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Abstract. Let D ( Rd be an unbounded domain and let B(t) be a

Brownian motion in D with normal reflection at the boundary. We study

the transcience/recurrence dichotomy, focusing mainly on domains of

the form D = {(x, z) ∈ Rl+m : |z| < H(|x|)}, where d = l + m and H

is a sufficiently regular function. This class of domains includes various

horn-shaped domains and generalized slab domains.

1. Introduction and Statement of Results

Let D ( Rd be an unbounded domain with C2-boundary and consider

Brownian motion {B(t), 0 ≤ t < ∞} in D with normal reflection at the

boundary [3]. The normally reflected Brownian motion is a reversible Markov

process with self-adjoint generator 1
2∆N , where ∆N is the Neumann Lapla-

cian on D. In this paper, we study the transience/recurrence dichotomy for

this process.

We recall the following facts which can be found in [2]. For a bounded

open set U ⊂ D, let τU = inf{t ≥ 0 : B(t) ∈ Ū} denote the first hitting time

of Ū , the closure of U . Let Py and Ey denote probabilities and expectations

for the normally reflected Brownian motion starting from y ∈ D̄. One has

either Py(τU < ∞) = 1, for all y 6∈ Ū and all bounded open U for which

D − U is connected, or else, one has Py(τU < ∞) < 1, for all such y and

U . In the former case, the process is recurrent and in the latter case it is
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transient and one has limt→∞ |B(t)| = ∞ a.s.. In the recurrent case, the

process is called positive recurrent or null recurrent, respectively, according

to whether it does or does not possess an invariant probability measure. One

has either EyτU < ∞, for all y and U as above, or else one has EyτU = ∞,

for all such y and U . The former case is equivalent to positive recurrence.

The power of self-adjointness renders disarmingly simple the characteri-

zation of positive recurrence for the normally reflected Brownian motion:

Proposition 1. The normally reflected Brownian motion in D ⊂ Rd is

positive recurrent if and only if Vol(D) < ∞.

Proof. For one direction, note that by self-adjointness, the transition density

function p(t, y, y′) for the normally reflected Brownian motion is symmet-

ric in y and y′; therefore,
∫
D p(t, y, y′)dy =

∫
D p(t, y′, y)dy = 1. Thus, if

Vol(D) < ∞, then the constant 1
Vol(D) is the invariant probability density.

On the other hand, if there exists an invariant probability density φ, then

by the spectral theorem and the regularity, φ must be an eigenfunction

corresponding to the eigenvalue 0 for −1
2∆N ; that is φ is 1

2∆N -harmonic:
1
2∆Nφ = 0 in D and ∇φ · n = 0 on ∂D. The existence of the invariant

probability measure guarantees recurrence, and it is well-known that the

generator of a recurrent Markov process possesses no nonconstant positive

harmonic functions [2, chapter 4]; thus we conclude that φ is constant. But

if φ is constant and is a probability density on D, then Vol(D) < ∞. �

With regard to the transience/recurrence dichtomy, the self-adjointness

no longer acts as a deus ex machina. However, it does allow one to prove

that this dichotomy exhibits monotonicity with respect to the domain; that

is, if the normally reflected Brownain motion in D is recurrent, then the

normally reflected Brownian motion in D̂ is also recurrent if D̂ ⊂ D. The

proof hinges on a variational which we now describe. Let Dn = D∩{|y| < n},

assume without loss of generality that D1 = {|y| < 1} and let A1,0
D,n = {u ∈

C2(Dn − D̄1) ∩ C(D̄n −D1) : u = 1 on ∂D1 and u = 0 on {|y| = n} ∩D}.



NORMALLY REFLECTED BROWNIAN MOTION 3

Then [2, 1]

(1.1) l ≡ lim
n→∞

inf
u∈A1,0

D,n

∫
Dn

|∇u|2dy

= 0, if B(t) is recurrent;

> 0, if B(t) is transient.

If D̂ ⊂ D, then it is easy to see that any u ∈ A1,0
D,n, when restricted to the

appropriate smaller domain, belongs to A1,0

D̂,n
. The domain monotonicity

follows from this and (1.1).

