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Abstract. We investigate the transience/recurrence of a non-Markovian,

one-dimensional diffusion process which consists of a Brownian motion

with a non-anticipating drift that has two phases—a transient to +∞

mode which is activated when the diffusion is sufficiently near its run-

ning maximum, and a recurrent mode which is activated otherwise. We

also consider the speed of a diffusion with a two-phase drift, where the

drift is equal to a certain positive constant when the diffusion is suf-

ficiently near its running maximum, and is equal to another positive

constant otherwise.

1. Introduction and Statement of Results

Over the past fifteen years or so, there has been much interest in the study

of the long term behavior of various random walks with non-Markovian

transition mechanisms, such as random walks in random environment, self-

avoiding random walk, edge or vertex reinforced random walks, and excited

(so-called “cookie”) random walks. See, for example, the monograph [13],

and the survey articles [9] and [7], which include many references. Non-

Markovian diffusion processes analogous to excited random walks have also

been studied (see [2], [3], [12]), as well as so-called Brownian polymers, which

are non-Markovian self-repelling diffusions, analogous to certain negatively

reinforced random walks (see [4], [1], [8], [5]). In this paper we investigate the

transience/recurrence of a non-Markovian, one-dimensional diffusion process
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which consists of a Brownian motion with a non-anticipating drift that has

two phases—a transient to +∞ mode which is activated when the diffusion

is sufficiently near its running maximum, and a recurrent mode which is

activated otherwise. We also consider the speed of a diffusion with a two-

phase drift, where the drift is equal to a certain positive constant when the

diffusion is sufficiently near its running maximum, and is equal to another

positive constant otherwise.

Let bT (x) and bR(x) be continuous functions on R which satisfy

(1.1)∫
−∞

exp(−
∫ x

0
2bT (y)dy)dx =∞,

∫ ∞
exp(−

∫ x

0
2bT (y)dy)dx <∞;∫

−∞
exp(−

∫ x

0
2bR(y)dy)dx =∞,

∫ ∞
exp(−

∫ x

0
2bR(y)dy)dx =∞.

As is well known [10], the one-dimensional diffusion processes correspond-

ing to the operators LT ≡ 1
2
d2

dx2 + bT (x) d
dx and LR ≡ 1

2
d2

dx2 + bR(x) d
dx are

respectively transient to +∞ and recurrent. Let γ : [0,∞) → (0,∞) be a

continuous function satisfying

γ > 0, γ′ < 1 and lim
x→∞

(x− γ(x)) =∞.

For a continuous trajectory x(·) : [0,∞) → R, let x∗(t) = max0≤s≤t x(s)

denote its running maximum. We define a non-anticipating, non-Markovian

drift b(t, x(·)) by

(1.2) b(t, x(·)) =

b
T (x(t)), if x(t) > x∗(t)− γ(x∗(t));

bR(x(t)), if x(t) ≤ x∗(t)− γ(x∗(t)).

We consider the diffusion process X(t) that satisfies the stochastic differen-

tial equation

(1.3) X(t) = x0 +W (t) +
∫ t

0
b(s,X(·))ds,

where W (·) is a Brownian motion. Existence and uniqueness for this sto-

chastic differential equation follow from the standard theory for classical
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diffusion processes (see section 3). We call the solution to (1.3) a diffusion

with a two-phase “use it or lose it” drift.

For example, the process X(t) might represent the price of a stock. As

prices rise, people are encouraged to buy, creating a certain trend represented

by the transient drift. In addition to this underlying trend, there is a random

fluctuation represented by the Brownian motion. These random fluctuations

might cause prices to slump. If the slump becomes sufficiently large, it

discourages buying, which creates a new weaker trend, represented by the

recurrent drift. When random fluctuations eventually result in prices rising

to levels close to the previous high, the original stronger trend reasserts itself.

With similar reasoning, the process X(t) might measure sales figures for a

trendy brand product, or some other measurement of the general zeitgeist.

We call γ the “down-crossing” function. For the majority of the paper,

we will consider the case that the down-crossing function γ is a constant.

In this case, at any time t, the diffusion X(t) will run in the transient mode

if and only if X(t) > X∗(t) − γ, or equivalently, if and only if by time t

the path X(·) has not down-crossed an interval of length γ whose left hand

endpoint is larger than or equal to X(t).

The various equivalent definitions of transience and recurrence for classical

non-degenerate diffusion processes hold for the diffusion with the two-phase

drift. (This will be clear from the construction in section 3.) We state here

the standard definitions, although we will use other equivalent definitions

in the proofs. The diffusion with the two-phase drift is recurrent if for any

pair of points x0 and x1, the process starting at x0 almost surely returns

to x1 at arbitrarily large times. The diffusion with the two-phase drift is

transient to +∞ if starting at any x0, the process almost surely satisfies

limt→∞X(t) =∞.

Our first result concerns the case in which the transient drift is constant:

bT (x) ≡ b > 0, and the recurrent drift bR satisfies a regularity condition;
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namely, that the drift bR ∨ 0 is also a recurrent drift. In this case, the

diffusion with the two-phase drift is always recurrent.

Theorem 1. Assume that the down-crossing function γ is constant. Let the

transient drift be constant: bT (x) ≡ b > 0, and assume that the recurrent

drift bR is such that the drift bR ∨ 0 is also recurrent. That is, assume that

the condition satisfied by bR in (1.2) is also satisfied by bR ∨ 0. Then the

diffusion with the two-phase drift is recurrent.

Remark. Note that the diffusion with the two-phase drift is recurrent even

if the recurrent drift bR is just border line recurrent—for example, if for

sufficiently large x, bR(x) = 1
2x is the drift of the radial part of a two-

dimensional Brownian motion.

