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Abstract. Fix R > 0 and let BR denote the ball of radius R centered

at the origin in Rd, d ≥ 2. Let D ⊂ BR be an open set with smooth

boundary and such that Rd − D̄ is connected, and let

L =

d∑
i,j=1

ai,j
∂2

∂xi∂xj
−

d∑
i=1

bi
∂

∂xi

be a second order elliptic operator. Consider the following linear heat

equation in the exterior domain Rd − D̄ with boundary flux:

Lu = 0 in Rd − D̄;

a∇u · n̄ = −h on ∂D;

u > 0 is minimal,

where h  0 is continuous, and where n̄ is the unit inward normal to

the domain Rd− D̄. The operator L must possess a Green’s function in

order that a solution u exist. An important feature of the equation is

that there is no a priori bound on the supremum supx∈Rd−D̄ u(x) of the

solution exclusively in terms of the boundary flux h, the hyper-surface

measure of ∂D and the coefficients of L; rather the geometry of D ⊂ BR

plays an essential role. However, we prove that in the case that L is a

symmetric operator with respect to some reference measure, then outside

of B̄R, the solution to (1.2) is uniformly bounded, independent of the

particular choice of D ⊂ BR. The proof uses a combination of analytic

and probabilistic techniques.
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1. Introduction and Statement of Results

Fix R > 0 once and for all and let BR denote the ball of radius R centered

at the origin in Rd, d ≥ 2. LetD ⊂ BR be an open set with smooth boundary

and such that Rd − D̄ is connected. Let

(1.1) L =
d∑

i,j=1

ai,j
∂2

∂xi∂xj
−

d∑
i=1

bi
∂

∂xi

be a strictly elliptic operator in Rd − D with smooth coefficients a =

{ai,j}di,j=1 and b = {bi}di=1. Consider the following linear steady-state heat

equation in the exterior domain Rd − D̄ with boundary flux:

(1.2)

Lu = 0 in Rd − D̄;

a∇u · n̄ = −h on ∂D;

u > 0 is minimal,

where h  0 is continuous, and where n̄ is the unit inward normal to the

domain Rd − D̄. By minimal, we mean that the solution u satisfies u =

limn→∞ un, where for n > R, un solves

(1.3)

Lu = 0 in Bn − D̄;

a∇u · n̄ = −h on ∂D;

u = 0 on ∂Bn.

We note that a certain restriction must be placed on the operator L

in order that a solution u exist to (1.2). This will be discussed below. An

important feature of (1.2) is that there is no a priori bound on the supremum

supx∈Rd−D̄ u(x) of the solution exclusively in terms of the boundary flux

h, the hyper-surface measure of ∂D and the coefficients of L; rather the

geometry of D ⊂ BR plays an essential role. Here is a simple example.

Spherical Shell Example. Consider a spherical shell centered at the origin

in R3 with the radii of the inner and outer boundary spheres given by R1

and R2 respectively, where R1 < R2 < R. Now fix some direction θ0 ∈ S2
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and puncture the shell with a spherical bullet of radius 1
n centered in the

θ0 direction. Thus, a cylindrical-like region of radius 1
n and length R2 −R1

has been removed from the spherical shell. Denote by Dn the open set

obtained by taking this punctured spherical shell and deleting its boundary.

(If one insists that Dn have a smooth boundary, one can smooth out the

edges where the bullet enters and exits.) Let Γn = ∂BR1 ∩ (D̄n)c denote the

punctured part of the inner sphere. By the maximum principle, the solution

un to (1.2) with L = ∆ and h = 1 satisfies un(x) ≥ vn(x), for |x| < R1,

where vn is the solution of

∆vn = 0 in BR1 ;

∇vn · n̄ = −1 on ∂BR1 − Γ̄n;

vn = 0 on Γn,

with n̄ being the inward unit normal to BR1 at ∂BR1 . By the maximum

principle, vn(x) is increasing in n; let v(x) ≡ limn→∞ vn(x). By Harnack’s

inequality, v is either finite everywhere or infinite everywhere in BR1 . If v is

finite, then v must satisfy ∆v = 0 in BR1 and satisfy the Neumann boundary

condition ∇v · n̄ = −1 on all of ∂BR1 . But this is impossible because

solvability of the above equation with Neumann boundary data requires

the compatibility condition
∫
∂BR1

(∇v · n̄)dσ(x) = −
∫
BR1

∆v dx = 0, where

dσ denotes Lebesgue hyper-surface measure on ∂BR1 . Thus, v ≡ ∞ and

consequently, limn→∞ un(x) = ∞, for x ∈ BR1 . Yet, trivially, the sequence

{|∂Dn|}∞n=1 is bounded in n.

