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Abstract. In this paper we investigate uniqueness and nonuniqueness for nonneg-
ative solutions of the equation

(NS)

ut = Lu + V u− γup in Rn × (0,∞);

u(x, 0) = f(x), x ∈ Rn;

u ≥ 0,

where γ > 0, p > 1, γ, V ∈ Cα(Rn), 0 ≤ f ∈ C(Rn) and L =
∑n

i,j=1 ai,j(x) ∂2

∂xi∂xj
+

∑n
i=1 bi(x) ∂

∂xi
with ai,j , bi ∈ Cα(Rn).

1. Introduction. In this article we study uniqueness for nonnegative solutions
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u ∈ C2,1(Rn × (0,∞)) ∩ C(Rn × [0,∞)) to the semilinear equation

(NS)

ut = Lu + V u− γup in Rn × (0,∞);

u(x, 0) = f(x), x ∈ Rn;

u ≥ 0,

where γ, V ∈ Cα(Rn), γ > 0, p > 1, 0 ≤ f ∈ C(Rn) and

L =
n∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑

i=1

bi(x)
∂

∂xi
,

with ai,j , bi ∈ Cα(Rn) and
∑n

i,j=1 ai,j(x)νiνj > 0, for all x ∈ Rn and ν ∈ Rn−{0}.
In the case that V is bounded from above, it will be useful to compare uniqueness

in the class of nonnegative solutions for the semilinear equation with uniqueness

in the class of bounded solutions u ∈ C2,1(Rn × (0,∞)) ∩ C(Rn × [0,∞)) for the

corresponding linear equation:

(BL)

ut = Lu + V u in Rn × (0,∞);

u(x, 0) = f(x);

sup
0≤t≤T

sup
x∈Rn

|u(x, t)| < ∞, for all T > 0,

where f ∈ C(Rn).

In the sequel we will sometimes use the notation NSf , NS(L, V, γ) or NSf (L, V, γ)

to specify the dependence respectively on the initial condition, on the particular

operator or on both the intial condition and the particular operator. Similarly, we

will sometimes use the notation BL(L, V ). (In the linear case, the initial condition

is of course irrelevant with regard to the question of uniqueness.)

In Section 2 we prove a basic result asserting the existence of a minimal and a

maximal solution to the nonnegative semilinear equation NSf . For some related

results in the case L = ∆, see [10] and [1]. This result, of interest in its own right,
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is also useful for the study of uniqueness—indeed, uniqueness occurs if and only if

the minimal and maximal solutions coincide.

In section three, we begin the study of uniqueness for the semilinear equation.

One of the two main results in that section is a sufficiency condition for uniqueness

which is given in terms of pointwise bounds on the coefficients of the semilin-

ear operator. The other main result in that section is a sufficiency condition for

nonuniqueness which states that if infx∈Rn
V (x)
γ(x) > 0 and if nonuniqueness holds for

the linear problem BL(L, 0), then nonuniqueness also holds for NS0(L, V, γ). In

order to implement this result, we also present a result on uniqueness for the linear

problem.

In section 4, we develop a connection between uniqueness for the semilinear par-

abolic problem and uniqueness for the corresponding steady state elliptic equation,

which turns out to be very useful in applications. In sections 5 and 6, we apply the

results of sections 3 and 4 to two specific classes of problems. We also show how

our results can be used to give an alternative proof to a classical result of Ni [11],

Kenig and Ni [7] and Lin [9] on uniqueness/nonuniqueness of positive solutions to

the semilinear elliptic equation ∆w− γwp = 0 in Rn, for n ≥ 3, and how they lead

to a new result for this equation when n = 1, 2.

Since the proof of Theorem 1 in section 2 is long and technical, one may prefer,

at least on the first reading, to read the statement of Theorem 1 and then preceed

directly to sections 3-6.

2. Existence of a Maximal and a Minimal Solution. In this section we

prove the following theorem on the existence of minimal and maximal solutions.

Theorem 1. Let f ∈ C(Rn). There exist solutions uf ;min and uf ;max of NSf with
3



the property that any solution u to NSf satisfies

uf ;min ≤ u ≤ uf ;max.

Before giving the proof, we present a standard semilinear parabolic maximum

principle and then apply it to obtain an a priori estimate on the size of any solution

to NS.

Proposition 1. Let D ⊂ Rn be a bounded domain and let 0 ≤ u1, u2 ∈ C2,1(D ×
(0,∞)) ∩ C(D̄ × [0,∞)) satisfy

Lu1 + V u1 − γup
1 −

∂u1

∂t
≤ Lu2 + V u2 − γup

2 −
∂u2

∂t
, for (x, t) ∈ D × (0,∞),

u1(x, t) ≥ u2(x, t), for (x, t) ∈ ∂D × (0,∞)

and

u1(x, 0) ≥ u2(x, 0), for x ∈ D.

Then u1 ≥ u2 in D × (0,∞).

Proof. . Let W = u1 − u2 and define H(x) = up
1(x)−up

2(x)

W (x) , if W (x) 6= 0, and

H(x) = 0 otherwise. We have LW +(V −H)W− ∂W
∂t ≤ 0 in D×(0,∞), W (x, 0) ≥ 0

in D, and W (x, t) ≥ 0 on ∂D × (0,∞). Thus, by the standard linear maximum

principle, u1 ≥ u2. ¤

In the sequel we will frequently use the notation

BR = {x ∈ Rn : |x| < R}.

Proposition 2. Let u ∈ C2,1(BR × (0,∞)) ∩ C(B̄R × [0,∞)) satisfy

ut = Lu + V u− γup in BR × (0,∞);

u(x, 0) = f(x), x ∈ B̄R;

u ≥ 0,
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where f ∈ C(B̄R). Let VR = supx∈BR
V (x), if supx∈BR

V (x) > 0, and let VR > 0

be arbitrary otherwise. Let γR = infx∈BR
γ(x). Then there exists a constant KR

such that

(2.1)

u(x, t) ≤ (
VR

γR
)

1
p−1 (1− exp(−(p− 1)VR(t + ε)))−

1
p−1

+ ((R + ε)2 − |x|2)− 2
p−1 exp(KR(t + 1)), for (x, t) ∈ B̄R × [0,∞),

for sufficiently small ε > 0.

Proof. For ε > 0, let w1,ε(t) = (VR

γR
)

1
p−1 (1 − exp(−(p − 1)VR(t + ε)))−

1
p−1 and

w2,ε(x, t) = ((R + ε)2− |x|2)− 2
p−1 exp(KR(t +1)). We will show below that Lwi,ε +

V wi,ε−γwp
i,ε− ∂wi,ε

∂t ≤ 0, i = 1, 2. Using the fact that (w1,ε+w2,ε)p ≥ wp
1,ε+wp

2,ε, it

will then follow that the function Wε ≡ w1,ε + w2+ε satisfies LWε + V Wε − γW p
ε −

∂Wε

∂t ≤ 0. Since limε→0 w1,ε(0) = ∞ and limε→0 w2,ε(x, t) = ∞ for |x| = R, we

conclude from Proposition 1 that u(x, t) ≤ Wε(x, t) for ε > 0 sufficiently small.

Returning to the inequalities above, an easy calculation shows that W (t) ≡
c(1− exp(−k(t+ ε)))−

1
p−1 satisfies V W −γW p− ∂W

∂t ≤ 0 if one choses c = (VR

γR
)

1
p−1

and k = (p− 1)VR. This proves that Lw1,ε + V w1,ε − γwp
1,ε − ∂w1,ε

∂t ≤ 0.

Letting W (x, t) = ((R + ε)2 − |x|2)− 2
p−1 exp(K(t + 1)), for |x| < R, we have

((R + ε)2 − |x|2) 2p
p−1 exp(K(t + 1))(LW + V W − γW p − ∂W

∂t
) =

4(p + 1)
(p− 1)2

n∑

i,j=1

ai,j(x)xixj − γ(x) exp(K(p− 1)(t + 1))

+
2

p− 1
((R + ε)2 − |x|2)

n∑

i=1

(ai,i(x) + 2bi(x)xi) + ((R + ε)2 − |x|2)2(V (x)−K).

From this it is clear that if K = KR is chosen sufficiently large, then the right hand

side above will be nonpositive. This proves that Lw2,ε +V w2,ε− γwp
2,ε− ∂w2,ε

∂t ≤ 0.

¤

Proof of Theorem 1. Construction of the minimal positive solution to NSf .

Using [8, Theorem 12.16], there exists a nonnegative solution um ∈ C2,1(Bm ×
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(0,∞)) ∩ C(B̄m × [0,∞)) to the equation

(2.2)

ut = Lu + V u− γup, (x, t) ∈ Bm × (0,∞);

u(x, 0) = fm(x), x ∈ Bm;

u(x, t) = 0, (x, t) ∈ ∂Bm × (0,∞),

where fm ∈ C2(Bm) is nonnegative and compactly supported in Bm. (Actu-

ally, to apply the existence result in [8], one must make a truncation as follows.

Letting G(x, z) = V (x)z − γ(x)|z|1+p, and letting Gk(x, z) be an appropriately

truncated version of G which agrees with G on {|z| ≤ k}, one applies the exis-

tence result in [8] to obtain a solution to (2.2) with V (x)u(x, t) − γ(x)u1+p(x, t)

replaced by Gk(x, u(x, t)). Then using the maximum principle in Proposition

1 and the a priori estimate in Proposition 2, it follows that the solution is in

fact nonnegative and bounded, in which case the term Gk(x, u(x, t)) agrees with

V (x)u(x, t) − γ(x)u1+p(x, t) if k is sufficiently large.) By the maximum principle

in Proposition 1, the solution to (2.2) is unique.

We now use an interior parabolic Schauder estimate, an interior Lp estimate and

the Sobelev embedding theorem to show that there exists a unique nonnegative

solution to (2.2) under the assumption that 0 ≤ fm ∈ Cb(Bm). This same technique

will be used numerous times in the sequel and will be referred to as the standard

compactness argument.