Maintaining the constant transient drift, but choosing the recurrent drift

bR to take on very large positive values at most locations, and compensating

to insure recurrence by having it take on even much larger negative values

at other locations, we can construct a diffusion with such a two-phase drift

that is transient.

Theorem 2. Assume that the down-crossing function γ is constant. Let the

transient drift be constant: bT (x) = b > 0. There exists a recurrent drift bR

such that the corresponding diffusion with the two-phase drift is transient.

We continue to assume that the down-crossing function γ is constant. As

noted above, b(t,X(·)) = bT (X(t)) if and only if by time t, the path X(·)

has not down-crossed an interval of length γ whose left hand endpoint is

larger than or equal to X(t). Now if the transient diffusion corresponding

to LT is such that it almost surely eventually stops making down-crossings

of length γ, then the diffusion in the two-phase environment will eventually

stop making down-crossings of length γ and will eventually be driven just

by the transient drift; consequently, it will be transient. In [11] we proved

the following result.
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Theorem P2. Consider the diffusion process corresponding to the operator

LT .

i. If bT (x) ≤ 1
2γ log x + 1

γ log(2) x for sufficiently large x, then the diffusion

almost surely makes γ-down-crossings for arbitrarily large times;

ii. If bT (x) ≥ 1
2γ log x+ k

γ log(2) x, for some k > 1 and for sufficiently large

x, then the diffusion almost surely eventually stops making down-crossings

of size γ.

In light of Theorem P2 and the paragraph preceding it, in the case of

a constant down-crossing function γ, if bT satisfies the condition in part

(ii) of the theorem, then the diffusion with the two-phase drift is transient,

regardless of what the recurrent drift bR is.

Continuing with a constant down-crossing function γ, we now let the

recurrent diffusion be Brownian motion, that is, bR ≡ 0, and determine what

the threshold growth rate is on bT that distinguishes between transience and

recurrence for the diffusion with the two-phase drift.

Theorem 3. Assume that the down-crossing function γ is constant. Let the

recurrent diffusion be Brownian motion: bR ≡ 0.

i. If bT (x) ≤ 1
2γ log(2) x+ 1

2γ log(3) x, for large x, then the diffusion with the

two-phase drift is recurrent;

ii. If bT (x) ≥ 1
2γ log(2) x + k

2γ log(3) x, for large x, where k > 1, then the

diffusion with the two-phase drift is transient.

We now consider the case that the recurrent diffusion is Brownian motion:

bR ≡ 0, that the transient drift is constant: bT (x) ≡ b, but we allow the

down-crossing function γ to grow with x. We determine the threshold growth

rate on the down-crossing function that distinguishes between transience and

recurrence for the diffusion with the two-phase drift.

Theorem 4. Let the recurrent diffusion be Brownian motion: bR ≡ 0, and

let the transient drift be constant: bT (x) ≡ b.
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i. If the down-crossing function γ satisfies γ(x) ≤ 1
2b log(2) x+ 1

2b log(3) x, for large x,

then the diffusion with the two-phase drift is recurrent;

ii. If the down-crossing function γ satisfies γ(x) ≥ 1
2b log(2) x+ k

2b log(3) x, for large x,

where k > 1, then the diffusion with the two-phase drift is transient.

We now make one major and one minor change in the setup we have used

until now. Let the two-phase drift b(t, x(·)) be given by (1.2), with bT ≡ b,

with γ constant, and with the recurrent drift bR replaced by the transient

constant drift c. The case c ∈ (0, b) is more in keeping with the theme of this

paper, but the case c > b also has an interesting aspect. In particular, for

the case c =∞, described below, the dependence on the diffusion coefficient

is worth noting; thus, we will consider the operator

(1.4)

L =
1
2
a
d2

dx2
+ b(t,X(·)) d

dx
,

where b(t,X(·)) =

b > 0, if X(t) > X∗(t)− γ;

c > 0, if X(t) ≤ X∗(t)− γ.

The next theorem gives the speed of the diffusion in this two-phase drift.

Theorem 5. Consider the diffusion in the two-phase drift corresponding to

the operator L in (1.4). The speed of the diffusion X(t) with the two-phase

drift is given by

lim
t→∞

X(t)
t

=
( c(e

2bγ
a − 1)

c(e
2bγ
a − 1) + (b− c)(1− e−

2bγ
a )

)
b a.s.

Remark. Let d(b, c, γ, a) ≡ c(e
2bγ
a −1)

c(e
2bγ
a −1)+(b−c)(1−e−

2bγ
a )

. In the case c ∈ (0, b),

we call d(b, c, γ, a) the damping coefficient. It gives the fractional reduction

in speed between a classical diffusion with drift b and the slowed down

diffusion with two-phase drift—b when the process is less than distance γ

from its running maximum, and c when the process is at least distance γ

from its running maximum. Of course, it is clear that d(b, c, γ) must always

fall between c
b and 1 when c ∈ (0, b). We make the following observations:
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1. When b → ∞, the damping coefficient d(b, c, γ, a) converges to 1 expo-

nentially in b;

2. When γ →∞, d(b, c, γ, a) converges to 1 exponentially in γ;

3. When c → 0, the damping coefficient d(b, c, γ, a) converges to 0 linearly

in c;

4. When c → 0 and γ → ∞, the damping coefficient d(b, c, γ, a) converges

to 1 (respectively, converges to 0, remains bounded away from 0 and 1) if

c exp(2bγ
a ) converges to ∞ (respectively, converges to 0, remains bounded

away from 0 and ∞);

5. When c → 0 and b → ∞, the damping coefficient d(b, c, γ, a) converges

to 0 if c exp(2bγ
a ) remains bounded. Otherwise, the damping coefficient con-

verges to 0 (respectively, converges to 1, remains bounded away from 0 and

1) if c exp( 2bγ
a

)

b converges to 0 (respectively, converges to∞, remains bounded

away from 0 and ∞).