However, we will prove that in the case that L is a symmetric operator

with respect to some reference measure, then for any δ > 0, outside of BR+δ,

the solution to (1.2) is uniformly bounded, independent of the particular

choice of D ⊂ BR. More precisely, we will show that for any x ∈ Rd − B̄R,

the solution u(x) is bounded uniformly over all D ⊂ BR, in terms of

i. the boundary flux h;
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ii. the hyper-surface measure of ∂D with respect to the measure whose

density with respect to Lebesgue measure is the trace of the above mentioned

reference measure;

iii. the behavior of the coefficients of L outside of B̄R.

In particular, letting distgeod;Dn(xn, B̄R+δ) denote the length of a shortest

path in Rd−Dn from xn to B̄R+δ, we will give an example of a sequence of

open sets {Dn}∞n=1 ⊂ BR and points xn ∈ BR −Dn with

limδ→0 limn→∞ distgeod;Dn(xn, B̄R+δ) equal to an arbitrarily small positive

number and such that the solution uDn to (1.2) with D = Dn satisfies

limn→∞ uDn(xn) =∞, yet for all x ∈ Rd − B̄R, one has supn uDn(x) <∞.

The proof of our result will use a combination of analysis and proba-

bility. The analysis will consist of representing the solution in terms of an

appropriate Green’s function and using symmetry, while the probability will

consist of representing this Green’s function stochastically in terms of the

occupation time of a diffusion process.

Before stating our result, we discuss the existence and uniqueness of a

solution to (1.2). It is standard that the solution un to the linear equation

(1.3) with co-normal boundary data at ∂D and homogeneous Dirichlet data

at ∂Bn exists and is unique. By the maximum principle, un is positive off of

∂Bn and attains its maximum on ∂D. The maximum principle also shows

that un is nondecreasing in n. Thus, if limn→∞ supx∈∂D un(x) <∞, then we

obtain existence and uniqueness for the solution u to (1.2). The maximum

principle shows that u attains its maximum on the boundary ∂D.

With regard to existence, we begin with a physical description. When

d = 3, u can be thought of as the equilibrium quantity of a reactant after

having undergone a long period of L-diffusion and convection in an exterior

domain which is being supplied with the reactant via a boundary flux h,

and where complete and instantaneous absorption occurs far away. Note

that in (1.1), the drift term b has been written with a minus sign; with

this convention, the reactant is being convected in the direction b. If this
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convection vector field is pointing away from D with sufficient strength,

then the convection of the reactant from the boundary ∂D into the domain

R3 − D̄ will not allow for an equilibrium state.

In order to obtain existence, in fact it is necessary and sufficient to assume

that the operator L possesses an appropriate Green’s function.

Assumption G. The operator L with the co-normal boundary condition

at ∂D possesses a Green’s function.

Recall that the Green’s function GDNeu(x, y) for an operator L with the

co-normal boundary condition at ∂D is the minimal positive function g(x, y)

satisfying the following conditions: for each y ∈ Rd − D̄ the function g(·, y)

satisfies Lg(·, y) = −δy in Rd − D̄ and satisfies the homogeneous co-normal

boundary condition at ∂D: a∇g(·, y)·n̄ = 0 on ∂D. The Green’s function for

an operator L on all of Rd is the minimal positive function g(x, y) satisfying

Lg(·, y) = −δy in Rd, for each y ∈ Rd. We make several remarks concerning

the Green’s function.

Remark 1. Assumption G is equivalent to each of the following assump-

tions:

i. If L is extended to be a smooth strictly elliptic operator on all of Rd, then

this extension possesses a Green’s function;

ii. For n > R, let Vn denote the solution to the equation

(1.4)
LVn = 0 in Bn − B̄R;

Vn = 1 on ∂BR, Vn = 0 on ∂Bn.