Let {fm,k} ⊂ C2(Bm) be a uniformly bounded sequence of compactly supported,

nonnegative functions which converge pointwise to fm in Bm and let um,k denote

the corresponding solution to (2.2). For R > 0 and 0 < ε < T < ∞, let ΩR,T,ε =

{(x, t) : x ∈ BR, t ∈ (ε, T )}. Since Lum,k + V um,k − ∂um,k

∂t = γup
m,k, it follows

from an interior parabolic Schauder estimate [8, Theorem 4.9] and the assumption

on L, V and γ that there exists a Cε > 0 such that

(2.3) ||um,k||2+α,1+ α
2 ;Ωm−ε,T,ε ≤ Cε||um,k||α, α

2 ;Ωm− ε
2 ,T+ε, ε

2
.
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(||·||2+α,1+α;A denotes the space of C2,1- functions on A ⊂ Rn×(0,∞) whose second

order mixed partial derivatives in x are uniformly α-Hölder and whose first order

derivative in t is uniformly α
2 -Hölder, and || · ||α, α

2 ;A denotes the space of continuous

functions on A which are uniformly α-Hölder in x and uniformly α
2 -Hölder in t.)

By Proposition 2, the solutions um,k are uniformly bounded on Bm × (0,∞);

thus by an interior Lp estimate [8, Theorem 7.13], it follows that {∂2um,k

∂xi∂xj
}∞k=1 and

{∂um,k

∂t }∞k=1 are uniformly bounded in Lp(BΩm− ε
4 ,T+2ε, ε

4
) for each p > 1. It then

follows from the Sobolev embedding theorems [5] that {||um,k||α, α
2 ;Ωm− ε

2 ,T+ε, ε
2
}∞k=1

is uniformly bounded. Using this in conjunction with (2.3) shows that the sequence

{um,k}∞k=1 is precompact in the || · ||2,1;Ωm−ε,T,ε
−norm. Thus there exists a subse-

quence which converges to a function um which satisfies the parabolic equation in

(2.2).

It remains to show that um satisfies the initial condition and the boundary

condition. This is done via appropriate barrier functions. For M > 0, let W±
M ∈

C2,1(Bm × (0,∞))∩C(B̄m × (0,∞))∩C(Bm × [0,∞)) denote the solutions to the

linear inhomogeneous boundary-initial value problems

wt = Lw ±M, (x, t) ∈ Bm × (0,∞);

w(x, 0) = f(x), x ∈ Bm;

w(x, t) = ±M, x ∈ ∂Bm, t > 0.

By the a priori bound (2.1), it follows that for sufficiently large M , |V um,k −
γup

m,k| ≤ M and 0 ≤ um,k ≤ M on Bm × (0, 1), for k = 1, 2, ... Thus, for such

an M , it follows by the linear maximum principle that W−
M ≤ um,k ≤ W+

M on

Bm× (0, 1). Thus, limt→0 um(x, t) = limt→0 limk→∞ um,k(x, t) = f(x), for x ∈ Bm.

To show that the zero Dirichlet boundary value is satisfied, one makes a similar
7



argument using the barrier functions ZM which satisfies

zt = Lz + Mz, (x, t) ∈ Bm × (0,∞);

z(x, 0) = M, x ∈ Bm;

z(x, t) = 0, x ∈ ∂Bm, t > 0.

For each T > 0, choose MT such that 0 ≤ um,k ≤ MT and |V um,k − γup
m,k| ≤ MT

on Bm × [0, T ], for k = 1, 2, ... Then 0 ≤ um,k ≤ ZMT
on Bm × [0, T ); thus

limx→∂Bm um(x, t) = 0, for t > 0.

We are now ready to construct the minimal solution to NSf . Assume first that

0 ≤ f ∈ C(Rn) is compactly supported. Let m0 be such that f is supported in

Bm0 . For m ≥ m0, let um denote the solution constructed above in Bm with initial

condition f . Arguing as above, the sequence {um}∞m=k is compact in the C2,1-norm

on ΩBk,T,ε, for any integer k ≥ m0 and 0 < ε < T < ∞. By the maximum principle

in Proposition 1, the sequence {um}∞m=m0
is nondecreasing. Thus uf ≡ limm→∞ um

exists and is a classical solution to the semilinear equation in Rn × (0,∞).

We now show that limt→0 uf (x, t) = f(x). Fix x0 ∈ Rn and let B1(x0) ⊂ Rn

denote the ball of radius 1 centered at x0. For M > 0, let W±
M ∈ C2,1(B1(x0) ×

(0,∞)) ∩ C(B̄m × (0,∞)) ∩ C(Bm × [0,∞)) denote the solutions to the linear

inhomogeneous boundary-initial value problems

wt = Lw ±M in B1(x0)× (0,∞);

w(x, 0) = f(x), x ∈ B1(x0);

w(x, t) = ±M, x ∈ ∂B1(x0), t ∈ (0,∞).

By the a priori bound (2.1), it follows that for sufficiently large M , |V uf−γup
f | ≤ M

and 0 ≤ u ≤ M on B1(x0) × (0, 1). Thus, for such an M , it follows by the linear

maximum principle that W−
M ≤ uf ≤ W+

M on B1(x0) × (0, 1), which proves that

limt→0 uf (x0, t) = f(x0).
8



To show the minimality of uf , let U be any solution of NSf . In light of the

zero Dirichet boundary condition on um, it follows from the maximum principle in

Proposition 1 that um ≤ U . Letting m → ∞ shows that uf ≤ U . This completes

the proof of the existence of a minimal solution to NSf when the initial condition

f is compactly supported.

Now consider the case that the initial condition satisfies 0 ≤ f ∈ C(Rd). Take an

increasing sequence of continuous, compactly supported functions {fm} satisfying

f = limm→∞ fm and let ufm be the minimal solution to NSfm . By the maximum

principle, it follows that {ufm}∞m=1 is monotone. By the a priori estimate in (2.1)

and the parabolic estimates and Sobolev embedding theorem used above, it follows

that uf ≡ limm→∞ ufm solves the semilinear equation. The same argument used

in the case that f is compactly supported shows that limt→0 uf (x, t) = f(x). The

proof of minimality follows easily from the minimality in the compactly supported

case. This completes the proof of the existence of a minimal solution to NSf .

Construction of the maximal positive solution to NSf . For m > 0 and a positive

integer k, let ψm,k ∈ C∞(Rn) satisfy

ψm,k(x) = 0, |x| ≤ m and |x| > 2m + 1

ψm,k(x) = k,m +
1
k
≤ |x| ≤ 2m(2.4)

0 ≤ ψm,k ≤ k.

Using [8, Theorem 12.16] again, there exists a nonnegative solution

Um,k ∈ C2,1(B2m × (0,∞)) ∩ C(B̄2m × [0,∞)) to the equation

(2.5)

ut = Lu + V u− γup + ψm,k, (x, t) ∈ B2m × (0,∞);

u(x, 0) = fm(x), x ∈ B2m;

u(x, t) = 0, (x, t) ∈ ∂B2m × (0,∞),
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where fm ∈ C2(B2m) is nonnegative and compactly supported in B2m. Using the

standard compactness argument and barrier functions as above in the proof of the

existence of a minimal solution, this then extends to the case that the initial data

fm is continuous, nonnegative, and compactly supported in B2m.

Since Um,k satisfies the homogeneous semilinear equation in Bm (because ψm,k

vanishes there), the functions {Um,k}∞k=1 all satisfy the a priori estimate (2.1) with

ε = 0 (and with R replaced by m). By the maximum principle in Proposition

1, Um,k is increasing in k. From this and the standard compactness argument it

follows that Um ≡ limk→∞ Um,k exists, Um ∈ C2,1(Bm × (0,∞)), and Um satisfies

the semilinear equation in Bm. The barrier function argument given above in the

case of the minimal solution shows that limt→0 Um(x, t) = fm(x), for x ∈ Bm. We

will prove below that

(2.6) lim
x→∂Bm

Um(x, t) = ∞, t ∈ (0,∞).

Using this, the proof of the existence of a maximal solution goes as follows. For

f ∈ C(Rn), let fm and Um be as above with fm chosen so that fm = f on Bm and so

that {fm} is nondecreasing. By the same reasoning as has already been used several

times above, Uf ≡ limm→∞ Um exists and solves the semilinear equation. Again by

the proof used in the case of the minimal solution, we have limt→0 Uf (x, t) = f(x);

thus, Uf solves NSf . To see that Uf is maximal, let u be any solution to NSf .

Then by (2.6) and the maximal principle in Proposition 1, we have u ≤ Um on Bm;

thus, u ≤ Uf .

We now turn to the proof of (2.6). For ε > 0, we will constuct a function wε

which satisfies Lwε + V wε − γwp
ε − ∂wε

∂t ≥ 0 in Bm+ε and wε(m + ε, t) = ∞. From

the maximum principle, we then obtain Um ≥ wε in Bm+ε. From the construction,

it will follow that w ≡ limε→0 wε satisfies limx→∂Bm w(x) = ∞. To implement this,

we need a number of preliminary results.
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We first show that

(2.7) lim
k→∞

Um,k(x, t) = ∞, for m < |x| < 2m and t > 0.

Fix N > 0 and define W (x, t) = Nt
(
l2 − (m + 1

k + l − |x|)2), where l = 1
2 (m− 1

k ).

Note that W > 0 in the annulus Am+ 1
k ,2m ≡ {m + 1

k < |x| < 2m} and vanishes on

∂Am+ 1
k ,2m. Fix T > 0. Clearly LW + V W − γW p −Wt is bounded in Am+ 1

k ,2m ×
[0, T ]. Thus for k sufficiently large, we have LW + V W − γW p −Wt + ψm,k ≥ 0 in

Am+ 1
k ,2m × [0, T ]. Since W (x, 0) = 0 and W vanishes on ∂Am+ 1

k ,2m, it follows by

the maximum principle in Proposition 1 that Um,k ≥ W in Am+ 1
k ,2m× [0, T ], for k

sufficiently large. Letting k → ∞, we obtain Um(x, t) ≥ Nt
(
(m

2 )2 − ( 3m
2 − |x|)2),

for m ≤ |x| ≤ 2m and 0 ≤ t ≤ T . Since N and T are arbitrary, (2.7) follows.

We will need the function g described below. It is well-known from the theory of

travelling waves [4] that for ρ > 0 sufficiently small, there exists a strictly increasing

function g ∈ C2([0,∞)) satisfying

(2.8)

g′′ − ρg′ + g − gp = 0 on [0,∞);

g(0) = 0, lim
s→∞

g(s) = 1;

g′ ≥ 0, g′′ ≤ 0.