In particular, the domain monotonicity renders trivial the dichotomy of

transcience/recurrence when d = 2: since standard Brownian motion in

all of R2 is recurrent, normally reflected Brownian motion in any domain

D ⊂ R2 is a fortiori recurrent.

For the rest of this paper we will study the transcience/recurrence di-

chotomy in domains D ⊂ Rd, d ≥ 3, of the following form. Let H > 0 be a

continuous function on [0,∞). For l, m ≥ 1 with l + m ≥ 3, denote points

y ∈ Rl+m by y = (x, z), where x ∈ Rl and z ∈ Rm. Let

(1.2) D = {(x, z) ∈ Rl+m : |z| < H(|x|)}.

We single out two particular subclasses of domains as above. In the case

that l = 1, we will write d− 1 instead of m, and such domains will be called

d-dimensional horn-shaped domains. In the case that m = 1, we will write

d− 1 instead of l, and such domains will be called d-dimensional generalized

slab domains.

Before presenting the results, we note the following point of departure. In

consonance with the above notation, denote the normally reflecting Brow-

nian motion as B(t) = (X(t), Z(t)). Consider the case that H is constant.

Then D is the product of Rl and a ball in Rm. (In particular if l = 1 it is

a cylinder and if m = 1 it is a slab.) Then X(t) in isolation is a standard

l-dimensional Brownian motion. If l ≤ 2, then it is clear that the recurrence

of X(t) guarantees the recurrence of B(t). By the domain monotonicity

noted above, this recurrence will also hold for any domain that is contained
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in D. Thus, for l ≤ 2, the interesting case occurs when H is unbounded. On

the other hand, if l ≥ 3, then X(t) is transient, and thus so is B(t). By do-

main monotonicity, this transience will also hold for any domain containing

D. Thus, the interesting case occurs when lims→∞H(s) = 0.

We will impose the following regularity conditions on H.

Assumption H. H ∈ C3([0,∞)) and satisfies the following conditions:

lims→∞H(s)H ′′(s) = lims→∞H ′(s) = 0, H(s)H ′(s) = o(s) as s → ∞,∫∞ (H′(s))3

H(s) ds < ∞,
∫∞ (H′(s))2

s ds < ∞.

Remark. Assumption H allows for H(s) ∼ sγ with γ < 1 but not with γ ≥ 1.

However, this growth restriction is in fact irrelevant, as will be noted in the

remark following the theorem and examples below.

Theorem 1. Let d = l + m ≥ 3 and let D ⊂ Rd be the domain defined by

(1.2) via a function H which satisfies Assumption H.

i. If
∫∞

s1−lH−m(s)ds = ∞ and D̂ j D, then normally reflected Brownian

motion in D̂ is recurrent.

ii. If
∫∞

s1−lH−m(s)ds < ∞ and D j D̂, then normally reflected Brownian

motion in D̂ is transient.

Example 1 (Horn-shaped domains). Denote points in Rd, d ≥ 3, by (x, z)

with x ∈ R and z ∈ Rd−1. Let D be the d-dimensional horn-shaped domain

defined by D = {(x, z) ∈ Rd : |z| < (1 + |x|)γ}. Then normally reflected

Brownian motion in D is recurrent if γ ≤ 1
d−1 and transient if γ > 1

d−1 .

Example 2 (Generalized slab domains). Denote points in Rd, d ≥ 3, by

(x, z) with x ∈ Rd−1 and z ∈ R. If D is the d-dimensional generalized

slab defined by D = {(x, z) ∈ Rd : |z| < (1 + |x|)γ}, then the normally

reflected Brownian motion in D is recurrent if γ ≤ 3 − d and transient

if γ > 3 − d. If d = 3 and D is the generalized slab domain defined by

D = {(x, z) ∈ Rd : |z| < logγ(2+|x|)}, then the normally reflected Brownian

motion in D is recurrent if γ ≤ 1 and transient if γ > 1.
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Example 3. For the domain D = {(x, z) ∈ Rl+m : |z| < H(|x|)}, with

H(s) ∼ sγ , the normally reflected Brownian motion is recurrent if γ ≤ 2−l
m

and transient if γ > 2−l
m .

