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Abstract. We consider a class of random walks whose increment dis-

tributions depend on the average value of the process over its most recent

N steps. We investigate the speed of the process, and in particular, the

limiting speed as the “history window” N → ∞.

1. Introduction and Statement of Results

Over the past couple of decades, many papers have been devoted to the

study of edge or vertex reinforced random walks and excited (also known

as “cookie”) random walks on Z. These processes have a simple underlying

transition mechanism—such as simple symmetric random walk—but this

mechanism is “reinforced” or “excited” depending on the location of the

random walk and its complete history at that location. For survey papers

which include many references, see [4] and [3].

In this paper, we consider random walks on R with a simpler and very

natural mechanism for reinforcement; namely, the reinforcement is catalyzed

by the behavior of the random walk path over a bounded interval of its his-

tory, irrespective of its present location. In fact, we will define two versions

of such a process. To define these processes, let N, l ∈ N, let {P (inc)
i }li=0 be

probability measures on R with finite expectations µi =
∫∞
−∞ xP

(inc)
i (dx),

and let {ri}li=1 be a sequence. We make the following assumption.
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Assumption A. The sequence {µi}li=0 of expectations corresponding to the

measures {P (inc)
i }li=0 is strictly increasing, and the sequence {ri}li=1 satisfies

ri < µi < ri+1, i = 1, · · · , l − 1;

µ0 < r1 and rl < µl.

In our notation for the processes, we suppress the dependence on all the

above parameters with the exception of N , which is the only parameter

that will vary. One version of the process, the instantaneous version, will be

denoted by {XN ;I
n }∞n=0, while the other version, the delayed version, will be

denoted by {XN ;D
n }∞n=0. Most of this paper will concern the delayed version,

but we define the instantaneous version first, because this will make it easier

to describe the delayed version. For convenience, we define r0 = −∞ and

rl+1 = +∞ for the following definition.

The instantaneous version {XN ;I
n }∞n=0 is defined as follows. Let XN ;I

0 =

0 and let {XN ;I
n }Nn=1 be distributed like a random walk with increment

distribution P
(inc)
i0

, for some i0. The continuation of the process is defined

inductively as follows. Let n ≥ N + 1 and let i be such that the process

used the distribution P
(inc)
i at time n − 1. The process looks back at its

most recent N steps. If the average value,
XN ;I
n−1−X

N ;I
n−1−N

N , of those steps fell

in the range [ri, ri+1), then at time n the process jumps with increment

distribution P
(inc)
i . However, if the average value of those steps was strictly

less than ri, then at time n the process jumps with increment distribution

P
(inc)
i−1 , while if the average value of those steps was larger or equal to ri+1,

then at time n the process jumps with increment distribution P
(inc)
i+1 .

The delayed version {XN ;D
n }∞n=0 is defined similarly, the only difference

being that this process is required to use any particular jump distribution

at least N consecutive times, thereby insuring that the reinforcement that

causes the process to switch from one increment distribution, say i, to an-

other increment distribution is due to the behavior of the process while in

the i regime. Thus, {XN ;D
n }Nn=0 is defined identically to {XN ;I

n }Nn=0, and

for each time n ≥ N + 1, if the jump distribution used at time n − 1 was

not used at time n − N , then the jump distribution used at time n − 1 is
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automatically used again at time n, while otherwise the jump distribution

at time n is determined as it was for the instantaneous version.

We call each version of the process a random walk reinforced by its recent

history. Both versions are natural models for the fortunes of various eco-

nomic commodities, such as stocks, or for the popularity of various social

trends, which respond positively to recent success and negatively to recent

failure.

We call N the history window and {ri}li=1 the threshold levels. In As-

sumption B below, we specify a simple condition to ensure that the processes

will almost surely jump an infinite number of times according to each of the

l + 1 increment distributions.

In this paper, we investigate the speeds of these processes. For the delayed

version, it’s rather easy to show that the speed exists almost surely and is

almost surely constant.

Proposition 1. Let Assumptions A and Assumption B (given below) hold.

Then the speed

sD(N, r1, · · · , rl) := lim
n→∞

XN ;D
n

n

exists almost surely, is almost surely constant and is independent of the

initial state.

The proof of the proposition is embedded in the proof of the main result

of this paper, Theorem 1, and is noted where it occurs. The main result

concerns the limiting speed of the delayed version as the history window

N → ∞. Here is the condition we impose to ensure that the processes will

almost surely jump an infinite number of times according to each of the l+1

increment distributions.

Assumption B.

P
(inc)
i

(
(−∞, ri)

)
> 0 and P

(inc)
i

(
[ri+1,∞)

)
> 0, for i = 1, · · · , l − 1;

P
(inc)
0 ([r1,∞)) > 0, P

(inc)
l ((−∞, rl)) > 0.
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(Assumption B is a bit stronger than necessary to ensure that the process

will almost surely jump an infinite number of times according to each of the

l+ 1 increment distributions, but we use it so as to simplify the exposition.)

A key technical tool that will be used is Cramér’s large deviations theorem

for the empirical mean of an IID sequence. In order to have this at our

disposal, we need to make a two-sided exponent moment assumption on the

increment distributions {P (inc)
i })li=0. Let

M
P

(inc)
i

(t) =

∫ ∞
−∞

etxP
(inc)
i (dx)

denote the moment generating function of the distribution P
(inc)
i .