6. The limiting case c = ∞ corresponds to the situation in which the

value X∗(t) − γ serves as a reflecting barrier for X(t); thus, the process

can never get farther than a distance γ from its running maximum. We

have d(b,∞, γ, a) = (e
2bγ
a −1)

(e
2bγ
a +e−

2bγ
a −2)

. For this process, as γ → ∞, the speed

satisfies d(b,∞, γ, a)b ∼ a
2γ . In particular, the speed approaches infinity and

the leading order term is independent of b—the process is propelled forward

by the positive excursions of the Brownian motion with diffusion coefficient

a.

In section 2, we present some preliminary information on down-crossings.

In section 3, we give an explicit representation of the diffusion with a two-

phase drift in terms of classical diffusions. In section 4 we give a workable

analytic criterion for transience/recurrence which depends on an auxiliary

discrete time, increasing Markov process. Sections 5-9 give the proofs of

Theorems 1-5.
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2. Preliminaries concerning down-crossings

From the definition of the down-crossing function γ, it follows that x −

γ(x) is increasing. Define the stopping time σγ on continuous paths x(·) :

[0,∞)→ R with the standard filtration Ft = σ(x(s) : 0 ≤ s ≤ t) by

σγ = inf{t ≥ 0 : ∃s < t with x(t) ≤ x(s)− γ(x(s))} =

inf{t ≥ 0 : x(t) = x∗(t)− γ(x∗(t))}.

The equality above follows from the fact that x− γ(x) is increasing. Let

Lγ = x∗(σγ);

Kγ = x(σγ) = x∗(σγ)− γ(x∗(σγ)).

In the case that the down-crossing function γ is constant, σγ is the first

time that the path x(·) completes a down-crossing of an interval of length

γ. The interval that was down-crossed is [Kγ , Lγ ]. In [11], for γ constant,

Lγ was called the γ-down-crossed onset location. In this paper, we will use

this terminology also for variable γ. We will call σγ the first γ-down-crossed

time. For use a bit later, let τa = inf{t ≥ 0 : x(t) = a} denote the first

hitting time of the point a.

Consider now the one-dimensional diffusion process Y (t) which corre-

sponds to the operator LT and which is transient to +∞. Denote probabil-

ities for the process starting from x by Px. Fixing a point z0, let

(2.1) uT (x) =
∫ x

z0

exp(−
∫ y

z0

2bT (r)dr)dy.

(The formula in the theorem below is independent of z0, but this specifica-

tion of z0 will be useful later on.) The following result was proved in [11].

Theorem P1. For the diffusion process corresponding to LT , and for con-

stant γ, the distribution of the γ-down-crossed onset location Lγ is given

by

Px(Lγ > x+ y) = exp(−
∫ x+y

x

u′T (z)
uT (z)− uT (z − γ)

dz), y > 0.
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Remark 1. In [11], where the notation is a bit different from here, the

mathematical definition of σγ , and consequently also of Lγ , were written

incorrectly. From the verbal description in [11], it is clear that the intended

definition of Lγ is the one given here. All the proofs in [11] are based on the

correct definitions given here.

Remark 2. Theorem P2 in section 1 was proved in [11] as an application

of Theorem P1.

The same method of proof used to prove Theorem P1 can be used in the

case of variable γ to obtain a corresponding formula for the distribution of

Lγ .

Proposition 1. For the diffusion process corresponding to LT , and for vari-

able γ, the distribution of the γ-down-crossed onset location Lγ is given by

Px(Lγ > x+ y) = exp(−
∫ x+y

x

u′T (z)
uT (z)− uT (z − γ(z))

dz), y > 0.

3. A representation for diffusion with two-phase drift

Consider the diffusion X(t) with the two-phase drift starting from x0.

Up until the first γ-down-crossed time σγ , the process is exactly the Y (·)-

process corresponding to the operator LT and starting from x0. We have

X(σγ) = Y (σγ) = Kγ and X∗(σγ) = Y ∗(σγ) = Lγ , with Lγ distributed as

in Proposition 1. Let

τ̂Lγ = inf{t ≥ 0 : X(σγ + t) = Lγ}.

Then σγ + τ̂Lγ is the first time after σγ that the process X(·) returns to its

running maximum Lγ . Let ZR,z,T (t) be the diffusion starting from z and

corresponding to the operator LR,z,T = 1
2
d2

dx2 + bR,z,T (x) d
dx , where

bR,z,T (x) =

b
R(x), x ≤ z;

bT (x), x > z.
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Then the distribution of {X(σγ + t), 0 ≤ t ≤ τ̂Lγ}, conditioned on Kγ =

X(σγ) = z and Lγ = X∗(σγ) = a, is that of {ZR,z,T (t), 0 ≤ t ≤ τa}. Of

course, X(σγ + τ̂Lγ ) = X∗(σγ + τ̂Lγ ) = Lγ . Starting from time σγ + τ̂Lγ ,

when the process has returned to its running maximum, X again looks like

the Y process, until it again performs a γ-down-crossing, at which point it

becomes a ZR,z,T process for appropriate z until it returns to its running

maximum, and everything is repeated again.