For m > 0 define

φm(x) = λ(m2l − |x|2l)−
2

p−1 , x ∈ Bm,

where λ, l > 0. We have

(2.9)
1
λ

(m2l − |x|2l)
2p

p−1 (Lφm + V φm − γφp
m) =

8l2(p + 1)
p− 1

|x|4l−4
n∑

i,j=1

ai,j(x)xixj

+
8l(l − 1)

p− 1
(|x|2l−4(m2l − |x|2l))

n∑

i,j=1

ai,j(x)xixj+

4l

p− 1
|x|2l−2(m2l − |x|2l)

n∑

i=1

(ai,i(x) + xibi(x)) + V (x)(m2l − |x|2l)2 − λp−1γ(x).
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In light of the strict ellipticity, it is easy to see that if l > 0 is chosen sufficiently

large, then the sum of the second and third terms on the right hand side of (2.9) is

nonnegative on Bm, and that if λ > 0 is chosen sufficiently small, then the sum of

the first term and the last two terms on the right hand side of (2.9) is nonnegative.

Fixing such an l and a λ, we conclude that

(2.10) Lφm + V φm − γφp
m ≥ 0 in Bm.

We can now define the function wε as follows:

(2.11) wε(x, t) ≡





φm+ε(x)g(c(t + |x|2 − (m + ε)2)),

if (x, t) ∈ Bm+ε ∩ {t + |x|2 − (m + ε)2 > 0};
0, if (x, t) ∈ Bm+ε ∩ {t + |x|2 − (m + ε)2 ≤ 0}.

Using the ellipticity and the fact that g′ and ∇φm+ε · x
|x| are nonnegative, it follows

that

(2.12)

n∑

i,j=1

ai,j
∂(g(c(t + |x|2 − (m + ε)2)))

∂xi

∂(φm+ε(x))
∂xj

≥ 0,

if (x, t) ∈ Bm+ε ∩ {t + |x|2 − (m + ε)2 > 0}.
In the sequel, when g appears without an argument, it is to be understood that the

argument is c(t + |x|2 − (m + ε)2). From (2.10)-(2.12) we have

(2.13)

Lwε + V wε − γwp
ε −

∂wε

∂t
≥ φm+εL(g(c(t + |x|2 − (m + ε)2)))

+ gLφm+ε + V gφm+ε − γgpφp
m+ε − φm+ε

∂(g(c(t + |x|2 − (m + ε)2)))
∂t

≥ φm+εL(g(c(t + |x|2 − (m + ε)2)))− φm+ε
∂(g(c(t + |x|2 − (m + ε)2)))

∂t

+ γφp
m+ε(g − gp), if (x, t) ∈ Bm+ε ∩ {t + |x| − (m + ε)2 > 0}.

Using the fact that g′ ≥ 0 and g′′ ≤ 0, it’s easy to check that for any δ > 0, one

can choose c = cδ > 0 sufficiently small so that

(2.14)
L(g(c(t + |x|2 − (m + ε)2)))− ∂(g(c(t + |x|2 − (m + ε)2)))

∂t
≥ δ(g′′ − ρg′),

if Bm+ε ∩ {t + |x|2 − (m + ε)2 > 0}.
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Choosing δ = infx∈Bm+ε
γ(x)φp−1

m+ε(x), we conclude from (2.8), (2.13), and (2.14)

that

(2.15)
Lwε + V wε − γwp

ε −
∂w

∂t
≥ (γφp

m+ε − δφm+ε)(g − gp) ≥ 0,

if (x, t) ∈ Bm+ε ∩ {t + |x|2 − (m + ε)2 > 0}.

Let Dε = Bm+ ε
2
∩ {t + |x|2 − (m + ε)2 > 0}. Note that wε vanishes on the part

of ∂Dε where t + x2 − (m + ε)2 = 0. Also, since wε is bounded on Dε, it follows

from (2.7) that wε ≤ Um,k on ∂Bm+ ε
2
, for k sufficiently large. Thus, since Um,k ≥ 0

and satisfies the semilinear equation in Dε, it follows from the maximum principle

of Proposition 1 that for k sufficiently large, wε ≤ Uk,m in Dε. Letting k →∞ and

then letting ε → 0 gives

(2.16)
Um(x, t) ≥ λ(m2l − |x|2l)−

2
p−1 g(c(t + |x|2 −m2)),

if (x, t) ∈ Bm ∩ {t + |x|2 −m2 ≥ 0}.

Now (2.6) follows from (2.16). ¤

3. Uniqueness/Nonuniqueness for the Semilinear Parabolic Equation.

Note that by Theorem 1, uniqueness holds for NSf if and only if uf ;min ≡ uf ;max.

We begin with a couple of useful comparison results.

Proposition 3. Let 0 ≤ f1 ≤ f2. If uniqueness holds for NSf1 , then it also holds

for NSf2 .

Remark. In particular, it follows from the proposition that if uniqueness holds

for f ≡ 0, then it holds for all 0 ≤ f ∈ C(Rn). In fact, we suspect that uniqueness

either holds for all f or no f .

Proposition 4. Assume that

V1 ≤ V2

13



and

0 < γ2 ≤ γ1.

If uniqueness holds for NS0(L, V2, γ2), then uniqueness also holds for

NSf (L, V1, γ1), for all f .

Proof of Proposition 3. To prove the proposition, it suffices to show that

(3.1) uf1;max − uf1;min ≥ uf2;max − uf2;min, if 0 ≤ f1 ≤ f2.

The construction of the minimal and maximal solutions revealed that for f ∈
C(Rn), uf ;max = limm→∞ ufm;max and uf ;min = limm→∞ ufm;min, where {fm}
is an increasing sequence of compactly supported functions which converges point-

wise to f . Thus, it suffices to prove (3.1) in the case that f1, f2 are compactly

supported. That construction also revealed that ufi;max = limm→∞ limk→∞ U
(i)
m,k,

where for m sufficiently large so that supp(fi) ⊂ Bm, U
(i)
m,k solves (2.5) with fm

replaced by fi. Since fi is compactly supported, the constuction also showed that

ufi;min = limm→∞ u
(i)
m , where for m sufficiently large so that supp(fi) ⊂ Bm,

u
(i)
m ∈ C2,1(Bm × (0,∞)) ∩ C(B̄m × [0,∞)) and satisfies

(3.2)

ut = Lu + V u− γup in Bm × (0,∞);

u(x, 0) = fi(x), for x ∈ B̄m;

u(x, t) = 0, for x ∈ ∂Bm and t > 0.

Thus (3.1) will follow if we show that

(3.3) U
(1)
m,k − u

(1)
2m ≥ U

(2)
m,k − u

(2)
2m, for (x, t) ∈ B2m × (0,∞) and m, k = 1, 2, ...

Fix m and k and let Wi = U
(i)
m,k − u

(i)
2m. By the strong maximum principle,

Wi > 0 in B2m × (0,∞). We have

(3.4) LWi + (V − γGi)Wi − ∂Wi

∂t
= −ψm,k, (x, t) ∈ B2m × (0,∞),
14



where Gi(x, t) =
(U

(i)
m,k

(x,t))p−(u
(i)
2m(x,t))p

U
(i)
m,k

(x,t)−u
(i)
2m(x,t)

Since f1 ≤ f2, it follows from the maximum

principle in Proposition 1 that U
(2)
m,k ≥ U

(1)
m,k and u

(2)
2m ≥ u

(1)
2m. One can easily check

that the function H(x, y) ≡ xp−yp

x−y , for 0 ≤ y < x < ∞ is increasing in each of its

variables. Thus, we have

(3.5.) G2 ≥ G1 ≥ 0.

Letting Z = W1 −W2, and using the fact that W2 ≥ 0, we obtain from (3.4) and

(3.5) that

(3.6) LZ + (V −G1)Z − ∂Z

∂t
≤ 0.

Noting that Z(x, 0) = 0 for x ∈ B̄2m and that Z(x, t) = 0 for x ∈ ∂B2m and

t > 0, it follows from (3.6) and the standard linear parabolic maximum principle

that Z ≥ 0. ¤.

Proof of Proposition 4. Let u
(i)
0;max denote the maximal solution for

NS0(L, Vi, γi). In light of Proposition 3, to prove the theorem, it suffices to show

that

(3.7) u
(1)
0;max ≤ u

(2)
0;max.

Similar to the proof of Proposition 3, we have u
(i)
0;max = limm→∞ limk→∞ U

(i)
m,k,

where U
(i)
m,k solves (2.5) with V, γ and fm replaced respectively by Vi, γi and 0.

Thus, to show (2.7) it suffices to prove that

(3.8) U
(2)
m,k ≥ U

(1)
m,k, for (x, t) ∈ B2m × (0,∞) and m, k = 1, 2, ...

Since LU
(1)
m,k + V1U

(1)
m,k − γ1(U

(1)
m,k)p − ∂U

(1)
m,k

∂t = −ψm,k while LU
(2)
m,k + V1U

(2)
m,k −

γ1(U
(2)
m,k)p − ∂U

(2)
m,k

∂t = −ψm,k + (V1 − V2)U
(2)
m,k + (γ2 − γ1)(U

(2)
m,k)p ≤ −ψm,k, (3.8)

follows from the maximum principle in Proposition 1. ¤
15



We now come to our first main result, which guarantees uniqueness for NS if

the coefficients satisfy appropriate pointwise estimates.

Theorem 2. Assume that

n∑

i,j=1

aij(x)νiνj ≤ C|ν|2(1 + |x|)2;(3.9a)

|b(x)| ≤ C(1 + |x|);(3.9b)

V (x) ≤ C,(3.9c)

for some C > 0. Assume in addition that

inf
x∈Rn

γ(x) > 0.

Then uniqueness holds for NSf , for all f .

Proof. By Proposition 3, it suffices to consider the case f = 0. We need to show

that u0;max = 0. We will build an appropriate family of test functions which will

be compared to u0;max. Fix ε ∈ (0, 1). For R > 1, choose φR(x) ∈ C2(BR) such

that

(3.10) φR(x) = (1 + |x|) 2
p−1 (R− |x|)− 2

p−1 , for |x| > ε,

and such that

(3.11)
n∑

i=1

|∂φR

∂xi
|+

n∑

i,j=1

| ∂2φR

∂xi∂xj
| ≤ CεφR(x), for |x| ≤ ε,

where Cε > 0 is independent of R. This is possible because from the definition of

φR in (3.10), it follows that the inequality in (3.11) holds for |x| = ε. Define

uR(x, t) = φR(x) exp(K(t + 1)), for x ∈ BR and t ≥ 0.
16



We have

(3.12)

exp(−K(t + 1))(LuR + V uR − γup
R −

∂uR

∂t
)(x, t)

= LφR(x) + V φR(x)− γ(x)φp
R(x) exp(K(p− 1)(t + 1))−KφR(x),

for x ∈ Rn and t > 0.