Assumption C. There exists a t0 > 0 such that M
P

(inc)
i

(±t0) < ∞, for

i = 0, 1, · · · , l.

Let Ii(r) denote the Legendre-Fenchel transformation for the distribution

P
(inc)
i , defined by

(1.1) Ii(r) = sup
λ∈R

(
λr − logM

P
(inc)
i

(λ)
)
, r ∈ R.

We recall several facts about Ii that we will need and that hold under As-

sumption C [1].

(1.2)
Ii(r) <∞ if and only if either r ≤ µi and P

(inc)
i (−∞, r]) > 0, or

r > µi and P
(inc)
i ([r,∞)) > 0.

Let x+
i = sup{x ∈ R : Ii(x) <∞} and x−i = inf{x ∈ R : Ii(x) <∞}. Then

(1.3)

Ii(µi) = 0;

Ii : [µi, x
+
i )→ [0,∞) is continuous and strictly increasing;

Ii : (x−i , µi]→ [0,∞) is continuous and strictly decreasing.

And we recall an elementary large deviations result, a version of Cramér’s

theorem [1]: if S
(i)
n is the sum of n IID random variables distributed as
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P
(inc)
i , and P

(inc)
i satisfies Assumption C, then

(1.4)

lim
n→∞

1

n
logP (

S
(i)
n

n
≥ r) = lim

n→∞

1

n
logP (

S
(i)
n

n
> r) = −Ii(r), µi ≤ r < x+

i ;

lim
n→∞

1

n
logP (

S
(i)
n

n
≤ r) = lim

n→∞

1

n
logP (

S
(i)
n

n
< r) = −Ii(r), x−i < r ≤ µi.

We can now state the main result.

Theorem 1. Let Assumptions A,B, and C hold. Define

Λ0 = I0(r1);

Λi = Ii(ri+1) +

i∑
k=1

(
Ik(rk)− Ik(rk+1)

)
, 1 ≤ i ≤ l − 1;

Λl = Il(rl) +

l−1∑
k=1

(
Ik(rk)− Ik(rk+1)

)
.

If max0≤i≤l Λi occurs uniquely at i = i0, then the speed sD(N, r1, · · · , rl) of

the delayed process {XN ;D
n }∞n=0 satisfies

lim
N→∞

sD(N, r1, · · · , rl) = µi0 .

Remark. It is sometimes convenient to have one formula that holds for all

{Λi}li=0. Using the convention that a summation of the form
∑0

i=1 is equal

to 0, and defining rl+1 = rl (for convenience in defining the process, we had

defined rl+1 =∞), we can write

Λi = Ii(ri+1) +
i∑

k=1

(Ik(rk)− Ik(rk+1), 0 ≤ i ≤ l; rl+1 := rl.

Example. The Legendre-Fenchel transformation of the Gaussian distribu-

tion N(µ, σ2) is given by I(r) = (r−µ)2

2σ2 . Let P
(inc)
i ∼ N(µi, σ

2
i ), 0 ≤ i ≤ l.

Define rl+1 = rl. If

arg max
i∈{0,··· ,l}

[(ri+1 − µi)2

σ2
i

+
i∑

k=1

(rk − µk)2 − (rk+1 − µk)2

σ2
k

]
occurs uniquely at i0, then the limiting speed for the one-step delayed version

is µi0 .
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In the instantaneous version, the passage from one regime, say i, to a

neighboring regime, say i+1, will frequently be accompanied by a number of

short time oscillations between the two regimes before the process securely

ensconces itself in the new regime i + 1. Because of technical difficulties

related to these oscillations, we can only prove a theorem for the limiting

speed of the instantaneous version in the case l = 1.

Theorem 2. Let l = 1 and let Assumptions A,B, and C hold. The speed of

the instantaneous process {XN ;I
n }∞n=0 almost surely satisfies

(1.5)

lim
N→∞

lim sup
n→∞

XN ;I
n

n
= lim

N→∞
lim inf
n→∞

XN ;I
n

n
=

µ0, if I0(r1) > I1(r1);

µ1, if I1(r1) > I0(r1).

In the instantaneous version, define the N -dimensional differences process

{ZN ;I
n }∞n=0 by

ZN ;I
n = (XN ;I

n+1 −X
N ;I
n , XN ;I

n+2 −X
N ;I
n+1, · · · , X

N ;I
n+N −X

N ;I
n+N−1).