Then

(1.5) V ≡ lim
n→∞

Vn

is not the constant function 1.

iii. The diffusion process X(t) in Rd − D corresponding to the operator L

and with co-normal reflection at ∂D is transient, that is, Px(limt→∞ |X(t)| =

∞) = 1, or equivalently, Px(τR <∞) < 1, for x ∈ Rd−B̄R, where Px denotes

probabilities for the diffusion starting from x and τR = inf{t ≥ 0 : X(t) ∈
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B̄R} is the first hitting time of the ball B̄R. Indeed, the function V defined

in (1.4)-(1.5) satisfies

(1.6) V (x) = Px(τR <∞).

For details, see [3].

Remark 2. If Assumption G is not in force, then the solution un to (1.3)

will satisfy limn→∞ un =∞.

Remark 3. For generic choices of b such that L satisfies Assumption G,

the solution u to (1.2) will satisfy limx→∞ u(x) = 0. Necessarily, one has

lim infx→∞ u(x) = 0. One can obtain lim supx→∞ u(x) > 0 by choosing the

convection term b pointing very strongly away from the origin when x is in

certain sectors. (The restriction to certain sectors is necessary for otherwise

the Green’s function would not exist.)

Our result requires that L be symmetric with respect to a weight eQ; that

is, L must be of the form

(1.7) L = e−Q∇ · eQa∇ = ∇ · a∇+ a∇Q∇.

(Note that such an L is of the form (1.1) with bi = −
∑d

j=1
∂ai,j
∂xj
−
∑d

j=1 ai,j
∂Q
∂xj

.)

Note that the boundary condition in (1.1) involves the co-normal deriv-

ative; as is well-known, the operator L in (1.7) with the homogeneous

co-normal boundary condition is symmetric with resect to the weight eQ:∫
Rd−D gLfe

Qdx =
∫
Rd−D fLge

Qdx, for all smooth, compactly supported

f, g that satisfy a∇f · n̄ = a∇g · n̄ = 0 on ∂D.

We first present a theorem for the case L = ∆ with d ≥ 3. (We must

restrict to d ≥ 3 because there is no Green’s function when d = 2.) We

can obtain tighter results in this case than in the case of generic L. We

note that the Green’s function for ∆ in Rd is G(x, y) = |x−y|2−d
(d−2)ωd

where

ωd denotes the Lebesgue hyper-surface measure of the unit sphere in Rd.

Lebesgue hyper-surface measure on ∂D is denoted by dσ.
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Theorem 1. Let L = ∆ in Rd, d ≥ 3. Let R > 0 and assume that D ⊂ BR.

Let ωd denote the surface measure of the unit sphere in Rd. Then for every

γ > 1, the solution u to (1.2) satisfies(∫
∂D

h(z)dσ(z)

)
c−γ,d |x|

2−d

(d− 2)ωd
≤ u(x) ≤

(∫
∂D

h(z)dσ(z)

)
c+
γ,d |x|

2−d

(d− 2)ωd
,

for |x| ≥ γR, where c±γ,d are independent of D and R and satisfy limγ→∞ c
±
γ,d =

1.

For the case of a generic operator L, we need one more definition before

we can state the result. Let GRDir denote the Green’s function for L in

Rd− B̄R with the Dirichlet boundary condition at ∂BR. That is, GRDir(x, y)

is the minimal positive function g(x, y) satisfying Lg(·, y) = −δy in Rd− B̄R
and satisfying the zero Dirichlet boundary condition at ∂BR, for each y ∈

Rd− B̄R. As an aside, we note that the Green’s function GRDir always exists,

even if Assumption G is not satisfied.

Theorem 2. Assume that the operator L satisfies Assumption G and is

symmetric with respect to the weight function eQ as in (1.7). Let R > 0 and

assume that D ⊂ BR. Let R′ > R. Then the solution u to (1.2) satisfies

(1.8)

(∫
∂D

h(y)eQ(y)dσ(y)

)
min|z|=R′ G

R
Dir(z, x)

1−min|z|=R′ V (z)
e−Q(x) ≤ u(x) ≤(∫

∂D
h(y)eQ(y)dσ(y)

)
max|z|=R′ G

R
Dir(z, x)

1−max|z|=R′ V (z)
e−Q(x), for |x| > R′,

where GRDir is the Green’s function for L in Rd − BR with the Dirichlet

boundary condition at ∂BR, and V is as in (1.4)-(1.6).