Remark. Example 3 demonstrates that for any domain D defined by (1.2)

with H(s) ∼ sγ , the value of γ that represents the cut-off between recurrence

and transience is never greater than 1
2 . This fact, along with the domain

monotonicity with regard to transience and recurrence, renders irrelevant

the growth condition imposed by Assumption H and noted in the remark

following that assumption.

We now give the probabilistic intuition for Theorem 1. Consider first an

(l + m)-dimensional Brownian motion (X(t), Z(t)) in the cylinder {(x, z) ∈

Rl+m : |z| < a} with skew-reflection at |z| = a corresponding to the re-

flection vector (γ x
|x| ,−β z

|z|), where β > 0 and γ are constants and the

vector has been normalized by the requirement that γ2 + β2 = 1. Let

ρ(t) = |X(t)|. By Ito’s formula for diffusions with reflection, one has

ρ(t) = W (t)+ l−1
2

∫ t
0

1
ρ(s)ds+γLa(t), where W (t) is a one-dimensional Brow-

nian motion and La(t) is the local time up to time t of Z(·) at {|z| = a}

[3]. We will show below that Ex,zLa(t) ∼ m
2a t as t → ∞. Thus, over the

long run, the local time term behaves like a constant drift of strength m
2a .

Consequently, the behavior of ρ(t) = |X(t)| over the long run should be like

the behavior of the one-diffusion generated by 1
2

d2

dρ2 + l−1
2ρ

d
dρ + mγ

2a
d
dρ .

With the above analysis in mind, consider the normally reflected Brow-

nian motion in D, where D is given by (1.2). At a point (x, z) ∈ ∂D

one has |z| = H(|x|) and the normalized normal reflection vector point-

ing into D is given by ((H ′)2(|x|) + 1)−
1
2 (H ′(|x|) x

|x| ,−
z
|z|). Taking our

cue from the case above with constant skew reflection vector, and letting

a = H(|x|) and γ = H′(|x|)
((H′)2(|x|)+1)

1
2
, we would expect the behavior of |X(t)|

over the long run to be like that of the one-dimensional diffusion generated

by 1
2

d2

dρ2 + l−1
2ρ

d
dρ+ mH′(ρ)

2H(ρ)((H′)2(ρ)+1)
1
2

d
dρ . Since we are assuming that H ′(ρ) → 0
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as ρ →∞, the above diffusion is not much different from the one generated

by A ≡ 1
2

d2

dρ2 + l−1
2ρ

d
dρ + mH′(ρ)

2H(ρ)
d
dρ . The criterion in Theorem 1 is exactly

the transience/recurrence criterion [2, chapter 5] for the one-dimensional

diffusion whose generator is A.

We now return to show that Ex,zLa(t) ∼ m
2a t as t → ∞. The process

Z(t) in isolation is a Brownian on the a-ball with normal reflection at the

boundary. Let Ez denote the expectation for this process starting from z. Let

∆m denote the Laplacian on Rm, let r = |z| and note that 1
2∆m(|z|2) = m

and ∂(|z|2)
∂r ||z|=a = 2a. Let σr = inf{t ≥ 0 : |Z(t)| = r} and let zr denote a

point satisfying |zr| = r. We now twice apply Ito’s formula for diffusions with

reflection to the process Z(t) and the function |z|2 and take expectations.

One time we start at za
2

and terminate at σa and the other time we start at

za and terminate at σa
2
. We obtain

a2 = Ez a
2
|Z(σa)|2 =

a2

4
+ Ez a

2

∫ σa

0
mdt =

a2

4
+ mEz a

2
σa

and
a2

4
= Eza |Z(σa

2
)|2 = a2 + Eza

∫ σ a
2

0
mdt− 2aEzaLa(σa

2
)

= a2 + mEzaσa
2
− 2aEzaLa(σa

2
).

Of course we also have Ez a
2
La(σa) = 0 since La(t) = 0 for t ≤ σa. From the

above equations we obtain

Ez a
2
La(σa) + EzaLa(σa

2
)

Ez a
2
σa + Ezaσa

2

=
m

2a
.