It is easy to see that this is a Markov process. In [5] we studied the speed

of the instantaneous version {XN ;I
n }∞n=0 under the assumption that the in-

crement distributions {P (inc)
i }li=0 are all Bernoulli distributions on {−1, 1};

P
(inc)
i ∼ Ber(pi), so µi = 2pi−1. Thus, those processes lived on Z and made

only nearest-neighbor jumps. In that version, we were able to calculate ex-

plicitly the invariant measure πN (defined on {−1, 1}N ) of the differences

process {ZN ;I
n }∞n=0, and this allowed us to obtain an explicit formula for the

speed sI(N, r1, · · · , rl). What made the explicit calculation of the invariant

distribution possible was the fact that πN turned out to be constant on the

level sets {z ∈ {−1, 1}N :
∑N

i=1 zi = M}, for any M . Even in the case that

the increment distributions {P (inc)
i }li=0 are all supported on a fixed set of

size three, the explicit calculation of the invariant measure of the differences

process does not seem possible in general. Exploiting this explicit formula

for the speed sI(N, r
(N)
1 , · · · , r(N)

l ) in the case of Bernoulli increment distri-

butions, in [5] we proved the equivalent of Theorem 1 for the instantaneous
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version. The expressions {Λ}li=0 in the case of these Bernoulli distribu-

tions appear there in explicit form, but their connection to the Legendre-

Fenchel transformation is not mentioned. The delicate borderline cases,

when max0≤i≤l ∆i does not occur uniquely were also resolved, in each case

of which the limiting speed was a certain linear combination of the speeds

{µi}li=0. In this paper, we work on exponential scale, via (1.4), so we cannot

handle the borderline cases.

We now turn to the organization of the rest of the paper. Theorem 1 is

proved very quickly in section 3, but this is only after a number of technical

propositions are proved in the rather long section 2. As already noted, the

proof of Proposition 1 is embedded in the proof of Theorem 1. The proof of

Theorem 2 is given in section 4.

Here is a rough outline of the idea of the proof of Theorem 1. Let

{Y N ;D
m }∞m=0 denote the Markov chain (more specifically, birth and death

chain) on {0, · · · , l} that follows the changes of the increment distribution

utilized by the delayed version {XN ;D
n }∞n=0 of the random walk reinforced

by its recent history. Thus, Y N ;D
0 = i0, since the process {XN ;D

n }∞n=0 starts

out using the increment distribution P
(inc)
i0

. If the first time the process

{XN ;D
n }∞n=0 changes its increment distribution, it switches from distribution

P
(inc)
i0

to distribution P
(inc)
j (j = i0 + 1 or j = i0 − 1), then Y N ;D

1 = j. In

general, Y N ;D
m = k, if after switching increment distribution m times, the

process {XN ;D
n }∞n=0 is using the increment distribution P

(inc)
k . Propositions

2 and 3, the first two propositions of section 2, are the key technical results

that are used to prove Proposition 4, which gives tight exponential estimates

as N →∞ on the transition probabilities of the Markov chain {Y N ;D
m }∞m=0.

Since {Y N ;D
m }∞m=0 is a birth and death chain, its invariant distribution can

be written down explicitly in terms of its transition probabilities; thus we

obtain tight exponential estimates on the behavior of this invariant measure

as N → ∞. Proposition 5 calculates the exponential order as N → ∞

of the expected number of steps made by {XN ;D
n }∞n=0 between the time it

enters a particular increment distribution regime and the time it switches



8 ROSS G. PINSKY

to another increment distribution regime, while Proposition 6 calculates the

expected distance between it position upon entering a particular increment

distribution regime and its position upon switching to another increment

distribution regime. The proof of Theorem 1 in section 3 follows easily from

Propositions 5 and 6 along with the asymptotic behavior of the invariant

measure for the Markov chain {Y N ;D
m }∞m=0.

2. A series of propositions

We will use the following notation throughout the paper.

aN ≈ bN means lim
N→∞

1

N
log aN = lim

N→∞

1

N
log bN ;

aN / bN means lim sup
N→∞

1

N

(
log aN − log bN

)
≤ 0.

The random walk with increment distribution P
(inc)
i will be denoted by

{S(i)
n }∞n=0. Also, we will use the notation

S
(i)
j,k = S

(i)
k − S

(i)
j , for 0 ≤ j < k.
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In order to reduce the cumbersome notation, we define as follows ZN,in ,

for n ≥ 1 and 1 ≤ i ≤ l − 1:

(2.1)

ZN,in = 1, if

max
(S(i)

(n−1)N,nN

N
,
S

(i)
(n−1)N+1,nN+1

N
, · · · ,

S
(i)
(n−1)N+N−1,nN+N−1

N

)
≥ ri+1 and

min
(S(i)

(n−1)N,nN

N
,
S

(i)
(n−1)N+1,nN+1

N
, · · · ,

S
(i)
(n−1)N+N−1,nN+N−1

N

)
≥ ri;

ZN,in = −1, if

max
(S(i)

(n−1)N,nN

N
,
S

(i)
(n−1)N+1,nN+1

N
, · · · ,

S
(i)
(n−1)N+N−1,nN+N−1

N

)
< ri+1 and

min
(S(i)

(n−1)N,nN

N
,
S

(i)
(n−1)N+1,nN+1

N
, · · · ,

S
(i)
(n−1)N+N−1,nN+N−1

N

)
< ri;

ZN,in = −11, if

max
(S(i)

(n−1)N,nN

N
,
S

(i)
(n−1)N+1,nN+1

N
, · · · ,

S
(i)
(n−1)N+N−1,nN+N−1

N

)
≥ ri+1 and

min
(S(i)

(n−1)N,nN

N
,
S

(i)
(n−1)N+1,nN+1

N
, · · · ,

S
(i)
(n−1)N+N−1,nN+N−1

N

)
< ri;

ZN,in = 0, otherwise.

Note that {ZN,in }∞n=1 are identically distributed, and that each of {ZN,i2n }∞n=1

and {ZN,i2n−1}∞n=1 is an independent sequence.

