

j=1 ∈ B̂n,l0,q0,[ δt
µn,κ0

].

By Lemma 1-ii, q
(Lnεn)2 ≤

q(1−pκ0 )

pκ0µn,κ0
and by the strong law of large numbers

lim
t→∞

S[q0[
δt

µn,κ0
]]

t
=

q0δEW1

µn,κ0

, a.s. P.

Thus, choosing q1 = q0δpκ0EW1

2(1−pκ0 ) , if follows from (7.45) that there exists a t0 such

that

(7.46)

Pm1,n(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q1|

Bn,l0,q0,[ δt
µn,κ0

], η[ δt
µn,κ0

] < τAn , X(ηj−1) = xj−1, j = 1, ..., [
δt

µn,κ0

]) ≥ 1
2
,

for {xj−1}
[ δt

µn,κ0
]

j=1 ∈ B̂n,l0,q0,[ δt
µn,κ0

], if t ≥ t0.

From (7.44) and (7.46) we conclude that

(7.47)

Pm1,n(
1
t

[ δt
µn,κ0

]∑

j=1

(σj − ηj−1)1Dn,l0
(X(ηj−1)) ≥ q1|Bn,l0,q0, [ δt

µn,κ0
], η[ δt

µn,κ0
] < τAn) ≥ 1

2
,

for sufficiently large t.

Now fix some λ > 0. Keeping in mind the exponential term on the right hand side

of (7.42) and on the right hand side of (7.43), note that we can choose δλ,κ0 > 0 so

that λ(1 − Cλ,κ0δλ,κ0) > c0δλ,κ0 . Thus, we conclude from (7.40)-(7.43) and (7.47)

that

(7.48)
Pm1,n(

1
t

∫ t

0

1D
n,l0+ 3

2
(X(s))ds ≥ q1 | η[ δt

µn,κ0
] < τAn) ≥ 1

4
exp(−c0δλ,κ0t),

for sufficiently large t.

Now (7.38) and (7.48) yield

(7.49)

Pm1,n(
1
t

∫ t

0

1D
n,l0+ 3

2
(X(s))ds ≥ q1) ≥ 1

4
ρ
[

δλ,κ0
t

µn,κ0
]

n,κ0 exp(−c0δλ,κ0t), for sufficiently large t.
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Recall that the statement of the lemma includes the assumption that limn→∞
| log ρn,κ0 |

µn,κ0

∈ (0,∞). Thus, from (7.49) we conclude that (7.34) holds with c1 = δλ,κ0(c0 +

limn→∞
| log ρn,κ0 |

µn,κ0
) < ∞. ¤
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