Thus m
2a is equal to the expected local time accrued by Z(t) at {|z| = a}

over a complete cycle starting at |z| = a
2 and ending again at |z| = a

2 after

reaching |z| = a divided by the expected total time of such a complete cycle.

Using this, it follows easily from the renewal theorem that Ex,zLa(t) ∼ m
2a t

as t →∞.

The rest of the paper is organized as follows. In section 2 we construct

a class of functions from which we will cull appropriate Lyapunov functions
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which will be used to prove Theorem 1. Then in section 3 we give the proof

of Theorem 1.

2. Lyapunov functions

In this section we construct a family of functions from which we will cull

appropriate Lyapunov functions which will be used to prove Theorem 1.

Let D be a domain in Rl+m defined by (1.2) for some choice of H satisfying

Assumption H. Recall that we are writing points in Rl+m by (x, z), where

x ∈ Rl and z ∈ Rm. Let ρ = |x| and r = |z|. The functions we construct

will be functions of ρ and r and will denoted by u(ρ, r). Each such function

u will depend on a function f , which is an arbitrary C2-function from [0,∞)

to (0,∞). For such an f we define u by

(2.1) u(−1
2

H ′(s)
H(s)

r2 + s +
1
2
H(s)H ′(s), r) = f(s), 0 ≤ r ≤ H(s).

Assumption H guarantees that for sufficiently large s, the first argument in

u above is increasing in s for each fixed r ∈ [0,H(s)]. Thus, u is well-defined

by (2.1) for all sufficiently large s and r ≤ H(s). In particular then, for

some ρ0 > 0, u is well-defined on D̄ ∩ {|x| ≥ ρ0}. Note that for each fixed

s, the argument of u in (2.1) defines a paraboloid with independent variable

r = |z|. These paraboloids are the level sets of u. Note that they have been

chosen so that

(2.2) (∇u · n)(x, z) = 0, for (x, z) ∈ ∂D ∩ {|x| ≥ ρ0},

where n is the unit inward normal at ∂D.

We now calculate 1
2∆u. Since u depends only on ρ = |x| and r = |z|, we

have

(2.3)
1
2
∆u =

1
2
uρρ +

l − 1
2ρ

uρ +
1
2
urr +

m− 1
2r

ur.

In the calculations that follow, we simplify notation by defining

L(s) ≡ log H(s) and Q(s) ≡ H2(s).
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Also, we suppress the argument (−1
2

H′(s)
H(s) r2+s+ 1

2H(s)H ′(s), r) that appears

in u and its derivatives. Differentiating (2.1) with respect to r gives

(2.4) −rL′(s)uρ + ur = 0,

and differentiating a second time with respect to r gives

(2.5) r2(L′(s))2uρρ − L′(s)uρ + urr − 2rL′(s)uρr = 0.

Differentiating (2.1) with respect to s gives

(2.6) (−1
2
r2L′′(s) + 1 +

1
4
Q′′(s))uρ = f ′(s),

and differentiating a second time with respect to s gives

(2.7) (−1
2
r2L′′(s) + 1 +

1
4
Q′′(s))2uρρ + (−1

2
r2L′′′(s) +

1
4
Q′′′(s))uρ = f ′′(s).

Differentiating (2.4) with respect to s gives

(2.8)

(−1
2
r2L′′(s) + 1 +

1
4
Q′′(s))uρr − rL′(s)(−1

2
r2L′′(s) + 1 +

1
4
Q′′(s))uρρ

− rL′′(s)uρ = 0.

Equation (2.4) allows one to solve for ur in terms of uρ and L. Equation

(2.8) allows one to solve for uρr in terms of uρρ, uρ, L and Q, and then (2.5)

allows one to solve for urr in terms of these same functions. Equation (2.6)

allows one to solve for uρ in terms of f, L and Q, and then (2.7) allows one

to solve for uρρ in terms of these same functions. We are therefore able to

express 1
2∆u as given in (2.3) in terms of f, L and Q as follows:

(2.9)
1
2
∆u =

1
2
(∆u)(−1

2
H ′(s)
H(s)

r2+s+
1
2
H(s)H ′(s), r) =

1
2
A(r, s)f ′′(s)+

1
2
B(r, s)f ′(s),

where

(2.10) A(r, s) =
1 + r2(L′(s))2

C2
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and

(2.11)

B(r, s) = m
L′(s)

C
+ (l − 1)

1
C
∫

C
+

2r2L′L′′

C2
−

(1 + r2(L′(s))2)∂C
∂s

C3
,

with

(2.12) C = C(r, s) = 1 +
1
4
Q′′(s)− 1

2
r2L′′(s)

and

(2.13)
∫

C = (
∫

C)(r, s) = s +
1
4
Q′(s)− 1

2
r2L′(s).

We note that by the assumptions on H, C(r, s) and (
∫

C)((r, s) are bounded

away from 0 for large s and r ≤ H(s).

3. Proof of Theorem 1

It suffices to prove the results for D as in the statement of the theo-

rem. The corresponding results for D̂ then follow from the domain mono-

tonicity property proved in section 1. Recall that we are writing the nor-

mally reflected Brownian motion as B(t) = (X(t), Z(t)). For x0 > 0, let

τx0 = inf{t ≥ 0 : X(t) ≤ x0}. For a C2-function v defined on D̄ ∩ {x ≥ x0},

Ito’s formula gives

(3.1)
v(B(t ∧ τx0)) = v(B(0)) +

∫ t∧τx0

0
(∇v)(B(s)) · dW (s)+∫ t∧τx0

0

1
2
(∆v)(B(s))ds +

∫ t∧τx0

0
(∇v · n)(B(s))dL(s),

where W is a standard d-dimensional Brownian motion, n is the inward unit

normal at ∂D and L is the local time of B(t) at the boundary ∂D. If∇v ·n =

0 on ∂D ∩ {x ≥ x0}, then the local time term vanishes. If one can find such

a v for which ∆v ≤ 0 on D̄ ∩ {x ≥ x0} and such that limx→∞ v(x, z) = ∞,

then the normally reflected Brownian motion is recurrent, while if one can

find such a bounded v for which ∆v ≤ 0 on D̄ ∩ {x ≥ x0} and such that

v(x1, z) < inf |z|≤H(x0) v(x0, z), for some x1 > x0, then the normally reflected

Brownian motion is transient [2, chapter 6].
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Recall from (2.2) that the function u defined in (2.1) satisfies ∇u · n = 0

on ∂D ∩ {|x| ≥ ρ0}. If one can choose the function f appearing in the

definition of u such that lims→∞ f(s) = ∞ and 1
2∆u(x, z) ≤ 0, for (x, z) ∈ D

with x sufficiently large, then one can choose v = u and conclude that the

normally reflected Brownian motion is recurrent. Alternatively, if one can

choose a bounded, increasing f such that 1
2∆u(x, z) ≥ 0 for (x, z) ∈ D,

with x sufficiently large, then one can choose v = −u and conclude that the

normally reflected Brownian motion is transient.

From (2.9) it follows that if Γ+(s),Γ−(s) satisfy

(3.2) Γ+(s) ≥ sup
r≤H(s)

B

A
(r, s), Γ−(s) ≤ inf

r≤H(s)

B

A
(r, s),

and if we let

(3.3) f±(s) =
∫ s

s0

dt exp(−
∫ t

s0

Γ±(ρ)dρ),

for some s0 > 0, then 1
2∆u ≤ 0 if u is constructed from f+, and 1

2∆u ≥ 0 if u

is constructed from f−. Thus, if one can choose Γ+ so that lims→∞ f(s) =

∞, then one will obtain recurrence, while if one can choose Γ− so that

f− is bounded, then one will obtain transience. The assumptions on H

guarantee that in the calculations that follow below, the denominators of

all the fractions as well as the numerators of the fractions that appear as

arguments of logarithms are bounded away from 0 for s sufficiently large.

We choose s0 above sufficiently large to accommodate this condition.