We begin with two key propositions. These propositions serve as a basis

for the rest of the results in this section. For both of them, we will need

the FKG correlation inequality [2] in the following form. Let {Wi}Mi=1 be

independent real-valued random variables and define W = (W1, · · · ,WM ).
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Let f, g : RM → R. Then

(2.2)

Ef(W )g(W ) ≥ Ef(W )Eg(W ), if f and g are either both increasing

or both decreasing in each of their M variables;

Ef(W )h(W ) ≤ Ef(W )Eh(W ), if one of f and g is increasing and the other

one is decreasing in each of its M variables.

Proposition 2. Let 1 ≤ i ≤ l − 1. Then

(2.3)

P (ZN,i1 = 1) ≈ e−NIi(ri+1);

P (ZN,i1 = −1) ≈ e−NIi(ri);

P (ZN,i1 = −11) / e−N
(
Ii(ri)+Ii(ri+1)

)
.

Proof. We will prove the first and third formulas in (2.3); the second one is

proved analogously to the first. By (1.4), we have

(2.4)

P (ZN,i1 = 1) ≤ P
(

max
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
≤

N−1∑
j=0

P (
S

(i)
j,N+j

N
≥ ri+1) ≈ Ne−NIi(ri+1) ≈ e−NIi(ri+1).

Also

(2.5)

P (ZN,i1 = 1) =

P
(

max
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
×

P
(

min
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri|max

(S(i)
0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
.

By (1.4),

(2.6)

P
(

max
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
≥ P (

S
(i)
0,N

N
≥ ri+1) ≈ e−NIi(ri+1).
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The following inequality follows from the FKG correlation inequality (2.2).

(2.7)

P
(

min
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri|max

(S(i)
0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
≥

P
(

min
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri).

To see that (2.7) follows from (2.2), let x = (x1, · · · , x2N−1) ∈ R2N−1, let

si,j =
∑j

k=i+1 xk, for 0 ≤ i < j ≤ 2N − 1, and define

f(x) = 1
min
(
s0,N
N

,
s1,N+1
N

,··· ,
sN−1,2N−1

N

)
≥ri

;

g(x) = 1
max
(
s0,N
N

,
s1,N+1
N

,··· ,
sN−1,2N−1

N

)
≥ri+1

.

Denote the increments of the random walk {S(i)
n }∞n=0 by {W (i)

n }∞n=1; that is,

S
(i)
n =

∑n
k=1W

(i)
k . Let W (i) = (W

(i)
1 , · · · ,W (i)

2N−1). Then (2.7) is equivalent

to Ef(W (i))g(W (i)) ≥ Ef(W (i))Eg(W (i)), and this latter inequality follows

from (2.2).

From (2.7) and (1.4) we have

(2.8)

P
(

min
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri|max

(S(i)
0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
≥

1− P
(

min
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
< ri) ≥ 1−NP (

S
(i)
0,N

N
< ri) ≈ 1, as N →∞.

The first formula in (2.3) now follows from (2.4)-(2.8).

We now turn to the third formula in (2.3). We have

(2.9)

P (ZN,i1 = −11) = P
(

max
(S(i)

0,N

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
×

P
(

min
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
< ri|max

(S(i)
0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
.

By (1.4),

(2.10)

P
(

max
(S(i)

0,N

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
≤ NP (

S
(i)
0,N

N
≥ ri+1) ≈ e−NIi(ri+1).



12 ROSS G. PINSKY

The first inequality below follows from the FKG inequality (2.2) similarly

to the way (2.7) followed from (2.2). Using this and (1.4), we have

(2.11)

P
(

min
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
< ri|max

(S(i)
0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
≥ ri+1

)
≤

P
(

min
(S(i)

0,N

N
,
S

(i)
1,N+1

N
, · · · ,

S
(i)
N−1,2N−1

N

)
< ri) ≤ NP (

S
(i)
0,N

N
≤ ri) ≈ e−NIi(ri).

The third formula in (2.3) follows from (2.9)-(2.11). �

Proposition 3. Let 1 ≤ i ≤ l − 1. Define

(2.12) τN,i = inf
{
n ≥ 0 :

S
(i)
n,N+n

N
6∈ [ri, ri+1)}.

Then

(2.13)
P (
S

(i)

τN,i,N+τN,i

N
< ri) ≈ e−N

(
Ii(ri)−Ii(ri+1)

)+
;

P (
S

(i)

τN,i,N+τN,i

N
≥ ri+1) ≈ e−N

(
Ii(ri+1)−Ii(ri)

)+
.

Proof. Assume without loss of generality that Ii(ri) ≥ Ii(ri+1). If Ii(ri) >

Ii(ri+1), then it suffices to prove the first formula in (2.13) since the two

terms on the left hand side of (2.13) add up to one. If Ii(ri) = Ii(ri+1), then

the proofs of the two formulas in (2.13) are almost identical. Thus, in this

case too we will prove only the first formula. Suppressing the dependence

on N , let

(2.14)

σ
(e)
i = inf

{
2n ≥ 2 : ZN,i2n 6= 0}

}
, σ

(o)
i = inf

{
2n− 1 ≥ 1, ZN,i2n−1 6= 0}

}
.