Remark 1. Recall that V 6≡ 1 is equivalent to Assumption G. By the

maximum principal, V < 1 in Rd − B̄R. In the generic case one has

limx→∞ V (x) = 0. Necessarily one has lim infx→∞ V (x) = 0. One can obtain

lim supx→∞ V (x) > 0 by choosingQ in the manner noted in Remark 3 follow-

ing Assumption G. If limx→∞ V (x) = 0, then of course limR′→∞
1−min|z|=R′ V (z)

1−max|z|=R′ V (z) =

1. For certain classes of operators one has limx→∞
min|z|=R′ G

R
Dir(z,x)

max|z|=R′ G
R
Dir(z,x)

= 1. If
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the above two limits hold, then by choosing R′ large, the ratio of the left

hand side to the right hand side of (1.8) can be made arbitrarily close to 1

for large |x|.

Remark 2. One can of course choose a sequence {Dn}∞n=1 of domains sat-

isfying Dn ⊂ BR, for all n, and limn→∞ |∂Dn| =∞. Letting un denote the

solution to (1.2) with, say, h = 1 on ∂Dn, it follows that limn→∞ un(x) =∞,

for |x| > R.

Theorems 1 and 2 show that given an M > 0, then for any δ > 0, the

solution to (1.2) is bounded in Rd − BR+δ uniformly over all D ⊂ BR sat-

isfying |∂D| ≤ M and over all fluxes h satisfying |h| ≤ M , even though

the solution can be arbitrarily large at points inside BR and very close

to ∂BR. For example, consider the case of the punctured spherical shell,

defined above, except let the inner and outer radii, R1 and R2, also de-

pend on n, setting R1 = R − 2
n and R2 = R − 1

n . Then for any δ > 0,

the solutions {uDn}∞n=1 will be uniformly bounded over Rd − BR+δ, even

though for xn satisfying |xn| = 1 − 3
n and arg( xn

|xn|) = θ 6= θ0, one has that

limn→∞ uDn(xn) =∞. Recalling the definition of distgeod;Dn(·, ·), note that

limδ→0 limn→∞ distgeod;Dn(xn, B̄R+δ) can be made as small as one likes by

choosing θ sufficiently close to θ0.

The proofs of Theorems 1 and 2 depend in an essential way on the fact

that the operator L is symmetric. Of course, the statement of the result also

depends on symmetry, as the weight function eQ appears in the boundary

integrals.

Open Question. In the case that the operator L is not symmetric, is

the size of the solution to (1.2) at x ∈ Rd − B̄R governed independently

of the geometry of D? Or alternatively, can one, say, give an example of

a class of domains {Dn}∞n=1 ⊂ BR with supn |∂Dn| < ∞ and such that

the corresponding solutions {uDn}∞n=1 to (1.2) with, say, h ≡ 1 satisfy

supn sup|x|>R+δ uDn(x) =∞, for some δ > 0?
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The proof of Theorem 1 is given in section 2. In section 3 we sketch how

to amend the proof of Theorem 1 to obtain the proof of Theorem 2.

2. Proof of Theorem 1

Proof. For n > R, let un denote the solution to

(2.1)

∆un = 0 in Bn − D̄;

∇un · n = −h on ∂D;

un = 0 on ∂Bn.

Let GDn (x, y) denote the Green’s function for ∆ in Bn−D̄ with the Dirichlet

boundary condition at ∂Bn and the Neumann boundary condition at ∂D.

One has

(2.2)

∆xG
D
n (x, y) = −δy for x, y ∈ Bn − D̄;

GDn (x, y) = 0, for x ∈ ∂Bn, y ∈ Bn − D̄;

∂GDn
∂n̄x

(x, y) = 0, for x ∈ ∂D, y ∈ Bn − D̄.

By the maximum principle, GDn is increasing in n; letGDNeu(x, y) = limn→∞G
D
n (x, y).

This limiting function is the Green’s function for ∆ in Rd−D̄ with the Neu-

mann boundary condition at ∂D.

Recall the fundamental property of the Green’s function: if v is a smooth

function in Bn −D and continuous up to ∂Bn, then

v(x) = −
∫
Bn−D

(∆v)(y)GDn (x, y)dy +

∫
∂Bn

v(y)(∇yGDn · n̄)(x, y)dσ(y)−∫
∂D

(∇v · n̄)(y)GDn (x, y)dσ(y),

where n̄ denotes the exterior unit normal vector to D at ∂D and the interior

unit normal vector to Bn at ∂Bn. Since un is harmonic and since un vanishes

on ∂Bn and ∇un · n̄ = −h on ∂D, one has the representation

un(x) =

∫
∂D

GDn (x, y)h(y)dσ(y), for x ∈ Bn −D.