We will show below that

(3.13)
LφR

φp
R

is bounded above uniformly in R.

From (3.12) and (3.13), we conclude that there exists a K independent of R such

that

(3.14) LuR + V uR − γup
R −

∂uR

∂t
≤ 0 for (x, t) ∈ BR × (0,∞).

Since u0;max(x, 0) = 0, uR ≥ 0, and limx→∂BR
uR(x, t) = ∞, it follows from

(3.14) and the maximum principle in Proposition 1 that

(3.15) u0;max(x, t) ≤ uR(x, t), (x, t) ∈ BR × [0,∞).

Letting R →∞, it follows from (3.10) and (3.15) that

u0;max(x, t) = 0, (x, t) ∈ (Rn −Bε)× [0,∞).

Since ε > 0 is arbitrary we conclude that u ≡ 0.

We now return to prove (3.13). Letting r = |x| and resolving L into spherical

coordinates, we have

L = A(x)
∂2

∂r2
+ B(x)

∂

∂r
+ terms involving differentiation not only in r.

By assumption, there exists a C > 0 such that 0 < A(x) ≤ C(1 + |x|)2 and

|B(x)| ≤ C(1 + |x|), for x ∈ Rn. A simple, direct calculation now reveals that

(3.13) holds. ¤
17



The second main result in this section relates nonuniqueness of the semilinear

equation to nonuniqueness of the corresponding linear problem obtained by setting

both γ and V equal to 0.

Theorem 3. Assume that uniqueness does not hold for BL(L, 0) and that

inf
x∈Rn

V (x)
γ(x)

> 0.

Then uniqueness does not hold for NS0(L, V, γ).

Remark. For an example where the condition infx∈Rn
V (x)
γ(x) > 0 holds and there

is uniqueness for BL but not for NS, one can turn to the applications in section

five and take the class of equations in (5.2) with V = C > 0 and γ as in Theorem

7-(ii).

In order for Theorem 3 to be useful, we need to know when uniqueness holds for

the bounded linear problem BL(L, 0). Before proving Theorem 3, we make a small

digression to study the linear problem. We have the following result which actually

considers more generally BL(L, V ).

Proposition 5. i-a. If V is bounded from above and uniqueness holds for BL(L, 0),

then uniqueness holds for BL(L, V ).

i-b.If V is bounded from below and uniqueness holds for BL(L, V ), then uniqueness

holds for BL(L, 0).

ii-a. If there exist m0, λ > 0 and a positive function φ satisfying Lφ ≤ λφ in

Rn −Bm0 and lim|x|→∞ φ(x) = ∞, then uniqueness holds for BL(L, 0).

ii-b. If there exist m0, λ > 0, an x0 ∈ Rn satisfying |x0| > m0, and a bounded,

positive function φ satisfying Lφ ≥ λφ in Rn − Bm0 and φ(x0) ≥ sup|x|=m0
φ(x),

then uniqueness does not hold for BL(L, 0).

Remark 1. Recall from Theorem 2 that if the pointwise bound (3.9-a,b,c) on the

coefficients of the linear part of the semilinear equation is in effect along with the
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condition infx∈Rn γ(x) > 0 on the nonlinear part, then uniqueness holds for the

semilinear equation. It is interesting to note how (3.9-a,b,c) relates to uniqueness

for the linear equation. Using the function φ(x) = |x|2 in part (ii-a) of Proposition 5

and then using part (i-a) shows that if (3.9-a,b,c) is in force, then uniqueness holds

for BL(L, V ). As far as pointwise polynomial-type bounds are concerned, condition

(3.9-a,b) is sharp for the uniqueness of BL(L, 0). Indeed, applying part (ii-b) with

the function φ(x) = 1−|x|−l, where l > 0 is sufficiently small, shows that uniqueness

does not hold for BL(L, 0) in the following two cases: (1) L = (1 + |x|)2+δ∆ with

δ > 0 and n ≥ 3; (2) L = ∆ + b∇ and n ≥ 1, where b(x) · x
|x| ≥ c|x|1+δ for large |x|

and some δ, c > 0.

In passing, we note that the question of uniqueness of positive solutions to the

linear equation has a long history in the partial differential equations literature,

going back to Widder. It is known that uniqueness of positive solutions holds if

(3.9-b,c) is in force and if (3.9a) is replaced by a two-sided bound of the form

C1|ν|2(1 + |x|)q ≤ ∑n
i,j=1 aij(x)νiνj ≤ C2|ν|2(1 + |x|)q, for some q ∈ [0, 2]. See, for

example, [6] and references therein.

Remark 2. It’s well-known in the probability literature that uniqueness holds for

BL(L, 0) if and only if the Markov diffusion process corresponding to the operator

L is nonexplosive; that is, the process does not run out to infinity in finite time.

In the case that p ∈ (1, 2], the equation NS is also connected with a Markov

process; namely, with a measure-valued diffusion process. The so-called compact

support property for measure valued diffusions can be thought of as the parallel to

nonexplosiveness for ordinary diffusions. We have shown elsewhere that uniqueness

for NS0 is equivalent to the compact support property holding [3]. (Actually, the

case p = 2 is treated in [3] but it extends immediately to p ∈ (1, 2].) Certain results

in this paper appeared in the case p = 2 with probabilistic proofs in [3] or [2].
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We now give the proof of Proposition 5 followed by the proof of Theorem 3.

Proof of Proposition 5. i-a. Let um,V denote the solution to ut = (L + V )u in

Bm × (0,∞) with u(x, 0) = 0 in Bm and u(x, t) = 1 on ∂Bm × (0,∞). By the

maximum principle, uniqueness holds for BL(L, V ) if and only if limm→∞ um,V =

0. We will show that if V is bounded from above and limm→∞ um,0 = 0, then

limm→∞ um,V = 0. Let λ = supx∈Rn V (x) and define Z(x, t) = um,0(x, t) exp(λt).

Then LZ + V Z − ∂Z
∂t ≤ 0 in Bm × (0,∞), Z(x, 0) = 0 in Bm and Z(x, t) ≥ 1 on

∂Bm × (0,∞). Thus, by the maximum principle, 0 ≤ um,V ≤ um,0 exp(λt) and

consequently, limm→∞ um,V = 0.

i-b. The proof is very similar to the proof of (i-a).

ii-a. Denote by um the function that was called um,0 in the proof of part(i). We

need to show that limm→∞ um = 0. Continue the function φ appearing in the

statement of the proposition so that it is defined on all of Rn as a smooth, positive

function. By increasing λ if necessary, we have Lφ ≤ λφ in Rn. Let Um(x, t) =
φ(x)

inf|y|=m φ(y) exp(λt). Then LUm − ∂Um

∂t ≤ 0 in Bm × (0,∞), Um(x, 0) ≥ 0 in Bm,

and Um(x, t) ≥ 1 on ∂Bm × (0,∞). Thus, it follows from the maximum principle

that Um ≥ um ≥ 0 in Bm× (0,∞). Using the assumption that lim|x|→∞ φ(x) = ∞,

we obtain limm→∞ Um = 0, and thus, limm→∞ um = 0.

ii-b. Assume to the contrary that uniqueness does hold for BL(L, 0). Let Z(x, t) =

exp(−λt)φ(x) in (Rn − Bm0) × [0, 1]. By assumption, we have LZ + ∂Z
∂t ≥ 0. in

(Rn − B̄m0)× (0, 1). For m > m0, let Um denote the solution to the equation

(3.16)

ut + Lu = 0 in (Bm − B̄m0)× (−∞, 1);

u(x, 1) = exp(−λ)φ(x) on Bm − B̄m0 ;

u(x, t) = φ(x) on (∂Bm ∪ ∂Bm0)× (−∞, 1).

By the maximum principle,

(3.17) Z ≤ Um in (Bm −Bm0)× [0, 1].
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Now Let Vm denote the solution to

(3.18)

ut + Lu = 0 in (Bm − B̄m0)× (−∞, 1);

u(x, 1) = exp(−λ)φ(x) on Bm − B̄m0 ;

u(x, t) = 0 on ∂Bm × (−∞, 1), u(x, t) = φ(x) on ∂Bm0 × (−∞, 1).

We will now show that the uniqueness assumption for BL(L, 0) guarantees that

(3.19) lim
m→∞

Um = lim
m→∞

Vm.

Let Wm = Um − Vm. From (3.16) and (3.18) we have

(3.20)

∂Wm

∂t
+ LWm = 0 in (Bm − B̄m0)× (−∞, 1);

Wm(x, 1) = 0 on Bm − B̄m0 ;

Wm(x, t) = φ(x) on ∂Bm × (−∞, 1), Wm(x, t) = 0 on ∂Bm0 × (−∞, 1).

Let vm(x, t) = cum(x, 1 − t), where um is as in part(ii-a) and c = sup|y|=m0
φ(y).

Then vm satisfies ∂vm

∂t + Lvm = 0 in (Bm − B̄m0) × (−∞, 1). Taking into account

the boundary conditions, we conclude from (3.20) and the maximum principle that

0 ≤ Wm(x, t) ≤ vm(x, t) = cum(x, 1 − t). We have assumed that uniqueness holds

for BL(L, 0) which is equivalent to the assumption that limm→∞ um = 0. Thus we

conclude that limm→∞Wm = 0, which proves (3.19).

From (3.17) and (3.19) we conclude that

(3.21) Z ≤ lim
m→∞

Vm in (Rn −Bm0)× [0, 1].

By the maximum principle,

(3.22) lim
m→∞

Vm ≤ max( sup
|y|=m0

φ(y), exp(−λ) sup
|x|≥m0

φ(x)) in (Rn −Bm0)× [0, 1].

By the assumption on φ in the proposition, there exists an x0 ∈ Rn−B̄m0 such that

φ(x0) is strictly larger than the righthand side of (3.22). Recall that Z(x0, 0) =
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φ(x0). Using these two facts along with (3.21) and (3.22) gives a contradiction.