Using Proposition 2 and the fact that each of {ZN,i2n }∞n=1 and {ZN,i2n−1}∞n=1 is

an IID sequence, it follows that

(2.15)

P (ZN,i
σ
(∗)
i

= −1) ≈ e−N
(
Ii(ri)−Ii(ri+1)

)
,

P (ZN,i
σ
(∗)
i

= −11) / e−NIi(ri),

both when σ
(∗)
i = σ

(e)
i and when σ

(∗)
i = σ

(o)
i .
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Now{S(i)

τN,i,N+τN,i

N
< ri

}
⊂
{
ZN,i
σ
(e)
i

∈ {−1,−11}
}
∪
{
ZN,i
σ
(0)
i

∈ {−1,−11}
}

;

thus, it follows from (2.15) that

(2.16) P
(S(i)

τN,i,N+τN,i

N
< ri

)
/ e−N

(
Ii(ri)−Ii(ri+1)

)
.

To prove an inequality in the other direction, let aN = P (Z
(N,i)
1 = −1)

and bN = P (Z
(N,i)
1 ∈ {1,−11}), where we have suppressed the dependence

on i. From Proposition 2,

(2.17) aN ≈ e−NIi(ri), bN ≈ e−NIi(ri+1).

We have for any positive integer M ,

(2.18){S(i)

τN,i,N+τN,i

N
< ri

}
⊃
(
∩2M
n=1

{
ZN,in ∈ {0,−1}

})
∩
(
∪Mn=1 {Z

N,i
2n = −1}

)
.

Thus,

(2.19)
P (
S

(i)

τN,i,N+τN,i

N
< ri) ≥ P (∪Mn=1{Z

N,i
2n = −1})×

P
(
∩2M
n=1

{
ZN,in ∈ {0,−1}

}∣∣ ∪Mn=1 {Z
N,i
2n = −1}

)
.

Since {ZN,i2n }Mn=1 are IID, it follows that

(2.20) P (∪Mn=1{Z
N,i
2n = −1}) = 1− (1− aN )M .

From the definitions, it follows that

(2.21) {ZN,in ∈ {0,−1}} = ∩nN−1
m=(n−1)N{

S
(i)
m,N+m

N
< ri+1}

and

(2.22)

{ZN,i2n = −1} =
(
∩2nN−1
m=(2n−1)N{

S
(i)
m,N+m

N
< ri+1}

)
∩
(
∪2nN−1
m=(2n−1)N{

S
(i)
m,N+m

N
< ri}

)
.

From (2.21) and (2.22), along with the FKG inequality (2.2), we have

(2.23)

P
(
∩2M
n=1

{
ZN,in ∈ {0,−1}

}∣∣∪Mn=1{Z
N,i
2n = −1}

)
≥ P

(
∩2M
n=1

{
ZN,in ∈ {0,−1}

})
.
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To see this, let x = (x1, · · · , x(2M+1)N−1) ∈ R(2M+1)N−1, let si,j =
∑j

k=i+1 xk,

for 0 ≤ i < j ≤ (2M + 1)N − 1, and define

f(x) = max(1,
[ M∑
n=1

1
max
(
sm,N+m

N
: m∈{(2n−1)N,··· ,2nN−1}

)
<ri+1

×

1
min
(
sm,N+m

N
: m∈{(2n−1)N,··· ,2nN−1}

)
<ri

]
;

g(x) = 1
max
(
sm,N+m

N
: m∈{1,··· ,2MN−1}

)
<ri+1

.

Denote the increments of the random walk {S(i)
n }∞n=0 by {W (i)

n }∞n=1, and let

W (i) = (W
(i)
1 , · · · ,W (i)

(2M+1)N−1). Then (2.23) is equivalent to Ef(W (i))g(W (i)) ≥

Ef(W (i))Eg(W (i)), and this latter inequality follows from (2.2).

Similarly, the FKG inequality (2.2) gives

P
(
∩2M
n=1

{
ZN,in ∈ {0,−1}

})
≥
(
P (ZN,in ∈ {0,−1})

)2M
= (1− bN )2M .

Thus,

(2.24) P
(
∩2M
n=1

{
ZN,in ∈ {0,−1}

}∣∣ ∪Mn=1 {Z
N,i
2n = −1}

)
≥ (1− bN )2M .

Now choose M = [ 1
bN

]. We consider the two cases Ii(ri) > Ii(ri+1) and

Ii(ri) = Ii(ri+1) separately. We first consider the former case. Note that

limN→∞
aN
bN

= 0. Since 1− aN ≤ e−aN , from (2.20),

(2.25) P (∪
[ 1
bN

]

n=1 {Z
N,i
2n = −1}) ≥ 1− e−aN [ 1

bN
] ≥ aN

2bN
, for large N.

From (2.24),

(2.26) lim inf
N→∞

P
(
∩

2[ 1
bN

]

n=1

{
ZN,in ∈ {0,−1}

}∣∣ ∪[ 1
bN

]

n=1 {Z
N,i
2n = −1}

)
≥ e−2.

From (2.17), (2.19), (2.25) and (2.26), we conclude that

(2.27) P
(S(i)

τN,i,N+τN,i

N
< ri

)
' e−N

(
Ii(ri)−Ii(ri+1)

)
.