10 ROSS G. PINSKY

Letting n→∞ gives

(2.3) u(x) =

∫
∂D

GDNeu(x, y)h(y)dσ(y), for x ∈ Rd − D̄.

To complete the proof of the theorem, we appeal to spectral theory and then

to the probabilistic representation of the Green’s function GDNeu(x, y).

Since the operator ∆ in Bn− D̄ with the Dirichlet boundary condition at

∂Bn and the Neumann boundary condition at ∂D is symmetric, it follows

that the Green’s function GDn , which is the integral kernel of the inverse

operator, is symmetric; that is, GDn (x, y) = GDn (y, x). Thus, also

(2.4) GDNeu(x, y) = GDNeu(y, x).

We now turn to the probabilistic representation of the Green’s function.

Let B(t) be a d-dimensional Brownian motion in Rd−D, normally reflected

at ∂D, and corresponding to the operator ∆. (A standard Brownian motion

β(t) corresponds to the operator 1
2∆; our B(t) can be obtained as

√
2β(t),

or alternatively, as β(2t).) Let Px denote probabilities and let Ex denote

the corresponding expectations for the Brownian motion starting from x ∈

Rd − D. For x ∈ Rd − D, define the expected occupation measure by

µDx (A) = Ex
∫∞

0 1A(B(t))dt, for Borel sets A ⊂ Rd − D. Since d ≥ 3, the

Brownian motion is transient (that is, Px(limt→∞ |B(t)| =∞) = 1) and from

this one can show that µDx (A) <∞ for all bounded A. The measure µDx (dy)

possesses a density and the density is given by GD(x, y) [3]. From now on

we will write GD(x,A) ≡ µDx (A). Using this probabilistic representation,

we will show that for γ > 1,

(2.5)

GDNeu(x, y) ≤ 1

(d− 2)ωd
c+
γ,d|y|

2−d, for x ∈ ∂D, |y| ≥ γR;

GDNeu(x, y) ≥ 1

(d− 2)ωd
c−γ,d|y|

2−d, for x ∈ ∂D, |y| ≥ γR,

where limγ→∞ c
+
γ,d = limγ→∞ c

−
γ,d = 1, c−γ,d > 0 and c±γ,d are independent of

D and R. The theorem then follows from (2.3), (2.4) and (2.5).

To prove (2.5), we define a sequence of hitting times for the Brownian

motion. Let γ > ρ > 1. Define τ1 = inf{t ≥ 0 : |B(t)| = ρR}, and then
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by induction define τ2n = inf{t > τ2n−1 : |B(t)| = R} and τ2n+1 = inf{t >

τ2n : |B(t)| = ρR}. In words, τ1 is the first time the Brownian motion hits

∂BρR, τ2 is the first time after τ1 that the Brownian motion hits ∂BR, τ3 is

the first time after τ2 that the Brownian motion hits ∂BρR, etc. Since the

Brownian motion is transient, almost surely only a finite number of the τn

will be finite. For x ∈ ∂D and A ⊂ Rd −BγR, we have

(2.6) GDNeu(x,A) = Ex

∫ ∞
0

1A(B(t))dt =
∞∑
n=1

Ex

∫ τ2n

τ2n−1

1A(B(t))dt.

This equality holds because for times s ∈ [τ2n, τ2n+1] one has |B(s)| ≤ ρR

and thus B(s) 6∈ A.

Note that for z ∈ ∂BρR, one has Pz(τ1 = 0) = 1 and thus under Pz one

has that τ2 is the first hitting time of BR. Let φ(r) = (Rr )d−2, r = |x|, be

the radially symmetric harmonic function in Rd − B̄R which equals 1 on

the boundary and decays to 0 at ∞. It is well-known that starting from

z with |z| > r, the probability that the first hitting time of ∂BR is finite

is φ(|z|); thus, Pz(τ2 < ∞) = ρ2−d, for z ∈ ∂BρR. By the strong Markov

property, conditioned on τ2n−1 <∞, the probability that τ2n <∞ is again

ρ2−d. Thus, one has

(2.7) Px(τ2n−1 <∞) = ρ(2−d)(n−1), for x ∈ ∂D.