Thus, in fact uniqueness for BL(L, 0) does not hold. ¤

Proof of Theorem 3. We must show that u0;max 6≡ 0. Recall from its construc-

tion that u0;max = limm→∞ Um, where Um ≥ 0 satisfies the semilinear equation in

Bm and limx→∂Bm
Um(x, t) = ∞, for t > 0.

By assumption, uniqueness does not hold for BL(L, 0). Thus there exists a func-

tion w0 6≡ 0 satisfying (w0)t = Lw0, w0(x, 0) = 0 and sup0≤t≤T supx∈Rn |w0(x, t)| <
∞, for all T > 0. In fact then, there exists a nonnegative function w+ 6≡ 0 satis-

fying the same conditions. To see this, note that if w0 does not change sign, then

we can choose w+ = ±w0. Thus, assume that w0 changes sign. Fix T > 0 such

that sup0≤t≤T supx∈Rn w0(x, t) > 0. Let w+
m denote the solution to ut = Lu in Bm

with u(x, 0) = 0, for x ∈ Bm, and u(x, t) = N , for x ∈ ∂Bm and t > 0, where

N = sup0≤t≤T supx∈Rn w0(x, t) > 0. By the maximum principle,

(3.23) max(0, w0) ≤ w+
m, x ∈ Rn, 0 ≤ t ≤ T,

and w+
m is monotone nonincreasing in m. By the standard compactness argument,

it follows that w+ ≡ limm→∞ w+
m is a solution to BL(L, 0), and by (3.23), w+  0.

Now let Z = kw+, where k > 0. Then

(3.24) LZ + V Z − γZp − ∂Z

∂t
= V Z − γZp = γkw+(

V

γ
− (kw+)p−1).

Since w+ is bounded on Rn × [0, T ] and since by assumption, infx∈Rn
V
γ (x) > 0,

it follows that the right hand side of (3.24) is nonnegative on Rn × [0, T ] if k > 0

is chosen sufficiently small. Since Z(x, 0) = 0, it then follows from (3.24) and the

maximum principle in Proposition 1 that

Um ≥ Z, on Bm × [0, T ].
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Letting m →∞, we conclude that u0;max ≥ kw+ in Rn × [0, T ]. ¤

4. The Interplay Between Uniqueness/Nonuniqueness of the Parabolic

Equation and of the Corresponding Steady-State Elliptic Equation. Con-

sider the elliptic semilinear equation corresponding to steady state solutions of NS:

(4.1) Lw + V w − γwp = 0 and w ≥ 0 in Rn.

The next theorem gives conditions for uniqueness/nonuniqueness in terms of solu-

tions to the elliptic equation. As we shall see in the next section, this result can be

very useful.

Theorem 4.

i. Let {fm}∞m=1 ⊂ C(Rn) be an increasing sequence of nonnegative compactly

supported functions satisfying limm→∞ fm = ∞. Let ufm;min denote the minimal

solution to NSfm . Then

(4.2) w∗(x) ≡ lim
t→∞

lim
m→∞

ufm;min(x, t)

exists and is a nonnegative solution to (4.1). There exists a maximal solution wmax

to (4.1), and if wmax  w∗, then uniqueness does not hold for NSf , for any f .

Furthermore, if infx∈Rn γ(x) > 0, then w∗ satisfies the bound

(4.3) sup
x∈Rn

w∗(x) ≤ (
supx∈Rn V +(x)
infx∈Rn γ(x)

)
1

p−1 ,

where V + = max(V, 0).

ii. If w = 0 is the only solution to (4.1), then uniqueness holds for NSf , for all f .

We prepare for the proof of Theorem 4 with the following result which is of

independent interest.
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Proposition 6. Let {fm}∞m=1 be an increasing sequence of nonnegative compactly

supported functions satisfying limm→∞ fm = ∞. Then

u∞;min ≡ lim
m→∞

ufm;min

and

u∞;max ≡ lim
m→∞

ufm;max

exist and are independent of the particular sequence {fm}. They solve NS with

initial condition f = ∞ and they are monotone nonincreasing in t. Furthermore

(4.4) w∗(x) ≡ lim
t→∞

u∞;min(x, t)

is a solution to (4.1) and

(4.5) wmax(x) ≡ lim
t→∞

u∞;max(x, t)

is the maximal, nonnegative solution to (4.1).

Proof. By the maximum principle and the construction of minimal and maximal

solutions, ufm;min and ufm;max are monotone in m. Thus, the existence of the limits

and the fact that u∞;min and u∞;max satisfy NS with initial condition f = ∞ follow

from the standard compactness argument and the a priori bounds in (2.1). The

fact that the above procedure is independent of the particular sequence follows from

the existence plus the fact that given two such sequences, one can construct a new

increasing sequence of compactly supported functions using infinitely many of the

functions from each of the two original sequences.

We now turn to the monotonicity in t. Fix t0 > 0. Let vm(x, t) = ufm;min(x, t +

t0) and v(x, t) = u∞;min(x, t + t0). By the already-proved part of the theorem, we

have limm→∞ vm = v and v solves NS with initial condition f(x) = u∞;min(x, t0).

Let Z be any solution to NS with initial condition f(x) = u∞;min(x, t0). Since
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vn is the minimal solution to NS with initial condition f(x) = ufn;min(x, t0) and

since ufn;min(x, t0) ≤ u∞;min(x, t0), it follows from the maximum princple and

the construction of minimal solutions that vn is less than or equal to the minimal

solution of NS with initial condition f(x) = u∞;min(x, t0). Consequently, vn ≤ Z,

and letting n →∞ gives v ≤ Z. Thus v is in fact the minimal solution of NS with

initial condition f(x) = u∞(x, t0). But then again by the maximum principle and

the construction of minimal solutions, and by the definition of u∞;min, it follows

that v ≤ u∞;min, which proves the monotonicity of u∞;min in t.

Now let V (x, t) = u∞;max(x, t+t0). By the already-proved part of the theorem, V

is a solution of NS with initial condition f(x) = u∞;max(x, t0). Thus, V is less than

or equal to the maximal solution of NS with initial condition f(x) = u∞;max(x, t0),

and by the maximum principle, the construction of maximal solutions, and the

definition of u∞;max, the maximal solution of NS with initial condition f(x) =

u∞;max(x, t0) is less than or equal to u∞;max. Thus V ≤ u∞;max, which proves the

monotonicity of u∞;max in t.

We now show that w∗ and wmax are solutions to (4.1). Let vs(x, t) =

u∞;min(x, t + s). Then from the monotonicity in t, the standard compactness

argument and the a priori bounds in (2.1), it follows that lims→∞ vs exists and

solves NS. Since w∗(x) = lims→∞ vs, we conclude that w∗ is a solution to (4.1).

A similar proof works for wmax.

Finally, we show that wmax is the maximal nonnegative solution to (4.1). To

show this, we will prove that if w is a nonnegative solution to (4.1), then

u∞;max(x, t) ≥ w(x) for (x, t) ∈ Rn × [0,∞). From the definition of u∞;max,

it suffices to prove the above inequality with u∞;max replaced by ufm;max and

Rn replaced by Blm for m sufficiently large, where limm→∞ lm = ∞. From the

construction of the maximal solution, it follows that ufm;max = limk→∞ U
(m)
k ,
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where U
(m)
k solves the semilinear equation in Bk, U

(m)
k (x, 0) = fm(x) in Bk and

limx→∂Bk
U

(m)
k (x, t) = ∞ for t > 0. Thus, it suffices to show that U

(m)
k (x, t) ≥ w(x)

in Blm × [0,∞). Since w satisfies the semilinear parabolic equation, it follows from

the maximal principle in Proposition 1 that U
(m)
k (x, t) ≥ w(x) in Bl × [0,∞) if l

satisfies fm ≥ w in Bl. Since fm is increasing and converges pointwise to ∞, we

can construct a sequence lm satisfying limm→∞ lm = ∞ and such that fm ≥ w on

Blm . This completes the proof of the maximality of wmax. ¤

Proof of Theorem 4. i. The ground work for the proof has been prepared in

Proposition 6 above. Note that the claims that w∗ solves (4.1) and that there exists

a maximal solution wmax to (4.1) follow from Proposition 6. The key additional

step is the following inequality:

(4.6) u∞;max − u∞;min ≤ u0;max.

Letting t → ∞ in (4.6) and using (4.4) and (4.5) shows that if wmax  w∗, then

u0;max 6≡ 0. This, in conjunction with Proposition 3, proves that uniqueness does

not hold for NSf , for any f , and completes the proof except for (4.3).

We now prove (4.6). From the definition of u∞;max and u∞;min in Proposition

6, (4.6) will follow if we show that

(4.7) uf ;max − uf ;min ≤ u0,max,

for compactly supported, nonnegative f . From the construction of the maximal

solution, uf ;max = limm→∞ limk→∞ U
(f)
m,k and uf ;min = limm→∞ u

(f)
m , where for m

sufficiently large so that supp(f) ⊂ B2m, U
(f)
m,k satisfies (2.5) with fm replaced by

f and u
(f)
m satisfies (3.2) with fi replaced by f . Thus, (4.7) will follow if we show

that

(4.8) U
(f)
m,k − u

(f)
2m ≤ U

(0)
m,k in B2m × [0,∞).
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Let W = U
(f)
m,k−u

(f)
2m. It follows from the maximum principle in Proposition 1 that

W ≥ 0. From that maximum principle, (4.8) will hold if we show that

(4.9) LW + V W − γW p − ∂W

∂t
≥ −ψm,k in B2m × [0,∞),

where ψm,k is as in (2.5). We have LW +V W− ∂W
∂t = −ψm,k +γ[(U (f)

m,k)p−(u(f)
2m)p].

Thus,

(4.10) LW +V W − γW p− ∂W

∂t
= −ψm,k + γ[(U (f)

m,k)p− (u(f)
2m)p− (U (f)

m,k−u
(f)
2m)p].

Now (4.9) follows from (4.10) and the inequality bp−ap−(b−a)p ≥ 0, for 0 ≤ a ≤ b.