Now consider the case Ii(ri) = Ii(ri+1). Then similar to (2.25), we have

(2.28)

P (∪
[ 1
bN

]

n=1 {Z
N,i
2n = −1}) ≥ 1− e−aN [ 1

bN
] ≥ min(c,

aN
2bN

), for some c > 0.
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Then from (2.17), (2.19), (2.28) (2.26) and the fact that aN ≈ bN , we obtain

(2.27). The first formula in (2.13) follows from (2.16) and (2.27). �

Recall the process {Y N ;D
m }∞m=0 defined at the end of section 1; it denotes

the Markov processes that follows the changes of the increment distribution

utilized by the delayed version {XN ;D
n }∞n=0 of the random walk reinforced

by its recent history. We denote the transitions for {Y N ;D
m }∞m=0 by

pN ;D
i,j = P (Y N ;D

m+1 = j|Y N ;D
m = i), i, j ∈ {0, · · · , l}, j = i± 1.

Using Proposition 3, the following estimates on these transition probabil-

ities are almost immediate.

Proposition 4.

(2.29)

pN ;D
i,i+1 ≈ e

−N
(
Ii(ri+1)−Ii(ri)

)+
; i ∈ {1, · · · , l − 1};

pN ;D
i,i−1 ≈ e

−N
(
Ii(ri)−Ii(ri+1)

)+
; i ∈ {1, · · · , l − 1};

pN ;D
0,1 = pN ;D

l,l−1 = 1.

Proof. The third line in (2.29) follows by definition. Noting that

pN ;D
i,i+1 = P (

S
(i)

τN,i,N+τN,i

N
≥ ri+1), pN ;D

i,i−1 = P (
S

(i)

τN,i,N+τN,i

N
< ri),

the first two lines of (2.29) follow from Proposition 3. �

Denote the invariant distribution of the Markov chain {Y N ;D
m }∞m=0 on

{0, · · · , l} by νN ;D. The Markov chain {Y N ;D
m }∞m=0 is a birth and death

process, thus reversible, so its invariant distribution can be calculated ex-

plicitly, via the detailed balance equations: νN ;D(i)pN ;D
i,i+1 = νN ;D(i+1)pN ;D

i+1,i,

i = 0, · · · , l − 1. As is well-known, one has

(2.30)

ΠNν
N,D(0) = 1;

ΠNν
N,D(k) =

k∏
i=1

pN ;D
i−1,i

pN ;D
i,i−1

, k = 1, · · · , l,

where ΠN = 1 +
l∑

k=1

k∏
i=1

pN ;D
i−1,i

pN ;D
i,i−1

.
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Recall the definition of τN,i, 1 ≤ i ≤ l − 1, from (2.12). Define

τN,0 = inf
{
n ≥ 0 :

S
(0)
n,N+n

N
≥ r1}; τN,l = inf

{
n ≥ 0 :

S
(l)
n,N+n

N
< rl}.

Anytime the delayed version of the random walk reinforced by its recent

history switches to regime i, the number of steps during which it will operate

in this regime before switching to a different regime is distributed as τN,i+N ,

and the distance between its position upon entering regime i and its position

upon switching to another regime is distributed as S
(i)

τN,i+N
. The next two

propositions calculate the expected values of these two distributions.

Proposition 5.

(2.31)
EτN,i ≈ eN min

(
Ii(ri), Ii(ri+1)

)
, 1 ≤ i ≤ l − 1;

EτN,l,l ≈ eNIl(rl); EτN,0 ≈ eNI0(r1).

Proof. Let 1 ≤ i ≤ l − 1. Using the notation from the proof of Proposition

3, for any positive integer L, we have

(2.32)
{τN,i ≥ 2LN} = {ZN,in = 0, for all n = 1, · · · , 2L} =

{σ(e)
i > 2L, σ

(o)
i > 2L− 1}.

Since σ
(e)
i and σ

(o)
i + 1 have the same distribution, it follows that

(2.33) P (τN,i ≥ 2LN) ≤ P (σ
(e)
i > 2L), L ≥ 1.

We have

(2.34)
∞∑
L=0

P (τN,i ≥ 2LN) ≥
∞∑
m=0

(
m

2N
+ 1)P (τN,i = m) = 1 +

1

2N
EτN,i.

From the definition of σ
(e)
i along with Proposition 2, σ

(e)
i is distributed ac-

cording to a geometric distribution with parameter p ≈ e−N min
(
Ii(ri), Ii(ri+1)

)
;

thus, Eσ
(e)
i ≈ e

N min
(
Ii(ri), Ii(ri+1)

)
. Consequently,

(2.35)
∞∑
L=0

P (σ
(e)
i > 2L) ≤

∞∑
L=1

P (σ
(e)
i ≥ L) = Eσ

(e)
i ≈ e

N min
(
Ii(ri), Ii(ri+1)

)
.
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From (2.33)-(2.35), we obtain

(2.36) EτN,i / eN min
(
Ii(ri), Ii(ri+1)

)
.