Also from the strong Markov property, the conditional expectation

Ex(
∫ τ2n
τ2n−1

1A(B(t))dt|τ2n−1 <∞) is some averaging of the values of

Ez
∫ τ2

0 1A(B(t))dt, as z varies over ∂BρR. That is, there exists a probability

measure νn,x on ∂BρR such that

(2.8)

Ex(

∫ τ2n

τ2n−1

1A(B(t))dt|τ2n−1 <∞) =

∫
∂BρR

(
Ez

∫ τ2

0
1A(B(t))dt

)
νn,x(dz).

Now let W (t) be a Brownian motion in all of Rd corresponding to the

operator ∆ and let Ex denote the expectation for this Brownian motion

starting from x. Since the Brownian motion reflected at ∂D and the Brow-

nian motion on all of Rd behave the same when they are in Rd − BR, one
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has

(2.9) Ez

∫ τ2

0
1A(B(t))dt = Ez

∫ τ2

0
1A(W (t))dt, for z ∈ ∂BρR.

We now prove the upper bound in (2.5). From (2.9) we have

(2.10) Ez

∫ τ2

0
1A(B(t))dt ≤ Ez

∫ ∞
0

1A(W (t))dt, for z ∈ ∂BρR.

Recall that the Green’s function for ∆ on all of Rd is given by G(x, y) ≡
|x−y|2−d
(d−2)ωd

, where ωd denotes the surface measure of the unit sphere in Rd.

The probabilistic representation of the Green’s function described above also

holds for the Brownian motion in all of Rd; that is, G(x, y) is the density of

the measure µx(A) = Ex
∫∞

0 1A(W (t))dt. Thus, one has

(2.11) Ez
∫ ∞

0
1A(W (t))dt =

∫
A
G(z, y)dy =

∫
A

|z − y|2−d

(d− 2)ωd
dy.

Since Ex(
∫ τ2n
τ2n−1

1A(B(t))dt|τ2n−1 =∞) = 0, we have from (2.6)-(2.11) that

(2.12)

GDNeu(x,A) = Ex

∫ ∞
0

1A(B(t))dt =
∞∑
n=1

Ex

∫ τ2n

τ2n−1

1A(B(t))dt =

∞∑
n=1

Ex(

∫ τ2n

τ2n−1

1A(B(t))dt|τ2n−1 <∞)Px(τ2n−1 <∞) ≤(
sup

z∈∂BρR
Ez
∫ ∞

0
1A(W (t))dt

) ∞∑
n=1

Px(τ2n−1 <∞) =(
sup

z∈∂BρR

∫
A

|z − y|2−d

(d− 2)ωd
dy

) ∞∑
n=1

ρ(2−d)(n−1) ≤

∫
A

1

(d− 2)ωd

1

1− ρ2−d

(
γ

γ − ρ

)d−2

|y|2−ddy, for x ∈ ∂D, A ⊂ Rd −BγR,

where in the last inequality we have used the fact that |y| ≤ γ
γ−ρ |y − z|, for

|z| = ρR and |y| ≥ γR. Now ρ ∈ (1, γ) is a free parameter. One can check

that

sup
ρ∈(1,γ)

(1− ρ2−d)(γ − ρ)d−2 =
(γ

d−2
d−1 − 1)(γ − γ

1
d−1 )d−2

γ
d−2
d−1

.
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The maximum is attained at ρ = γ
1
d−1 . Using this value of ρ in the right

hand side of (2.12) gives

(2.13) GDNeu(x,A) ≤
∫
A

c+
γ,d

(d− 2)ωd
|y|2−ddy,

for x ∈ ∂D and A ⊂ Rd −BγR, where

c+
γ,d =

γ
d−2
d−1γd−2

(γ
d−2
d−1 − 1)(γ − γ

1
d−1 )d−2

.

Note that limγ→∞ c
+
γ,d = 1. Now the upper bound in (2.5) follows from

(2.13).

We now prove the lower bound in (2.5). Let GRDir(x, y) denote the Green’s

function for ∆ in Rd − B̄R with the Dirichlet boundary condition at ∂BR.

The probabilistic representation of the Green’s function gives

(2.14) GRDir(z,A) = Ez
∫ τ2

0
1A(W (t))dt, for |z| > R.