In light of the above description, X(t) can be represented as follows. For

each x ∈ R and each n ≥ 1, let Y n,x(·) be a diffusion process corresponding

to the operator LT and starting from x. Make the processes independent for

different pairs (n, x). Similarly, for each z ∈ R and each n ≥ 1, let ZR,z,T,n(·)

be a diffusion process corresponding to the operator LR,z,T and starting from

z. Make the processes independent for different pairs (n, z) and independent

of the Y n,x processes. Let σn,xγ denote the first γ-down-crossing time for the

process Y n,x, and let τn,za denote the first hitting time of a for the process

ZR,z,T,n. Let Lγ0 = x0 and then by induction, for n ≥ 1, define Lγn to be the

γ-down-crossed onset location for Y n,Lγn−1 . For n ≥ 1, let Kγ
n correspond to

Lγn as Kγ corresponds to Lγ . Then X(·) can be represented as

(3.1)
X(t) = Y 1,x0(t), 0 ≤ t ≤ σ1,x0

γ ;

X(t) = ZR,K
γ
1 ,T,1(t), σ1,x0

γ ≤ t ≤ σ1,x0
γ + τ

1,Kγ
1

Lγ1
,

and for n ≥ 2,

(3.2)

X(
n−1∑
j=1

σ
j,Lγj−1
γ +

n−1∑
j=1

τ
j,Kγ

j

Lγj
+ t) = Y n,Lγn−1(t), 0 ≤ t ≤ σn,L

γ
n−1

γ ;

X(
n∑
j=1

σ
j,Lγj−1
γ +

n−1∑
j=1

τ
j,Kγ

j

Lγj
+ t) = ZR,K

γ
n ,T,n(t), 0 ≤ t ≤ τn,K

γ
n

Lγn
.

From the above representation, it is clear that existence and uniqueness for

(1.3) follows from the standard theory for classical diffusion processes.

At those times s when X(s) is running as a Y n,Lγn−1(·)-process, for some

n ≥ 1, we will say that X(·) is in the Y -mode, and at those times s when
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X(s) is running as a ZR,K
γ
n ,T,n(·)-process, for some n ≥ 1, we will say that

X(·) is in the Z-mode. We denote by Px0 probabilities corresponding to

the diffusion X(t) with the two-phase drift starting from x0, and by Ex0 the

corresponding expectation.

Note that {Lγn}∞n=0 is a monotone increasing Markov process whose tran-

sition distribution from a state x is the distribution of Lγ in Proposition 1.

That is, the transition probability measure p(x, ·) is given by

(3.3)

p(x, [x+ y,∞)) = exp(−
∫ x+y

x

u′T (z)
uT (z)− uT (z − γ(z))

dz), for y ≥ 0.

We will use the notation PLx0
to denote probabilities for this discrete time

Markov process and will denote the corresponding expectation by ELx0
. The

times {Lγn}∞n=0 will be called “regeneration” points for X(·) because the Px0-

distribution of {X(
∑n−1

j=1 σ
j,Lγj−1
γ +

∑n−1
j=1 τ

j,Kγ
j

Lγj
+ t), 0 ≤ t < ∞} given that

Lγn−1 = a is the same as the Pa-distribution of {X(t), 0 ≤ t <∞}.

4. A transience/recurrence criterion

From the construction in section 3, the well-known equivalent alternative

conditions for transience/recurrence, which hold for standard non-degenerate

diffusion processes [10], are easily seen to hold for diffusions with a two-phase

drift. Since it is clear that the process is either transient to +∞ or recurrent,

we can use the following criterion:

(4.1)
Transience: for some pair of points z0 < x0, one has Px0(τz0 =∞) > 0;

Recurrence: for some pair of points z0 < x0, one has Px0(τz0 =∞) = 0.

We choose the point z0 so that z0 < x0 − γ(x0). Then it follows from

the representation of the process X(·) that at time τz0 the process is in the

Z-mode. Using this with the regeneration structure noted at the end of the
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previous section, it follows that

(4.2) Px0(τz0 =∞) = ELx0
G({Lγn}∞n=1),

where for any nondecreasing sequence {an}∞n=1 satisfying a1 ≥ x0, we define

(4.3) G({an}∞n=1) =
∞∏
n=1

P
R,an−γ(an),T
an−γ(an) (τan < τz0),

and where PR,z,Tz denotes probabilities for a ZR,z,T -processes starting at z.

From (4.2) we conclude that Px0(τz0 =∞) = 0 if and only ifG({Lγn}∞n=1) = 0

a.s. PLx0
; thus, from (4.3) we have

(4.4)

Px0(τz0 =∞) = 0 if and only if
∞∑
n=1

(
P
R,Lγn−γ(Lγn),T

Lγn−γ(Lγn)
(τz0 < τLγn)

)
=∞ a.s. PLx0

.

As is well known [10], the function v(x) ≡ PR,z,Tx (τz0 < τz+c), for z0 ≤

x ≤ z + c, satisfies LR,z,T v = 0 in (z0, z) ∪ (z, z + c), v(z0) = 1, v(z +

c) = 0, v(z−) = v(z+), and v′(z−) = v′(z+). Solving this, one finds that

PR,z,Tz (τz0 < τz+c) = v(z) is given by

(4.5)
PR,z,Tz (τz0 < τz+c) =

exp(−
∫ z
z0

(2bR)(y)dy)
∫ z+c
z dy exp(−

∫ y
z 2bT (r)dr)∫ z

z0
dy exp(−

∫ y
z0

2bR(r)dr) + exp(−
∫ z
z0

(2bR)(y)dy)
∫ z+c
z dy exp(−

∫ y
z 2bT (r)dr)

.

Analogous to uT in (2.1), define the function

(4.6) uR(x) =
∫ x

z0

exp(−
∫ y

z0

2bR(r)dr)dy.

We then rewrite the somewhat unwieldy equation (4.5), which would become

a lot more unwieldy below, in the form

(4.7)

PR,z,Tz (τz0 < τz+c) =
u′R(z)

(
uT (z + c)− uT (z)

)
exp(

∫ z
z0

2bT (y)dy)

uR(z) + u′R(z)
(
uT (z + c)− uT (z)

)
exp(

∫ z
z0

2bT (y)dy)
.