From Proposition 2 and the definition of σ
(e)
i and σ

(o)
i , we have for any

ε > 0 and sufficiently large N ,

(2.37)
P (σ

(e)
i > 2L, σ

(o)
i > 2L− 1) = P (ZN,in = 0, for n = 1, · · · , 2L) ≥

1− 2LP (ZN,i1 6= 0) ≥ 1− 2LeεN−N min
(
Ii(ri), Ii(ri+1)

)
.

Letting LN,ε = [e−2εN+N min
(
Ii(ri), Ii(ri+1)

)
], it follows from (2.32) and (2.37)

that limN→∞ P (τN,i ≥ 2LN,εN) = 1. Since ε > 0 is arbitrary, it follows that

(2.38) EτN,i ' eN min
(
Ii(ri), Ii(ri+1)

)
.

The first formula in (2.31) follows from (2.36) and (2.38).

The statements of Proposition 2 and Proposition 3 involve certain two-

sided hitting times related to a random walk with increment distribution

P
(inc)
i , with 1 ≤ i ≤ l− 1. Similar one-sided results could have been written

down for i = 0 and i = l. We refrained from including them in order not

to incur the necessity of additional notation and an additional analogous

proof. The second formula in (2.31) is proved similarly to the first formula

using the corresponding one-sided hitting times. �

Proposition 6.

(2.39) ES
(i)

τN,i+N
= µi(Eτ

N,i +N), 0 ≤ i ≤ l.

Proof. Let {W (i)
n }∞n=1 be IID random variables distributed according to

P
(inc)
i and consider the filtration Fn = σ

(
W

(i)
1 , · · · ,W (i)

n

)
, n ≥ 1. We

can write S
(i)
n =

∑n
j=1W

(i)
j . Now Mn+N := S

(i)
n+N − (n + N)µi, n ≥ 0, is

a martingale with respect to {Fn+N}∞n=0. Note that N + τN,i is a stopping

time with respect to {Fn+N}∞n=0. So by Doob’s optional sampling theorem,

ES(τN,i+N)∧L − µiE((τN,i +N) ∧ L) = 0, L ≥ 0.

Letting L→∞ and using (2.31), we obtain (2.39). �
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3. Proof of Theorem 1

Recall that νN,D denotes the invariant distribution of the process {Y N ;D
m }∞m=0.

By the ergodic theorem, as m → ∞ the asymptotic proportion of switches

of the process {Y N ;D
m }∞m=0 for the delayed process to the regime i is νN,D(i).

As noted before Proposition 5, anytime the delayed version of the random

walk reinforced by its recent history switches to regime i, the number of

steps during which it will operate in this regime before switching to a differ-

ent regime is distributed as τN,i +N , and the distance between its position

upon entering regime i and its position upon switching to another regime is

distributed as S
(i)

τN,i+N
. Also, this random number of steps and this random

distance are independent of the random number of steps the process spent

and the random distance it attained in any regime in the past before the

present entrance into regime i. From these observations, it is standard to

deduce that the speed sD(N, r1, · · · , rl) , defined in Proposition 1, exists

almost surely and is almost surely given by the constant

(3.1) sD(N, r1, · · · , rl) =

∑l
i=0 ν

N,D(i)ES
(i)

τN,i+N∑l
i=0 ν

N,D(i)
(
EτN,i +N

) .

This proves Proposition 1.

By Propositions 5 and 6,

(3.2)
ES

(i)

τN,i+N
≈ µieN min

(
Ii(ri),Ii(ri+1)

)
, for 1 ≤ i ≤ l − 1;

ES
(0)

τN,0+N
≈ µ0e

NI0(r1), ES
(l)

τN,l+N
≈ µleNIl(rl).
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From (2.30) and Proposition 4, we have

(3.3)

νN ;D(0) ≈ 1

ΠN
;

νN ;D(1) ≈ 1

ΠN
eN
(
I1(r1)−I1(r2)

)+
;

νN ;D(i) ≈ 1

ΠN
eN
(
I1(r1)−I1(r2)

)+ i∏
k=2

e
N

((
Ik(rk)−Ik(rk+1)

)+
−
(
Ik−1(rk)−Ik−1(rk−1)

)+)
,

1 ≤ i ≤ l − 1;

νN ;D(l) ≈ 1

ΠN
eN
(
I1(r1)−I1(r2)

)+ l−1∏
k=2

e
N

((
Ik(rk)−Ik(rk+1)

)+
−
(
Ik−1(rk)−Ik−1(rk−1)

)+)
×

e−N
(
Il−1(rl)−Il−1(rl−1)

)+
.

Noting that
(
Ik(rk)− Ik(rk+1)

)+− (Ik(rk+1)− Ik(rk)
)+

= Ik(rk)− Ik(rk+1)

and recalling the definition of {Λi}li=0 in the statement of Theorem 1, it

follows from (3.2) and (3.3) that

(3.4) νN,D(i)ES
(i)

τN,i+N
≈ 1

ΠN
µie

NΛi , 0 ≤ i ≤ l.

Substituting (3.4) into (3.1), recalling from Proposition 6 that
ES

(i)

τN,i+N

EτN,i+N
≈

µi, and letting N →∞ proves the theorem.

�

4. Proof of Theorem 2

For the proof of Theorem 2, we need the following lemma.

Lemma 1. Let {Zn}∞n=1 be IID random variables satisfying EZ1 = µ and

let Sn =
∑n

i=1 Zi. Then for every r < µ,

P (
Sn
n
≥ r, n = 1, 2, · · · ) > 0.