Using reflection with respect to ∂BR allows one to calculate the Green’s

function explicitly [2]:

(2.15)

GRDir(x, y) =
1

(d− 2)ωd
|x− y|2−d − 1

(d− 2)ωd
(
|y|
R

)2−d|x− R2

|y|2
y|2−d =

1

(d− 2)ωd
|x− y|2−d − 1

(d− 2)ωd

∣∣∣∣ |y|R x− R

|y|
y

∣∣∣∣2−d .
(In the proof of the upper bound, we could have used this Green’s function

and (2.9) instead of the Green’s function G(x, y) for all of Rd and (2.10),

and this would have yielded a slightly smaller value of c+
γ,d. However, it was

simpler to work with G(x, y). For the lower bound we have no choice but to

work with GRDir(x, y).)

For |x| = ρR and |y| = γ′R, with γ′ ≥ γ, one has∣∣∣∣ |y|R x− R

|y|
y

∣∣∣∣ ≥ |y||x|R
−R = R(γ′ρ− 1)

and

|x− y| ≤ |x|+ |y| = R(γ′ + ρ).
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Using this with (2.15), one has

(2.16)
(d− 2)ωdG

R
Dir(x, y)

|y|2−d
≥ (

γ′

γ′ + ρ
)d−2 − (

γ′

γ′ρ− 1
)d−2, for |x| = ρR, |y| = γ′R.

One can check that the right hand side of (2.16) is increasing in γ′; thus

(2.17)
(d− 2)ωdG

R
Dir(x, y)

|y|2−d
≥ (

γ

γ + ρ
)d−2 − (

γ

γρ− 1
)d−2, for |x| = ρR, |y| ≥ γR.

Then similar to (2.12), but using (2.9) and (2.14) instead of (2.10) and

(2.11), we have

(2.18)

GDNeu(x,A) = Ex

∫ ∞
0

1A(B(t))dt =

∞∑
n=1

Ex

∫ τ2n

τ2n−1

1A(B(t))dt =

∞∑
n=1

Ex(

∫ τ2n

τ2n−1

1A(B(t))dt|τ2n−1 <∞)Px(τ2n−1 <∞) ≥

(
inf

z∈∂BρR
Ez
∫ τ2

0
1A(W (t))dt

) ∞∑
n=1

Px(τ2n−1 <∞) =

(
inf

z∈∂BρR

∫
A
GRDir(z, y)dy

) ∞∑
n=1

ρ(2−d)(n−1) =

(
inf

z∈∂BρR

∫
A
GRDir(z, y)dy

)
1

1− ρ2−d ≥∫
A

1

(d− 2)ωd

1

1− ρ2−d

(
(

γ

γ + ρ
)d−2 − (

γ

γρ− 1
)d−2

)
|y|2−ddy,

for x ∈ ∂D, A ⊂ Rd −BγR,

where the inequality follows from (2.17).

As a function of ρ ∈ (1, γ), the expression 1
1−ρ2−d

(
( γ
γ+ρ)d−2 − ( γ

γρ−1)d−2
)

is non-positive if γ ≤ 1 +
√

2. For γ > 1 +
√

2, this expression has a positive

maximum. The formula for the maximum is complicated and doesn’t add

much so we will just define c−γ,d as follows. For γ sufficiently large so that

the above expression is positive for ρ = γ
1
d−1 , let this value be c−γ,d. Then,

in particular, for some γ0 > 1, one has

c−γ,d =
1

1− γ
2−d
d−1

( γ

γ + γ
1
d−1

)d−2

−

(
γ

γ
d
d−1 − 1

)d−2
 , for γ ≥ γ0.
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Note that limγ→∞ c
−
γ,d = 1. From (2.18) and the above remarks, we have

now shown that

(2.19) GDNeu(x, y) ≥ 1

(d− 2)ωd
c−γ,d|y|

2−d, for x ∈ ∂D, |y| ≥ γR, γ ≥ γ0.

This is the lower bound in (2.5) except that one has here γ ≥ γ0 instead of

γ > 1. To extend (2.19) to γ > 1, one notes that since GRDir(z, y) is positive

for z, y ∈ Rd − B̄R, one has trivially infγR≤|y|≤γ0R,|z|=ρRG
R
Dir(z, y) > 0, for

any choice of ρ, γ satisfying 1 < ρ < γ < γ0, and in fact by scaling, the

left hand side is independent of R. Using this along with the fact that

GDNeu(x,A) ≥
(
infz∈∂BρR

∫
AG

R
Dir(z, y)dy

)
1

1−ρ2−d , which follows from (2.18),

we can define c−γ,d > 0 for all γ > 1 so that (2.19) holds.