We now turn to the proof of (4.3). Let β = supx∈Rn V +(x) and let α =

infx∈Rn γ(x). By assumption, α > 0 and we may assume that β < ∞ since other-

wise there is nothing to prove. Define

H(t) =

{
(β

α )
1

p−1 (1− exp(−(p− 1)βt))−
1

p−1 , if β > 0

( 1
(p−1)αt )

1
p−1 , if β = 0.

Then an easy calculation shows that

(4.11) LH + V H − γHp − ∂H

∂t
≤ 0.

By the construction of the minimal solution, ufm;min = liml→∞ um,l, where for l

sufficiently large so that supp(fm) ⊂ Bl, um,l solves (3.2) with fi replaced by fm

and Bm replaced by Bl. By (4.11) and the maximum principle of Proposition 1, it

follows that um,l(x, t) ≤ H(t) for (x, t) ∈ Bl × [0,∞). Thus, ufm;min(x, t) ≤ H(t)

for (x, t) ∈ Bl × [0,∞). Letting m → ∞ and then letting t → ∞ now shows that

(4.3) holds.

ii. By the construction of the maximal solution, u0;max = limm→∞ limk→∞ U
(0)
m,k

where U
(0)
m solves (2.5) with fm replaced by 0. Let t0 > 0 and define W (x, t) =

U
(0)
m (x, t+t0). It follows by the maximum principle in Proposition 1 that W ≥ U

(0)
m,k
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on Bm× [0,∞); thus U
(0)
m,k is monontone nondecreasing in t and the same is true of

u0;max. By the same type of argument used to show that w∗ solves (4.1), if follows

that limt→∞ u0;max solves (4.1). By assumption, w ≡ 0 is the only nonnegative

solution to (4.1); thus, limt→∞ u0;max = 0. In light of the monotonicity in t, we

conclude that u0;max = 0. This proves uniqueness for NS0, and in conjunction with

Proposition 3, uniqueness for all f . ¤

5. Applications. In this section we use the array of results in sections three and

four to prove theorems on uniqueness/nonuniqueness for two classes of semilinear

parabolic equations. We will also show how some of the results in this paper can be

used to give an alternative proof and an extension of a classical result in semilinear

elliptic theory.

We will determine how uniqueness depends on α for the following class of equa-

tions:

(5.1)

ut = α∆u− up in Rn × (0,∞);

u(x, 0) = f(x), x ∈ Rn;

u ≥ 0.

And with a relatively generic V we will determine how uniqueness depends on γ

for the following class of equations:

(5.2)

ut = ∆u + V u− γup in Rn × (0,∞);

u(x, 0) = f(x), x ∈ Rn;

u ≥ 0.

Concerning the class of equations appearing in (5.1), we have the following result.

Theorem 5.
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i-a. Let n ≥ 2. If

α(x) ≤ C(1 + |x|)2,

for some C > 0, then uniqueness holds in (5.1) for all f .

i-b. Let n ≥ 2. If

α(x) ≥ C(1 + |x|)2+ε,

for some ε, C > 0, then uniqueness does not hold in (5.1) for any f .

ii-a. Let n = 1. If

α(x) ≤ C(1 + |x|)1+p,

for some C > 0, then uniqueness holds in (5.1), for all f .

ii-b. Let n = 1. If

α(x) ≥ C(1 + |x|)1+p+ε,

for x > 0 or for x < 0 and some ε, C > 0, then uniqueness does not hold in (5.1)

for any f .

The proof of Theorem 5, one of whose parts (ii-a) is quite long and involved, is

given in the next section.

Before turning to (5.2), we will show how Theorems 2 and 4 can be used to

obtain an alternate proof of a classical result concerning nonexistence of nontrivial

solutions of a certain semilinear elliptic equation in dimension n ≥ 3, and how these

theorems along with Theorem 5 can be used to extend that result to appropriate

corresponding results in the cases d = 1, 2. It was shown by Ni [11] and Kenig and

Ni [7] that the equation ∆w−γwp = 0 in Rn, n ≥ 3, has no nontrivial, nonnegative

solution if γ(x) ≥ C(1+|x|)−2+ε, for some C, ε > 0, and that nontrivial, nonnegative

solutions do exist if γ(x) ≤ C(1+ |x|)−2−ε. Lin [9] extended the nonexistence result

to the borderline case: there is no nontrivial solution if γ(x) ≥ C(1 + |x|)−2. Here

is a quick proof of this last result: Let C > 0. By Theorem 2, uniqueness holds for
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NS((1 + |x|)2∆, 0, C). From (4.3) in Theorem 4, it follows that w∗ ≡ 0. But then

since uniqueness holds and w∗ = 0, it follows again from Theorem 4 that there is

no nontrivial nonnegative solution to (1 + |x|)2∆w − Cwp = 0.

Note that the above proof is independent of dimension and works just as well

for n = 1, 2. Using Theorem 5(i), we can also give an alternative proof of the

existence part of the above result, and more importantly, we can extend the exis-

tence/nonexistence dichotomy to dimensions n = 1, 2.

Theorem 6. Let p > 1.

i. Consider the equation

(5.3) u′′ − γup = 0 in R.

There exists a positive solution to (5.3) if γ(x) ≤ C(1 + |x|)−1−p−ε, for some

C, ε > 0, and there is no positive solution to (5.3) if γ(x) ≥ C(1 + |x|)−1−p, for

some C > 0.

ii. Consider the equation

(5.4) ∆u− γup = 0 in Rn, n ≥ 2.

There exists a positive solution to (5.4) if γ(x) ≤ C(1+ |x|)−2−ε, for some C, ε > 0,

and there is no positive solution to (5.4) if γ(x) ≥ C(1 + |x|)−2, for some C > 0.

Proof. Consider the semilinear equation

(5.5) ut = αu′′ − up in R× (0,∞).

If α(x) ≤ C(1 + |x|)1+p, then it follows from Theorem 5(ii-a) that uniqueness

holds for (5.5). Also, by (4.3) we have w∗ = 0 for equation (5.5). Thus, we

conclude from Theorem 4(i) that there is no positive solution to αu′′ − up = 0 in

R. This is equivalent to the nonexistence statement in (i). On the other hand, if
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α(x) ≥ C(1+ |x|)1+p+ε, then by Theorem 5(ii-b) uniqueness does not hold for (5.5).

Thus, it follows from Theorem 4(ii) that a positive solution exists for αu′′−up = 0

in R, which is equivalent to the existence statement in (i). Part (ii) is proven in

exactly the same manner. ¤

We now turn to the class of equations in (5.2).

Theorem 7. i. Let V be bounded from above. If

γ(x) ≥ C1 exp(−C2|x|2),

for some C1, C2 > 0, then uniqueness holds in (5.2) for all f .

ii. Let V ≥ 0. If

γ(x) ≤ C exp(−|x|2+ε),

for some C, ε > 0, then uniqueness does not hold in (5.2) for f ≡ 0.

Remark. Equation (5.2) with 0 ≤ V ≤ C and γ(x) ≤ C exp(−|x|2+ε), with

C, ε > 0 is an example where uniqueness holds for BL but not for NS. For another

example, consider L = (1+ |x|)l∆ with n = 2 and l > 2 or with n = 1 and l > 1+p.

Let V = 0 and γ = 1. Applying Proposition 5-(ii-a) with φ(x) = log |x| if n = 2

and with φ(x) = |x| if n = 1 shows that uniqueness holds for BL. On the other

hand, by (4.3), we have w∗ = 0 while by Theorem 6, wmax 6= 0. Thus, by Theorem

4(i), uniqueness does not hold for NS.

For an example where uniqueness holds for NS but not for BL, consider the

operator L = (1 + |x|)l∆ in Rn, n ≥ 3, for l > 2, and let V = 0. Then uniqueness

does not hold for BL—see Remark 1 after Proposition 5. On the other hand, if

γ ≥ (1+|x|)l−2, then uniqueness does hold for NS. Indeed, by Theorem 4, it suffices

to show that there is no nontrivial, nonnegative solution w to Lw − γwp = 0 in

Rn, or equivalently, to ∆w − γ(x)
(1+|x|)l w

p = 0 in Rn. But this follows from Theorem
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6. Note that in this example, infx∈Rn
V
γ (x) = 0, as must be the case in light of

Theorem 3.

For the proof of Theorem 7 as well as of Theorem 5, we will need the following

semilinear elliptic maximum principle.

Proposition 7. Let D ⊂ Rn be a bounded domain and let 0 ≤ u1, u2 ∈ C2(D) ∩
C(D̄) satisfy

Lu1 + V u1 − γup
1 ≤ Lu2 + V u2 − γup

2 in D,

and

u1 ≥ u2 on ∂D.

Assume that V ≤ 0. Then u1 ≥ u2 in D.

Proof. Let W = u1−u2 and define H(x) = up
1(x)−up

2(x)

W (x) , if W (x) 6= 0, and H(x) = 0

otherwise. Then H ≥ 0 and we have LW +(V −H)W ≤ 0 in D and W ≥ 0 on ∂D.

Since V − H ≤ 0, it follows from the standard linear elliptic maximum principle

that W ≥ 0 in D. ¤

Proof of Theorem 7. i. Let U(x, t) = u0;max(x, t) exp(−C|x|2(t + δ)), for some

C, δ > 0. Then U satisfies

(5.6)
∆U + 4C(t + δ)x · ∇U + (4|x|2(t + δ)2C2 + 2nC(t + δ) + V − C|x|2)U

− C1 exp(−C2|x|2) exp(C(p− 1)|x|2(t + δ))Up − Ut ≥ 0 in Rn × (0,∞).

Fixing δ = C2
C(p−1) and C ≥ 16C2

2
p−1 , we obtain from (5.6)

(5.7) ∆U + 4C(t + δ)x · ∇U + (2nC(t + δ) + V )U − Up − Ut ≥ 0 in Rn × (0, δ).

Note that the coefficients of the operator on the left hand side of (5.7) satisfy the

requirements in Theorem 2. (They depend on t unlike in Theorem 2, but this is

not important.) Thus, it follows from the maximum principle that for any R > 1,
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the super solution in BR × (0,∞) constructed in the proof of Theorem 2 is larger

or equal to U in BR × (0, δ). That is,

U(x, t) ≤ (1 + |x|) 2
p−1 (R− |x|)− 2

p−1 exp(K(t + 1)) in BR × (0, δ).