From (4.1), (4.4) and (4.7), we obtain the following transience/recurrence

criterion for the diffusion with the two-phase drift.
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Proposition 2. Define

(4.8)
H(s) =

u′R(s− γ(s))
(
uT (s)− uT (s− γ(s))

)
exp(

∫ s−γ(s)
z0

2bT (y)dy)

uR(s− γ(s)) + u′R(s− γ(s))
(
uT (s)− uT (s− γ(s))

)
exp(

∫ s−γ(s)
z0

2bT (y)dy)
.

Let {Lγn}∞n=0 be the monotone increasing Markov process with Lγ0 = x0 and

transition probability measure p(x, ·) given by (3.3). If

(4.9)
∞∑
n=0

H(Lγn) =∞ a.s.,

then the diffusion with the two-phase drift is recurrent. Otherwise, it is

transient.

5. Proof of Theorem 1

Proof of Theorem 1. By the Ikeda-Watanabe comparison theorem [6], if we

prove recurrence for the diffusion with the two-phase drift whose recurrent

drift bR is replaced by the drift bR ∨ 0, then original diffusion with the

two-phase drift is also recurrent. By assumption, the drift bR ∨ 0 is also a

recurrent drift. Thus, we may assume without loss of generality that the

recurrent drift bR is nonnegative.

Since bT ≡ b, we have from (2.1) that

uT (x) =
1
2b

(
1− exp

(
− 2b(x− z0)

))
.

Using this along with the fact that γ is constant, we have

(5.1)(
uT (s)− uT (s− γ(s))

)
exp(

∫ s−γ(s)

z0

2bT (y)dy) =
1
2b

(1− exp(−2bγ)) ≡ cb,γ ,

and thus the formula for H(s) in (4.8) simplifies to

(5.2) H(s) =
cb,γu

′
R(s− γ)

uR(s− γ) + cb,γu
′
R(s− γ)

.

From (4.6), it follows that uR is increasing, and by the assumption that bR is

nonnegative, it follows that u′R is non-increasing. Thus, H is non-increasing.
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We also have

(5.3)
u′T (z)

uT (z)− uT (z − γ(z))
=

1
cb,γ exp(2bγ)

≡ 1
db,γ

,

and thus the increment measure p(x, x + A), A ⊂ [0,∞), corresponding to

the transition probability measure p(x, ·) in (3.3) for the Markov process

{Lγn}∞n=0 is independent of x and is equal to the exponential density with

parameter 1
db,γ

. Consequently, Lγn − Lγ0 is the sum of n IID exponential

random variables with the above parameter, and thus

(5.4) lim
n→∞

Lγn
n

= db,γ a.s.

Using (5.4) along with the fact that H is non-increasing, if we show that∑∞
n=1H((db,γ + 1)n) =∞, then it follows that

∑∞
n=1H(Lγn) =∞ a.s., and

consequently, from Proposition 2 we conclude that the diffusion with the

two-phase drift is recurrent. Since u′R is non-increasing and uR is increasing,

it is easy to see from (5.2) that
∑∞

n=1H((db,γ + 1)n) = ∞ if and only if∑∞
n=1 Ĥ((db,γ + 1)n) = ∞, where Ĥ = u′R(s−γ)

uR(s−γ) . Since Ĥ is monotone, it

follows that
∑∞

n=1 Ĥ((db,γ + 1)n) =∞ if and only if
∫∞ u′R(s)

uR(s)ds =∞, that

is, if and only if lims→∞ uR(s) = ∞. But this last inequality holds from

(4.6) and (1.1) since bR is a recurrent drift. �

6. Proof of Theorem 2

As in the proof of Theorem 1, the random variables {Lγn − Lγn−1}∞n=1 are

IID and distributed according to the exponential distribution with parame-

ter 1
db,γ

, and the function H is given by (5.2). In order to show transience,

by Proposition 2, we need to show that
∑∞

n=0H(Lγn) < ∞ with positive

probability. Recalling (4.6) and (1.1), to complete the proof, we will con-

struct a function uR which satisfies uR > 0, u′R > 0 and limx→∞ uR(x) =∞,

and for which the above sum is almost surely finite. (The corresponding

drift bR will then be given by −u′′R
uR

.)
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For j ≥ 2, define the interval Ij = [x0 − γ + j, x0 − γ + j + 1
j2

]. Without

loss of generality, assume that x0 − γ + 2 ≥ 0. We now show that

(6.1) PLx0
(Lγn − γ ∈ ∪∞j=2Ij) ≤

c

n2
,

for some c > 0. The distribution of Lγn − x0 is that of the sum of n IID

exponential random variables with parameter λ ≡ 1
db,γ

. Thus, its density

function is λnxn−1

(n−1)! exp(−λx), x ≥ 0. For an appropriate constant C > 1, we

then have for n ≥ 3,

(6.2)

PLx0
(Lγn − γ ∈ ∪∞j=2Ij) =

∞∑
j=2

∫
Ij

λnxn−1

(n− 1)!
exp(−λx)dx ≤

C

∫ ∞
0

λnxn−3

(n− 1)!
exp(−λx)dx =

Cλ2

(n− 2)(n− 2)
.

Now (6.1) follows from (6.2).

We now construct a positive, strictly increasing C1-function uR whose de-

rivative on R−∪∞j=2Ij is uniformly bounded, and which satisfies uR(x) ≥ x2,

for x ≥ 2. (Of course, to have this quadratic growth, u′R must get very large

at certain places on ∪∞j=2Ij .) By the law of large numbers, limn→∞
Lγn
n = db,γ

a.s. By (6.1) and the lemma of Borel-Cantelli, PLx0
(Lγn−γ ∈ ∪∞j=2Ij i.o.) = 0.