In order to choose Γ± appropriately, we must analyze B
A from (2.10) and

(2.11). After performing some algebra to isolate terms that do not depend
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on r, and arranging certain other terms as logarithmic derivatives, we obtain

(3.4)
B

A
(r, s) = mL′(s) + (l − 1)

(
s + 1

4Q′(s)− 1
2r2L′(s)

)′
s + 1

4Q′(s)− 1
2r2L′(s)

+
1
4
mL′(s)Q′′(s)

−mL′(s)
r2(L′(s))2(1 + 1

4Q′′(s))
1 + r2(L′(s))2

+
5−m

2
(1 + r2(L′(s))2)′

1 + r2(L′(s))2

−
(
1 + 1

4Q′′(s)− 1
2r2L′′(s)

)′
1 + 1

4Q′′(s)− 1
2r2L′′(s)

− l − 1
2

r2(L′(s))2(1 + 1
4Q′′(s)− 1

2r2L′′(s))
s + 1

4Q′(s)− 1
2r2L′(s)

,

where the prime denotes differentiation with respect to s. For fixed s, as

functions of r ∈ [0,H(s)], the three functions (1+r2(L′(s))2)′

1+r2(L′(s))2 = 2r2L′(s)L′′(s)
1+r2(L′(s))2 ,

−(1+ 1
4
Q′′(s)− 1

2
r2L′′(s))′

1+ 1
4
Q′′(s)− 1

2
r2L′′(s)

= −
1
4
Q′′′(s)− 1

2
r2L′′′(s)

1+ 1
4
Q′′(s)− 1

2
r2L′′(s)

and (s+ 1
4
Q′(s)− 1

2
r2L′(s))′

s+ 1
4
Q′(s)− 1

2
r2L′(s)

=
1+ 1

4
Q′′(s)− 1

2
r2L′′(s)

s+ 1
4
Q′(s)− 1

2
r2L′(s)

take on their maximum values and their minimum val-

ues at the endpoints {0,H(s)}. In particular then, the functions

(3.5)

E+(s) = sup
0≤r≤H(s)

(1 + r2(L′(s))2)′

1 + r2(L′(s))2
, E−(s) = inf

0≤r≤H(s)

(1 + r2(L′(s))2)′

1 + r2(L′(s))2
,

(3.6)

F+(s) = sup
0≤r≤H(s)

(
−
(
1 + 1

4Q′′(s)− 1
2r2L′′(s)

)′
1 + 1

4Q′′(s)− 1
2r2L′′(s)

)
,

F−(s) = inf
0≤r≤H(s)

(
−
(
1 + 1

4Q′′(s)− 1
2r2L′′(s)

)′
1 + 1

4Q′′(s)− 1
2r2L′′(s)

)

and

(3.7)

G+(s) = sup
0≤r≤H(s)

(
s + 1

4Q′(s)− 1
2r2L′(s)

)′
s + 1

4Q′(s)− 1
2r2L′(s)

,

G−(s) = inf
0≤r≤H(s)

(
s + 1

4Q′(s)− 1
2r2L′(s)

)′
s + 1

4Q′(s)− 1
2r2L′(s)
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are continuous and piecewise continuously differentiable, and

(3.8)

∫ t

s0

E±(ρ)dρ = log
1 + H2

E±(t)(L′(t))2

1 + H2
E±(s0)(L′(s0))2

,∫ t

s0

F±(ρ)dρ = log
1 + 1

4Q′′(s0)− 1
2H2

F±(s0)(L′′(s0))2

1 + 1
4Q′′(t)− 1

2H2
F±(t)(L′′(t))2

,

∫ t

s0

G±(ρ)dρ = log
t + 1

4Q′(t)− 1
2H2

G±(t)L′(t)
s0 + 1

4Q′(s0)− 1
2H2

G±(s0)L′(s0)
,

where H∗±(s) ∈ {0,H(s)}, for ∗ = E,F, G.

Since L′ = H′

H , Q′′ = 2HH ′′ + 2(H ′)2 and 0 ≤ r ≤ H, it follows from

Assumption H that for some C0 > 0 one has

(3.9) m|L′(s)
r2(L′(s))2(1 + 1

4Q′′(s))
1 + r2(L′(s))2

| ≤ C0
|H ′(s)|3

H(s)
.