Letting R → ∞ shows that U ≡ 0 in Rn × (0, δ), and thus the same is true for

u0;max. As the original equation was time homogeneous, it is clear that in fact

u0;max ≡ 0 in Rn × (0,∞).

ii. Writing u(x) = exp((1 + |x|2)1+ ε
4 )û and dividing through by exp((1 + |x|2)1+ ε

4 )

one sees that nonuniqueness for the initial condition f = 0 in (5.2) is equivalent to

nonuniqueness for the initial condition f = 0 in an equation of the form

(5.8) ut = ∆u + B∇u + V̂ u− γ̂up,

where B(x) · x
|x| ≥ C1|x|1+ ε

2 , V̂ ≥ C1 and γ̂ ≤ C, for constants C1, C > 0. Unique-

ness does not hold for BL(∆+B∇, 0) as was shown in the remark following Propo-

sition 5. Thus, by Theorem 3, uniqueness does not hold for the initial condition

f = 0 in (5.8). ¤

6. Proof of Theorem 5. i-a. The result follows directly from Theorem 2.

i-b. Under the assumption on the coefficients, the right hand side of (4.3) equals 0

and thus w∗ = 0. Therefore, by Theorem 4, it suffices to show that there exists a

nontrivial, nonnegative solution to the elliptic equation

(6.1) α∆w − wp = 0 in Rn.

We note that if a nontrivial, nonnegative solution of (6.1) exists for α = α1, then one

also exists for α = α2, if α2 ≥ α1. The reason for this is as follows. The maximal

nonnegative solution wmax to (6.1) is obtained as wmax = limk→∞ limm→∞ wm,k

where wm,k satisfies α∆w − wp in Bk and w(x) = m on ∂Bk. (The existence of
33



wm,k follows from the method of upper and lower solutions—see the paragraph

following (6.12) for more detail.) To distinguish between αi, i = 1, 2, we will use

the notation w
(i)
m,k and w

(i)
max. We have α1∆w

(1)
m,k − (w(1)

m,k)p = 0 while

α1∆w
(2)
m,k − (w(2)

m,k)p = (α1 − α2)∆w
(2)
m,k = (

α1

α2
− 1)(w(2)

m,k)p ≤ 0.

Thus, by the elliptic maximum principle in Proposition 7 w
(2)
m,k ≥ w

(1)
m,k in Bk, and

we conclude that if w
(1)
max 6= 0, then w

(2)
max 6= 0.

In light of the above, we may assume without loss of generality that α(x) =

C|x|2+ε for |x| ≥ 1, where ε, C > 0. Let 0 < h ∈ C1(Rn) satisfy h(x) = |x|δ for

|x| ≥ 1, where δ = ε
p−1 . Writing w = hŵ and dividing through by hp, one sees

that the existence of a positive solution to (6.1) is equivalent to the existence of a

positive solution to

(6.3) A∆w + B∇w + V̂ w − wp = 0 in Rn,

where A(x) = C|x|2, B(x) = 2Cδx, and V̂ = Cδ(δ + n − 2) for |x| ≥ 1. To show

that there exists a positive solution to (6.3) we will show that that w∗ 6= 0 for the

parabolic equation

(6.4) ut = A∆u + B∇u + V̂ u− up = 0 in Rn × (0,∞).

Let cδ = (Cδ(δ + n− 2))
1

p−1 . (Note that if we had V̂ = Cδ(δ + n− 2) on all of

Rn, then the constant cδ would be a positive solution to (6.3).) For m > 1, let um

denote the solution to

(6.5)

ut = A∆u + B∇u, (x, t) ∈ (Bm − B̄1)× (0,∞);

u(x, 0) = cδ, x ∈ Bm − B̄1;

u(x, t) = 0, x ∈ ∂Bm ∪ ∂B1, t > 0.

By the linear maximum principle, 0 ≤ um ≤ cδ and um is nondecreasing in m and

nonincreasing in t. We have A∆um +B∇um + V̂ um−up
m− ∂um

∂t = cp−1
δ um−up

m =
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um(cp−1
δ −up−1

m ) ≥ 0 in (Bm− B̄1)× (0,∞). Recalling the definition of w∗ in (4.2),

we conclude from the maximum principle in Proposition 1 that

(6.6) w∗(x) ≥ lim
t→∞

lim
m→∞

um(x, t).

Let ûm denote the solution to (6.5) when the boundary condition u(x, t) = 0 on

∂Bm is changed to u(x, t) = cδ. Note that by the maximum principle, ûm is

nonincreasing in m. By the standard compactness argument, U ≡ limm→∞ um and

Û ≡ limm→∞ ûm both solve

(6.7)

ut = A∆u + B∇u, (x, t) ∈ (Rn − B̄1)× (0,∞);

u(x, 0) = cδ, x ∈ Rn − B̄1;

u(x, t) = 0, (x, t) ∈ ∂B1 × (0,∞).

Because of the bounds given above on A and B, uniqueness holds in the class of

bounded solutions for (6.7) as we shall now show. Thus we conclude that U = Û . To

see that uniqueness holds, note that the difference v of any two bounded solutions

to (6.7) will satisfy the following equation for some C > 0 and every m > 0:

vt = A∆v + B∇v, (x, t) ∈ (Bm − B̄1)× (0,∞);

v(x, 0) = 0, x ∈ Bm − B̄1;

v(x, t) = 0, (x, t) ∈ ∂B1 × (0,∞);

|v(x, t)| ≤ C, (x, t) ∈ ∂Bm × (0,∞).

One can check that ψ(x, t) = (1 + |x|2) exp(λt) satisfies A∆ψ + B∇ψ − ∂ψ
∂t ≤ 0,

if λ > 0 is sufficiently large. Thus, taking into account the boundary conditions,

it follows from the maximum principle that |v(x, t)| ≤ C(1 + |m|2)−1ψ(x, t) for

(x, t) ∈ Bm × [0,∞). Letting m →∞ gives v ≡ 0.

Letting r = |x|, the radial form of the elliptic operator on the right hand side of

(6.7) is Cr2 ∂2

∂r2 + C(n− 1 + 2δ)r ∂
∂r , for r > 1. Letting l = n− 2 + 2δ > 0, it is easy
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to show that φm(x) ≡ cδ
1−|x|−l

1−m−l solves A∆φ + B∇φ = 0 in Bm − B̄1 with φ(x) = 0

on ∂B1 and φ(x) = cδ on ∂Bm. By the maximum principle, ûm(x, t) ≥ φm(x).

Letting m → ∞ and using the fact that U = Û , we conclude from (6.6) that

w∗(x) ≥ cδ(1− |x|−l) in Rn − B̂1.

ii-a. By Theorem 4, it suffices to show that there is no positive solution to the

elliptic equation

(6.8) αw′′ − wp = 0 in R.

Let 0 < h(x) ∈ C2(R) satisfy h(x) = |x| for |x| ≥ 1. Writing w = hŵ and dividing

through by hp, one sees that the nonexistence of a positive solution for (6.8) is

equivalent to the nonexistence of a positive solution to

(6.9) aw′′ + bw′ + V̂ w − wp = 0 in R,

where a = α
hp−1 , b = 2α h′

hp and V̂ = αh′′
hp . By the assumption on α, it follows that

a(x) ≤ C(1 + |x|)2, |b(x)| ≤ C(1 + |x|) and V̂ (x) ≤ C, for some C > 0. Thus, it

follows from Theorem 2 that uniqueness holds for the parabolic equation

(6.10) ut = au′′ + bu′ + V̂ u− up = 0 in R× (0,∞)

associated with (6.9). But then by Theorem 4, the w∗ corresponding to the equation

(6.10) must coincide with the maximal nonnegative solution of (6.9). Thus to

complete the proof, it suffices to show that w∗ = 0 for (6.10). Since h′′ is compactly

supported, it follows that V̂ (x) = 0 except on a bounded set. (This is where the

one-dimensionality enters since ∆|x| = 0 only in dimension 1. Also, note that if V̂

were everywhere nonpositive then we could conclude from (4.3) that w∗ = 0.)

Choose m0 > 0 such that V̂ = 0 on R − (−m0, m0). Let φ denote the minimal

positive solution to

(6.11)
aw′′ + bw′ − wp = 0 in {|x| > m0};

w(±m0) = ∞.
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The existence of φ is proven below. Let U(x, t) = 1
p−1

1
p−1 t−

1
p−1 +φ(x) for |x| > m0

and t > 0. Using the inequality (x + y)p ≥ xp + yp, for x, y ≥ 0, it is easy to check

that aU ′′+bU ′−Up−Ut ≤ 0, for |x| > m0 and t > 0. Since U(±m0, t) = U(x, 0) =

∞, it follows from the maximum principle in Proposition 1 that any solution u of

(6.10) with initial condition f ∈ C(R) satisfies u(x, t) ≤ U(x, t) for |x| > m0 and

t > 0. Letting t → ∞ and recalling the definition of w∗ in Theorem 4 then shows

that w∗ ≤ φ. We also know from Theorem 4 that w∗ is a solution to (6.9). To show

that in fact w∗ = 0, we will show that the zero solution is the only nonnegative

solution to (6.9) which is dominated by φ. The proof will require a number of steps.

We begin by constucting the function φ.

Let {ψn}∞n=1 be an increasing sequence of smooth functions satisfying ψn(x) = n

for |x| ≤ m0 − 1
n , ψn(x) = 0 for |x| ≥ m0 and 0 ≤ ψn ≤ n. For m > m0, let φn,m

denote the solution to

(6.12)
aw′′ + bw′ + V̂ w − wp + ψn = 0, |x| < m;

w(±m) = 0.

The existence of φn,m follows by the standard method of upper and lower solu-

tions. Recall that a lower (upper) solution satisfies (6.12) with the equal sign in

the first line changed to ≥ (≤) and the equal sign in the second line changed to

≤ (≥). If there exists a lower solution φ−m,n and an upper solution φ+
m,n such that

φ−m,n ≤ φ+
m,n, then there exists a solution φm,n satisfying φ−m,n ≤ φm,n ≤ φ+

m,n

[13]. Clearly, φ−m,n(x) ≡ 0 is a lower solution and φ+
m,n(x) = C is an upper solution

if C (depending on n) is sufficiently large. By the elliptic maximum principle in

Proposition 7, φm,n is nondecreasing in n and m. Actually, Proposition 7 does not

apply directly since V̂ is not nonpositive in all of R. However, recalling how the

operator in (6.12) was obtained from the original operator in (6.8), it follows that

φm,n solves (6.12) if and only if hφm,n solves αw′′ − wp + hpψn = 0 for |x| < m
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and w(±m) = 0. From this and the fact that Proposition 7 holds for the original

operator, it follows that the maximum principle holds for the transformed one.