Using the facts noted in this paragraph, we conclude that
∞∑
n=0

H(Lγn) =
∞∑
n=0

cb,γu
′
R(Lγn − γ)

uR(Lγn − γ) + cb,γu
′
R(Lγn − γ)

<∞ a.s.

�

7. Proof of Theorem 3

Since bR = 0, we have from (4.6) that uR(x) = x−z0. Also, γ is constant.

Thus, from (4.8), we have

(7.1) H(s) =

∫ s
s−γ dy exp(−

∫ y
s−γ 2bT (r)dr)

s− γ +
∫ s
s−γ dy exp(−

∫ y
s−γ 2bT (r)dr)

.

By comparison, it suffices to consider the case that

bT (x) =
1

2γ
log(2) x+

k

2γ
log(3) x,
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for x ≥ z0, with z0 large enough so that log(3) z0 is defined. We need to

show transience for k > 1 and recurrence for k = 1. In what follows, we will

always assume that k ≥ 1.

We have

(7.2)

(y−s+γ
)

log(j)(s−γ) ≤
∫ y

s−γ
log(j) rdr ≤ (y−s+γ

)
log(j) s, s−γ ≤ y ≤ s.

Thus,

(7.3)

γ − o(s)
log(2) s+ k log(3) s

≤
∫ s

s−γ
dy exp(−

∫ y

s−γ
2bT (r)dr) ≤

γ

log(2)(s− γ) + k log(3)(s− γ)
, as s→∞.

From (7.1) and (7.3) we conclude that there exist constants C1, C2 > 0 such

that

(7.4)
C1

s log(2) s
≤ H(s) ≤ C2

s log(2) s
, for large s.

We now investigate the growth rate of the Markov process {Lγn}∞n=0. Re-

call that given Lγj = x, the distribution of Lγj+1−L
γ
j is the distribution given

in (3.3). From (2.1) we have

(7.5)

u′T (x)
uT (x)− uT (x− γ)

=
exp(−

∫ x
z0

2bT (r)dr)∫ x
x−γ dy exp(−

∫ y
z0

2bT (r)dr)
=

exp(−
∫ x
x−γ 2bT (r)dr)∫ x

x−γ dy exp(−
∫ y
x−γ 2bT (r)dr)

.

From (7.2) and the definition of bT , we have

c1

(log x)(log(2) x)k
≤ exp(−

∫ x

x−γ
2bT (r)dr) ≤ c2

(log x)(log(2) x)k
, for large x,

for constants c1, c2 > 0. Using this with (7.3) and (7.5), we conclude that

there exist constants C3, C4 > 0 such that

(7.6)
C3

(log x)(log(2) x)k−1
≤

u′T (x)
uT (x)− uT (x− γ)

≤ C4

(log x)(log(2) x)k−1
, for large x.
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We now prove recurrence in the case that k = 1. Let {xn}∞n=0 be a

sequence of positive numbers with x0 sufficiently large so that the bound in

(7.6) holds for x ≥ x0, and let sn =
∑n

j=0 xj . We have
∫ sn
sn−1

1
log zdz ≥

xn
log sn

.

Using this with (7.6) and (3.3), we have

(7.7) PLx0
(Lγn − L

γ
n−1 ≤ xn|L

γ
n−1 ≤ sn−1) ≥ 1− exp

(
− C3xn

log sn

)
, n ≥ 1.

Fix a large number M . With x0 as above, we wish to select the sequence

{xn}∞n=0 so that

(7.8)
C3xn
log sn

= 2 log(n+M), for n ≥ 1.

We suppress the dependence of this sequence on M in the sequel. For the

sequence {xn}∞n=0 satisfying (7.8), it follows from (7.7) that

(7.9) PLx0
(Lγn ≤ sn for all n) ≥ 1−

∞∑
n=1

1
(n+M)2

.

Now (7.8) is a difference equation corresponding to the differential equation

(7.10)
C3S

′(t)
logS(t)

= 2 log(t+M), t ≥ 1.

Integrating, it follows that

(7.11)
C3S(t)
logS(t)

≤ 2(t+M)(log(t+M)− 1) + c,

for some constant c. If one substitutes 3
C3

(t + M)
(

log(t + M)
)2 for S(t)

in the left hand side of (7.11), one finds that the resulting expression is

larger than the right hand side of (7.11) for large t. Since the left hand side

of (7.11) is increasing as a function of S(t), (for S(t) ≥ e), it follows that

S(t) ≤ 3
C3

(t+M)
(

log(t+M)
)2, for sufficiently large t. It then follows that

the solution {sn}∞n=0 to (7.8) satisfies

(7.12) sn ≤ ŝn ≡ C(n+M)
(

log(n+M)
)2
, n ≥ 1,

for some C > 0.

Now from (7.9) and (7.12) we can conclude that with probability at

least 1 −
∑∞

n=1
1

(n+M)2
, we have Lγn ≤ C(n + M)

(
log(n + M)

)2, for all
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n. However, this is not good enough to prove recurrence when k = 1. In

fact though, from (7.7), (7.9) and (7.12), we conclude that with probabil-

ity at least 1 −
∑∞

n=1
1

(n+M)2
, {Lγn}∞n=1 is no larger than {L̂n}∞n=1, where

L̂γn = x0 +
∑n

i=1 Ẑi, and {Ẑn}∞n=1 is a sequence of independent random

variables with Ẑn ∼ Exp( C3
log ŝn

). By Kolmogorov’s strong law and (7.12),

it follows that L̂n∑n
j=1 log ŝj

almost surely converges to 1
C3

. Using this with

(7.12), it follows that {L̂n}∞n=1 almost surely grows on the order n log n.