Similarly, for some C1 > 0, one has

(3.10)
l − 1

2
r2(L′(s))2|1 + 1

4Q′′(s)− 1
2r2L′′(s)|

s + 1
4Q′(s)− 1

2r2L′(s)
≤ C1

(H ′(s))2

s
.

In light of the above analysis, we define

(3.11)

Γ+(s) = mL′(s) +
1
4
mL′(s)Q′′(s) + C0

|H ′(s)|3

H(s)
+ C1

(H ′(s))2

s

+
5−m

2
E+(s) + F+(s) + (l − 1)G+(s);

Γ−(s) = mL′(s) +
1
4
mL′(s)Q′′(s)− C0

|H ′(s)|3

H(s)
− C1

(H ′(s))2

s

+
5−m

2
E−(s) + F−(s) + (l − 1)G−(s).

These choices of Γ± satisfy (3.2). We define f± as in (3.3).

It remains to analyze the behavior of f± as s → ∞. By (3.8) and

the assumptions on H, exp
(
−
∫ t
s0

(5−m
2 E±(ρ) + F±(ρ))dρ

)
is bounded and

bounded from 0 for large t. By the assumptions on H, exp(±
∫ t
s0

C0
|H′(ρ)|3

H(ρ) dρ)

and exp(±
∫ t
s0

C1
(H′(ρ))2

ρ dρ) are bounded and bounded from 0 for large t. We
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have ∫ t

s0

L′(ρ)Q′′(ρ)dρ = 2
∫ t

s0

(H ′(ρ)H ′′(ρ) +
(H ′(ρ))3

H(ρ)
)dρ =

(H ′(t))2 − (H ′(s0))2 +
∫ t

s0

(H ′)3

H
(ρ)dρ,

and thus by the assumptions on H, exp(−m
4

∫ t
s0

L′(ρ)Q′′(ρ)dρ) is bounded

and bounded from 0 for large t.

The assumptions on H also show that

(3.12)
(1− c(s0))

t

s0
≤

t + 1
4Q′(t)− 1

2H2
G±(t)L′(t)

s0 + 1
4Q′(s0)− 1

2H2
G±(s0)L′(s0)

≤ (1 + c(s0))
t

s0
,

where 0 < c(s0) = o(1) as s0 →∞.

Thus, from (3.8) one has

(3.13)(
(1 + c(s0))t

s0

)1−l

≤ exp(−
∫ t

s0

(l − 1)G±(ρ)dρ) ≤
(

(1− c(s0))t
s0

)1−l

,

where 0 < c(s0) = o(1) as s0 →∞.

Finally, we have

exp(−
∫ t

s0

mL′(ρ)dρ) =
(

H(t)
H(s0)

)−m

.

The calculations of the last two paragraphs along with (3.11) give

(3.14)

(1− C(s0))(
t

s0
)1−l

(
H(t)
H(s0)

)−m

≤ exp(−
∫ t

s0

Γ±(ρ)dρ)

≤ (1 + C(s0))(
t

s0
)1−l

(
H(t)
H(s0)

)−m

, where 0 < C(s0) = o(1) as s0 →∞.

We therefore conclude from (3.3) and (3.14) that lims→∞ f+(s) = ∞, if∫∞
t1−lH−m(t)dt = ∞, and f− is bounded, if

∫∞
t1−lH−m(t)dt < ∞. �

References

[1] Pinsky, R., Transience and recurrence for multidimensional diffusions: a survey and

a recent result. In Geometry of Random Motion, Contemp. Math., 73, Amer. Math.

Soc., Providence, RI, (1988), 273-285.



14 ROSS G. PINSKY

[2] Pinsky, R. G., Positive Harmonic Functions and Diffusion, Cambridge Studies in

Advanced Mathematics 45, Cambridge University Press, (1995).

[3] Stroock, D. W. and Varadhan, S. R. S., Diffusion processes with boundary conditions,

Comm. Pure Appl. Math. 24 (1971), 147-225.

Department of Mathematics, Technion—Israel Institute of Technology,

Haifa, 32000, Israel

E-mail address: pinsky@math.technion.ac.il

URL: http://www.math.technion.ac.il/~pinsky/