Using the standard compactness argument, it will follow that φm ≡ limn→∞ φm,n

is a solution to aw′′+ bw′−wp = 0 in {m0 < |x| < m} with w(±m) = 0 if we show

that {φm,n}∞n=1 is uniformly bounded on (m0 + ε,m) for each ε > 0.

To show the uniform boundedness, let g(x) = λ(|x| − m0)−
2

p−1 . An easy cal-

culation shows that ag′′ + bg′ − gp ≤ 0 on (m0, m) if λ > 0 is chosen sufficiently

large. Thus, by the elliptic maximum principle in Proposition 7 (recall that V̂ = 0

in (m0,m)), it follows that φm,n ≤ g(x) on (m0, m), proving the uniform bounded-

ness.

We now prove that lim|x|↓m0 φm(x) = ∞. Let Z(x) = λ(|x| −m + 2ε)−
2

p−1 for

m0 − ε < |x| < m0 + ε. One can check that there exists a ρ > 0 such that if

ε, λ ∈ (0, ρ), then

(6.13) aZ ′′ + bZ ′ + V̂ Z − γZp ≥ 0 in {m0 − ε < |x| < m0 + ε}.

Choose λ > 0 even smaller if necessary so that

(6.14) Z(x) ≤ φm,1(x), for |x| = m0 + ε.

Now extend Z to be smooth and positive on {|x| ≤ m0 − ε}. Since ψn(x) = n for

|x| ≤ m0 − 1
n , it is clear that for sufficiently large n,

(6.15) aZ ′′ + bZ ′ + V̂ Z − γZp + ψn ≥ 0, for |x| ≤ m0 − ε.

From (6.13)-(6.15) and the maximum principle in Proposition 1, it follows that

Z(x) ≤ φm,n(x) for |x| ≤ m0 + ε and n sufficiently large. Letting n → ∞,

we obtain lim inf |x|↓m0 φm(x) ≥ λ(2ε)−
2

p−1 . As ε is arbitrary we conclude that

lim|x|↓m0 φm(x) = ∞.
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Letting m → ∞ and using the standard compactness argument and the maxi-

mum principle, it follows that φ ≡ limm→∞ φm is a positive solution to (6.11). By

the maximum principle, any positive solution w to (6.11) satisfies w ≥ φn,m. Thus

w ≥ φ, proving that φ is minimal.

For g > 0 define

Ag = a
d2

dx2
+ b

d

dx
+ V̂ − γgp−1

and recall that V̂ = 0 in a neighborhood of ±∞. We will now show that φ is

a positive solution of minimal growth at ±∞ for the operator Aφ. What this

means is that if W > 0 and AφW = 0 in a neighborhood of ±∞ then φ ≤ CW

in a neighborhood of ±∞, for some C > 0. By the maximum principle and the

construction of φ, it will follow that φ is a positive solution of minimal growth

at +∞ for A if we show that for m > 2m0 the solution Wm to AφWm = 0 in

(2m0,m), W (2m0) = φm(2m0) and Wm(m) = 0 satisfies limm→∞Wm = φ. An

identical argument of course works at −∞. Since φm satisfies Aφmφm = 0 in

(2m0,m) and has the same boundary values as Wm, and since φm ≤ φ, it follows

from the maximum principle that Wm ≤ φm. Thus letting W∞ = limm→∞Wm, we

have

(6.16) W∞ ≤ φ, for |x| ≥ 2m0.

Converting Aφmφm = 0 and AφWm = 0 into integral equations by integrating

twice, and using the boundary conditions, and then letting m →∞ and using the

monotone convergence theorem, we obtain

(6.17)
W∞(x) = φ(2m0)− cW∞

∫ x

2m0

dy exp(−
∫ y

2m0

b

a
(r)dr)+

∫ x

2m0

dy exp(−
∫ y

2m0

b

a
(r)dr)

∫ y

2m0

1
a(z)

exp(
∫ z

2m0

b

a
(r)dr)φp−1(z)W∞(z)dz
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and

(6.18)
φ(x) = φ(2m0)− cφ

∫ x

2m0

dy exp(−
∫ y

2m0

b

a
(r)dr)+

∫ x

2m0

dy exp(−
∫ y

2m0

b

a
(r)dr)

∫ y

2m0

1
a(z)

exp(
∫ z

2m0

b

a
(r)dr)φp−1(z)φ(z)dz,

where

cW∞ = φ(2m0)+∫ ∞

2m0

dx exp(−
∫ x

2m0

b

a
(r)dr)

∫ x

2m0

1
a(y)

exp(
∫ y

2m0

b

a
(r)dr)φp−1(y)W∞(y)dy,

and cφ is defined by the same formula except that the term W∞ is replaced by

φ. By (6.16) it follows that cW∞ ≤ cφ. If it were true that cW∞ < cφ, then from

(6.17) and (6.18) we would have W ′
∞(2m0) > φ′(2m0). Since W∞(2m0) = φ(2m0),

this would contradict (6.16). We conclude that cW∞ = cφ. Thus, since W∞ and φ

and their first derivatives agree at 2m0, and since they solve the same second order

linear equation, it follows from the uniqueness theorem for ODE’s that W∞ ≡ φ.

This completes the proof that φ is a positive solution of minimal growth for Aφ at

±∞.

Let Z be a solution of minimal growth at ±∞ for Aw∗ . Since w∗ ≤ φ and since

φ is a solution of minimal growth at ±∞ for Aφ, it follows from the maximum

principle and the above method of construction of solutions of minimal growth that

φ ≤ CZ in a neighborhood of ±∞, for some C > 0. Thus, we have w∗ ≤ CZ in

a neighborhood of ∞, where w∗ solves Aw∗w
∗ = 0 in all of R and Z is a positive

solution of minimal growth at ±∞ for Aw∗ .

We will show that the operator Aw∗ is so-called subcritical and that for a sub-

critical operator, it is impossible for a positive solution in the whole space to be

dominated at ±∞ by a solution of minimal growth; thus we will conclude that

w∗ = 0. For an exposition on criticality theory for elliptic operators, see [12, chap-

ter 4], and for the result we have just mentioned, see [12, Theorem 7.3.9]. However,
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since we are dealing with the one-dimensional case in which it is possible to keep

everything self-contained without too much work, we will derive everything we need

below.

An elliptic operator of the form A = a(x) d2

dx2 + b(x) d
dx + c(x) is called subcritical

if there exists a function f > 0 satisfying Af � 0 in R. If h > 0 and we define

the so-called h-transformed operator Ah by Ahf = 1
hA(hf), then clearly Ah is

subcritcal if and only if A is. Similarly, if ρ > 0, then the operator ρA is subcritical

if and only if A is. Finally we note that in the case c = 0, the operator is subcritical

if and only if

(6.19)
∫ ∞

−∞
dx exp(−

∫ x

0

b

a
(y)dy) < ∞.

To see this, first assume that f > 0 satisfies Af ≡ −g � 0. Solving Af = −g

directly via two integrations reveals that f > 0 is impossible if (6.19) does not hold.

On the other hand, for any compactly supported g ≥ 0, if one solves Af = −g for

f , one finds that a positive solution f does exist if (6.19) holds.

Assume now that w∗ 6≡ 0. Then by the strong maximum principle, w∗ > 0.

The operator a d2

dx2 + b d
dx + V̂ was obtained from the original operator L = α d2

dx2

by an h-transform followed by multiplication by the scalar 1
hp−1 . Thus the op-

erator Aw∗ is obtained via h-transform and scalar multiplication from the op-

erator L − γ(w∗)p−1hp−1. The operator L − γ(w∗)p−1hp−1 is subcritical since

(L− γ(w∗)p−1hp−1)1 < 0. It then follows that Aw∗ is subcritical.

Since w∗ > 0, we can make an h-transform with h = w∗. Using the fact that

Aw∗w
∗ = 0, we obtain Aw∗

w∗ = a d2

dx2 + B d
dx , where B = b + 2a (w∗)′

w∗ . Recalling

that Z is a solution of minimal growth at ±∞ for Aw∗ and that w∗ ≤ CZ in a

neighborhood of ±∞, we conclude that Y ≡ Z
w∗ is a solution of minimal growth at

±∞ for Aw∗
w∗ and that Y ≥ C1 in a neighborhood of ±∞, where C1 > 0. Now Aw∗

w∗

is subcritical since Aw∗ is, and therefore (6.19) holds with b replaced by B. Thus,
41



we can define the function

M(x) =

{ ∫∞
x

dy exp(− ∫ y

0
B
a (z)dz), x > 1∫ x

−∞ dy exp(− ∫ y

0
B
a (z)dz), x < −1.

The fact that M solves Aw∗
w∗M = 0 in a neighborhood of ±∞ and satisfies

lim|x|→∞M(x) = 0 contradicts the fact that Y is a solution of minimal growth

bounded away from zero. Thus, we conclude that w∗ = 0.

ii-b. We will prove the claim under the assumption that the condition on α holds

for x > 0. Under the assumption on the coefficients, the right hand side of (4.3)

equal 0 and thus w∗ = 0. Therefore, by Theorem 4, it suffices to show that there

exists a nontrivial, nonnegative solution to the elliptic equation

(6.20) αw′′ − wp = 0 in R.

By the argument following (6.1), we may assume that α(x) = C|x|1+p+ε, for |x| ≥
m0, where ε, C > 0. The maximal, nonnegative solution wmax of (6.20) is obtained

as wmax = limk→∞ limm→∞ wm,k where wm,k satisfies αw′′ − wp = 0 in (−k, k)

with w(±k) = m.

Let W (x) = c(x−m0)1+
ε

p−1 for x ≥ m0 and W (x) = 0 for x < m0. Then W is a

C2 function except at x = m0. It is easy to check that if c > 0 is sufficiently small,

then αW ′′ −W p ≥ 0 for x ∈ R − {m0}. One can easily check that the maximum

principle in Proposition 7 goes through in the present case even though W is not

twice differentiable at m0. Thus, wmax ≥ W . ¤
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