Consequently, with probability at least 1 −
∑∞

n=1
1

(n+M)2
, {Lγn}∞n=0 grows

on an order no larger than n log n. Using this with (7.4), it follows that∑∞
n=0H(Lγn) = ∞, with probability at least 1 −

∑∞
n=1

1
(n+M)2

. But as M

is arbitrary, we conclude that this occurs with probability one, and thus by

Proposition 2, we conclude that the diffusion with the two-phase drift is

recurrent.

We now assume that k > 1 and prove transience. Chose x0 sufficiently

large so that the bound in (7.6) holds for x ≥ x0. From (7.6) and (3.3), we

have

(7.13) PLx0
(Lγn+1 − L

γ
n ≥ x|Lγn) ≥ exp

(
− C4x

(logLγn)(log(2) Lγn)k−1

)
.

Thus, it follows from the law of large numbers that

(7.14) lim
n→∞

1
n
{j ≤ n : Lγj+1 − L

γ
j ≥

(logLγj )(log(2) Lγj )k−1

C4
} ≥ e−1, a.s.

The above inequality states that, asymptotically, at least the fraction 1
e of

the increments Lγj+1−L
γ
j will be of size at least

(logLγj )(log(2) Lγj )k−1

C4
. As such,

it provides a lower bound on the growth rate of {Lγn}∞n=0. Since the function
(log y)(log(2) y)k−1

C4
is increasing in y, the “worst case” scenario resulting in

the least growth would occur if out of the first n increments, the first [ne ]

increments satisfied the above condition, and the rest did not. We can thus

get a lower bound on the growth rate as follows. Making sure that x0 > e,

so that log(2) x0 > 0, let {xn}∞n=0 be the sequence defined by

(7.15) xn+1 =
(log sn)(log(2) sn)k−1

C4
, n ≥ 0,
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where sn =
∑n

j=0 xj . Then it follows from (7.14) that

(7.16) P γx0
(Lγn ≥ s[ n2e ] for all large n) = 1.

As we did in the recurrent case, we analyze the growth rate of {sn}∞n=0 by

looking at the growth rate of the differential equation associated with the

above difference equation for {sn}∞n=0. The differential equation is

S′(t)
(logS(t))(log(2) S(t))k−1

=
1
C4
.

Integrating this, the leading order term on the left is S(t)

(logS(t))(log(2) S(t))k−1
,

and thus, for large S(t), we have

(7.17)
2S(t)

(logS(t))(log(2) S(t))k−1
≥ 1
C4
t+ c,

for some constant c. If one substitutes 1
2C4

t(log t)(log(2) t)k−1 for S(t) in

(7.17), one finds that the resulting expression is smaller than the right

hand side of (7.17) for large t. Since the left hand side of (7.17) is in-

creasing as a function of S(t) (for S(t) sufficiently large), it follows that

S(t) ≥ 1
2C4

t(log t)(log(2) t)k−1, for sufficiently large t. It then follows that

the solution {sn}∞n=0 to (7.15) satisfies

(7.18) sn ≥ Cn(log n)(log(2) n)k−1, n ≥ 3,

for some C > 0. We conclude from (7.16) and (7.18) that

(7.19) P γx0
(Lγn ≥ C0n(log n)(log(2) n)k−1 for all large n) = 1,

for some C0 > 0. From (7.19) and (7.4), it follows that
∑∞

n=0H(Lγn) < ∞

a.s., and thus by Proposition 2, we conclude that the diffusion with the

two-phase drift is transient. �

8. Proof of Theorem 4

By comparison, it suffices to consider the case that γ(x) = 1
2b log(2) x +

k
2b log(3) x, for x ≥ x0, with x0 large enough so that log(3) x0 is defined. We
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need to show recurrence in the case that k = 1, and transience in the case

that k > 1.

Since bT ≡ b, we have similar to (5.1),

(8.1)
(
uT (s)−uT (s−γ(s))

)
exp(

∫ s−γ(s)

z0

2bT (y)dy) =
1
2b

(1−exp(−2bγ(s))).

Since bR = 0, we have from (4.6) that uR(x) = x− z0. Thus, from (4.8) we

have

(8.2) H(s) =
1− exp(−2bγ(s))

2b(s− z0 − γ(s)) + 1− exp(−2bγ(s))
.

Since γ(s) = o(s), we conclude from (8.2) that there exist constants C1, C2 >

0 such that

(8.3)
C1

s
≤ H(s) ≤ C2

s
, for large s.

We now investigate the growth rate of the Markov process {Lγn}∞n=0.

Recall that given Lγj = x, the distribution of Lγj+1 − Lγj is the distri-

bution given in (3.3). Since bT ≡ b, we have from (2.1) that uT (x) =
1
2b

(
1− exp(−2b(x− z0))

)
. Thus,

u′T (z)
uT (z)− uT (z − γ(z))

=
2b

exp(2bγ(z))− 1
.

Plugging into this equation the formula for γ(z) given above, we have

(8.4)
u′T (z)

uT (z)− uT (z − γ(z))
=

2b
(log z)(log(2) z)k − 1

.