�

3. Proof of Theorem 2

In the present case, (2.3) still holds, where GDNeu is now the Green’s func-

tion for the operator L on Rd − D̄ with the co-normal boundary condition

at ∂D. Since the operator L is symmetric with respect to the weight eQ,

similar to (2.4) we have

(3.1) eQ(x)GDNeu(x, y) = eQ(y)GDNeu(y, x).

To see this, note that since Green’s functionGDNeu(x, y) satisfies LGDNeu(·, y) =

−δy with the homogeneous co-normal boundary condition at ∂D, it follows

that for any compactly supported sufficiently smooth function f defined on

Rd − D, the function v(x) =
∫
Rd−DG

D
Neu(x, y)f(y)dy is the minimal pos-

itive solution of Lv = −f in Rd − D, with the homogeneous co-normal

boundary condition at ∂D. Now on the one hand, since L is in the form

(1.7), it follows that v solves ∇ · eQa∇v = −eQf with the homogeneous co-

normal boundary condition, but on the other hand, by the same reasoning

as above, we have v(x) =
∫
Rd−DGsym(x, y)eQ(y)f(y)dy, where Gsym is the

Green’s function for the operator ∇ · eQa∇ on Rd −D with the co-normal

boundary condition at ∂D. Since this holds for all nice f , we conclude that
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GDNeu(x, y) = Gsym(x, y)eQ(y). Since Gsym is the Green’s function of an op-

erator that is symmetric with respect to Lebesgue measure, it follows as in

(2.4) that Gsym(x, y) = Gsym(y, x). Now (3.1) follows from this.

In light of (2.3) and (3.1), to prove the theorem it suffices to show that

for R′ > R, one has

(3.2)
min|z|=R′ G

R
Dir(z, x)

1−min|z|=R′ V (z)
≤ GDNeu(y, x) ≤

max|z|=R′ G
R
Dir(z, x)

1−max|z|=R′ V (z)
, for |x| > R′ and y ∈ ∂D.

As in the previous section, we consider the probabilistic representation

of the Green’s function. Let X(t) be the diffusion process in Rd − D, co-

normally reflected at ∂D, and corresponding to the operator L [4]. Let

Py denote probabilities and let Ey denote the corresponding expectations

for the diffusion starting from y ∈ Rd − D. For y ∈ Rd − D, define

the expected occupation measure by µDy (A) = Ey
∫∞

0 1A(X(t))dt, for Borel

sets A ⊂ Rd − D. By assumption, the process X(t) is transient, (that is,

Py(limt→∞ |X(t)| =∞) = 1), and from this one can show that µDy (A) <∞

for all bounded A. The measure µDy (dx) possesses a density and the density

is given by GDNeu(y, x). From now on we will write GDNeu(y,A) ≡ µDy (A).

Define τ1 = inf{t ≥ 0 : |X(t)| = R1}, and then by induction define

τ2n = inf{t > τ2n−1 : |X(t)| = R} and τ2n+1 = inf{t > τ2n : |X(t)| = R1}.

Similar to the proof of Theorem 1 (see (2.6), (2.8) and the line between

(2.11) and (2.12)), we have for y ∈ ∂D and A ⊂ Rd − B̄R1 ,

(3.3)

GDNeu(y,A) = Ey

∫ ∞
0

1A(X(t))dt =
∞∑
n=1

Ey

∫ τ2n

τ2n−1

1A(X(t))dt =

∞∑
n=1

Ey(

∫ τ2n

τ2n−1

1A(X(t))dt|τ2n−1 <∞)Py(τ2n−1 <∞) =

∞∑
n=1

∫
∂BR1

(
Ez

∫ τ2

0
1A(X(t))dt

)
νn,y(dz)Py(τ2n−1 <∞),
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where νn,y is some probability measure on ∂BR1 . By the strong Markov

property,

(3.4) ( min
|z|=R′

V (z))n−1 ≤ Py(τ2n−1 <∞) ≤ ( max
|z|=R′

V (z))n−1,

for y ∈ ∂D, where V is as in (1.6). Now (3.2) follows from (3.3), (3.4) and

the fact that Ez
∫ τ2

0 1A(X(t))dt = GRDir(z,A).
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