Proof. By the strong law of large numbers, limn→∞
Sn
n = µ a.s. Thus, for

every r < µ, there exists an Nr such that P (Snn ≥ r, n > Nr) > 0. Clearly,
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P (Snn ≥ r, n = 1, · · · , Nr) > 0. By the FKG inequality (2.2), we have

P (
Sn
n
≥ r, n > Nr|

Sn
n
≥ r, n = 1, · · · , Nr) ≥ P (

Sn
n
≥ r, n > Nr).

Thus,

P (
Sn
n
≥ r, n = 1, 2, · · · ) =

P (
Sn
n
≥ r, n = 1, · · · , Nr)P (

Sn
n
≥ r, n > Nr|

Sn
n
≥ r, n = 1, · · · , Nr) > 0.

�

We now turn to the proof of the theorem.

Proof of Theorem 2. Without loss of generality, assume that I0(r1) < I1(r1).

Since clearly lim supn→∞
XN ;I
n
n ≤ µ1 a.s., what we need to prove is that

(4.1) lim
N→∞

lim inf
n→∞

XN ;I
n

n
= µ1.

Define

(4.2) c := P (
S

(1)
n

n
≥ r1, n = 1, 2, · · · ) > 0,

where the positivity of c follows from Lemma 1. Without loss of generality,

we will start the instantaneous process {XN ;I
n }∞n=0 in the P

(inc)
0 -mode. The

process will eventually switch to the P
(inc)
1 -mode, then switch back to the

P
(inc)
0 , etc.

Let TN,1m ,m ≥ 1, denote the number of steps the instantaneous process

spends in the P
(inc)
1 -mode during its mth session in that mode, and let

TN,0m ,m ≥ 1, denote the number of steps the instantaneous process spends

in the P
(inc)
0 -mode during its mth session in that mode.

Clearly TN,0m , for any m ≥ 1, is stochastically dominated by τN,0, where

τN,0 is as in (2.12). (There is equality in distribution for m = 1.)

The event that for all j = 1, · · · , N , the average value of the first j steps

of a P
(inc)
1 -random walk is greater than or equal to r1 has probability greater

than or equal to c. Thus, with probability greater than or equal to c, the

instantaneous process will spend at least N steps in the P
(inc)
1 -mode dur-

ing any session in that mode. It follows then that TN,1m , for any m ≥ 1,
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stochastically dominates (N+τN,1)Ber(c), where τN,1 is as in (2.12), Ber(c)

denotes a Bernoulli random variable with probability c of being equal to 1

and probability 1− c of being equal to 0, and τN,1 and Ber(c) are indepen-

dent. We note that there are two reasons that TN,1m stochastically dominates

(N + τN,1)Ber(c). One is that the probability of the event described above

is greater than c. The other is that τN,1, the number of steps the delayed

process remains in the P
(inc)
1 -mode after its first N steps in that mode, is

stochastically dominated by the random variable TN,1m −N when this latter

random variable is conditioned on the event described above. The reason for

this latter domination is that whereas the first N steps of the delayed process

have the distribution {S(i)
j }Nj=1, the first N steps of the instantaneous process

conditioned on the event described above has the distribution {S(i)
j }Nj=1, con-

ditioned on {S
(1)
j

j ≥ r1, j = 1, 2, · · · , N}, and by the FKG inequality (2.2),

the distribution {S(i)
j }Nj=1, conditioned on {S

(1)
j

j ≥ r1, j = 1, 2, · · · , N} dom-

inates the distribution {S(i)
j }Nj=1.

The fraction of steps that the instantaneous process spends in the P
(inc)
1 -

mode after m sessions in each mode is given by

(4.3)

∑m
k=1 T

N,1
k∑m

k=1(TN,1k + TN,0k )
.

By the above noted stochastic domination, we can define on one and the

same space {TN,1k }∞k=1 and {TN,0k }∞k=1 along with {τN,ik }
∞
k=1, i = 0, 1, and

{Ber(c)k}∞k=1, where these last three sequences are mutually independent

IID sequences distributed respectively as τN,i, i = 0, 1, and Ber(c), such

that

(4.4)

∑m
k=1 T

N,1
k∑m

k=1(TN,1k + TN,0k )
≥

∑m
k=1(N + τN,1k )Ber(c)k∑m

k=1(N + τN,1k )Ber(c)k + τN,0k

a.s.

By the strong law of large numbers,

(4.5) lim
m→∞

∑m
k=1(N + τN,1k )Ber(c)k∑m

k=1(N + τN,1k )Ber(c)k + τN,0k

=
c(N + EτN,1)

c(N + EτN,1) + EτN,0
a.s.

By Proposition 5 (with l = 1) and the assumption that I0(r1) < I1(r1),

it follows that limN→∞
EτN,1

EτN,0
= ∞. Using this with (4.4) and (4.5), we
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conclude that the asymptotic fraction of steps that the instantaneous process

spends in the P
(inc)
1 -mode satisfies

lim
N→∞

lim inf
m→∞

∑m
k=1 T

N,1
k∑m

k=1(TN,1k + TN,0k )
= 1 a.s.

From this we conclude that (4.1) holds. �
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