It was shown in the proof of Theorem 3 that if (7.6) holds, then {Lγn}∞n=0

grows at least on the order n log n(log(2) n)k−1. Thus, comparing (8.4) with

(7.6), it follows that in the case at hand {Lγn}∞n=0 grows at least on the order

n log n(log(2) n)k. The same method of proof used to prove that if (7.6)

holds with k = 1, then {Lγn}∞n=0 grows on an order no larger than n log n,

also shows that if (7.6) holds with k > 1, then {Lγn}∞n=0 grows on an order

no larger than n log n(log(2) n)k−1. Thus, again comparing (8.4) with (7.6),

it follows that in the case at hand {Lγn}∞n=0 grows on an order no larger than

n log n(log(2) n)k. We conclude that {Lγn}∞n=0 grows exactly on the order
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n log n(log(2) n)k. Using this with (8.3), it follow from Proposition 2 that

the diffusion with the two-phase drift is recurrent if k = 1 and transient if

k > 1. �

9. Proof of Theorem 5

Recall that the first γ-down-crossed time for the process X(t) is given by

σγ = inf{t ≥ 0 : ∃s < t with X(t) ≤ X(s)− γ(X(s))} =

inf{t ≥ 0 : X(t) = X∗(t)− γ(X∗(t))},

and is a stopping time. Recall that X∗(σγ) has been denoted by Lγ and

that

τ̂Lγ = inf{t ≥ 0 : X(σγ + t) = Lγ}

is the first time after σγ that the process X(·) returns to its running max-

imum Lγ . Thus, the process X(·) increases from x0 to Lγ from time 0 to

time σγ + τ̂Lγ . At the regeneration point Lγ at time σγ + τ̂Lγ , everything

begins anew according to the same rules, and also, according to the same

distribution, since the two phases of the drift are constants and thus inde-

pendent of location. If follows from this and the law of large numbers, and

the standard technique to go from stopping times to deterministic times,

that

(9.1) lim
t→∞

X(t)
t

=
Ex0L

γ − x0

Ex0(σγ + τ̂Lγ )
a.s.

Recall from the construction in section 3 that X(t) is in the Y -mode up

until time σγ . Then from time σγ until time σγ + τ̂Lγ it is in the Z-mode.

Under the assumption of the theorem, the Y -mode corresponds to Brownian

motion with a constant drift b. It follows from Doob’s optional stopping

theorem that X(t∧ σγ)− b(t∧ σγ) is a martingale. Taking expectations, we

obtain

(9.2) Ex0X(σγ ∧ t) = x0 + b Ex0σγ ∧ t.
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There exists a constant c > 0 such that a Brownian motion with constant

drift b and starting from any x has probability c of downcrossing the interval

[x−γ, x] within one unit of time. Thus, it follows that there exists a constant

c0 ∈ (0, 1) such that

(9.3) Px0(σγ > t) ≤ ct0, for t ≥ 1.

We have

(9.4)

Ex0(X(σγ ∧ t);σγ > t) = Ex0(X(t);σγ > t) ≤ (Ex0X
2(t))

1
2 (Px0(σγ > t))

1
2 .

By comparison, X(t) under Px0 is stochastically dominated by x0+
√
aW (t)+

bt, where W is a standard Brownian motion; thus,

(9.5) Ex0X
2(t) ≤ x2

0 + at+ b2t+ 2x0bt.

Letting t→∞ in (9.2), and using (9.3)-(9.5), we obtain

(9.6) Ex0X(σγ) = x0 + b Ex0σγ .

In the case at hand, where the diffusion coefficient is a instead of 1,

the function uT is given by
∫ x
z0

exp(−
∫ y
z0

2b
a dt) = a

2b

(
1− exp(−2b

a (x− z0))
)
.

Similar to (5.1) and (5.3), it follows that under Ex0 , Lγ − x0 is distributed

according to an exponential distribution with parameter 2b

a exp( 2bγ
a

)−1
; thus

(9.7) Ex0L
γ = x0 +

a
(

exp(2bγ
a )− 1

)
2b

.

Using (9.6) and (9.7), along with the fact that Lγ = X(σγ) + γ, we have

(9.8) Ex0σγ =
1
b

(a( exp(2bγ
a )− 1

)
2b

− γ
)
.

We now evaluate Ex0 τ̂Lγ . From the definition of the process and the fact

that the two drift phases are constants and thus independent of location, it

follows that under Ex0 , the distribution of τ̂Lγ is the distribution of the first

hitting time of γ by the diffusion process starting at 0 and corresponding to

the operator La;c,0,b ≡ 1
2a

d2

dx2 + bc,0,b(x) d
dx , where bc,0,b(x) is equal to b when
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x > 0 and is equal to c when x ≤ 0. Let Ea;c,0,b0 denote the expectation for

this diffusion starting from 0. So

(9.9) Ex0 τ̂Lγ = Ea;c,0,b0 τγ .

We have Ea;c,0,b0 τγ = limN→∞E
a;c,0,b
0 τγ ∧ τ−N . As is well-known [10],

Ea;c,0,b0 τγ ∧ τ−N = vN (0), where vN solves the equation

La;c,0,bvN = −1 in (−N, 0) ∪ (0, γ);

vN (−N) = vN (γ) = 0;

vN (0−) = vN (0+), v′N (0−) = v′N (0+).

Solving this, we obtain

vN (y) =


aAN
2c

(
exp(2cN

a )− exp(−2cy
a )
)
− y+N

c , −N ≤ y ≤ 0;

aDN
2b

(
exp(−2bγ

a )− exp(−2by
a )
)

+ γ−y
b , 0 ≤ y ≤ γ,

where

AN =
γ
b + N

c + a(b−c)
2b2c

(1− exp(−2bγ
a ))

a
2c

(
exp(2cN

a )− 1
)

+ a
2b

(
1− exp(−2bγ

a )
) ;

DN = AN +
1
b
− 1
c
.

From this we obtain

Ea;c,0,b0 τγ = lim
N→∞

vN (0) =
γ

b
+
a(b− c)

2b2c
(
1− exp(−2bγ

a
)
)
,

and thus from (9.9),

(9.10) Ex0 τ̂Lγ =
γ

b
+
a(b− c)

2b2c
(
1− exp(−2bγ

a
)
)
.

The theorem now follows from (9.1), (9.7), (9.8) and (9.10). �
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