COMPARING THE INVERSION STATISTIC FOR
DISTRIBUTION-BIASED AND DISTRIBUTION-SHIFTED
PERMUTATIONS WITH THE GEOMETRIC AND THE
GEM DISTRIBUTIONS

ROSS G. PINSKY

ABSTRACT. Given a probability distribution p := {pr}32; on the pos-
itive integers, there are two natural ways to construct a random per-
mutation of S, or of N. One is called the p-biased construction and
the other the p-shifted construction. In the first part of the paper we
consider the case that the distribution p is the geometric distribution
with parameter 1 —q € (0,1). In this case, the p-shifted random permu-
tation has the Mallows distribution with parameter q. Let priGeo(t—a)
and P5%°0~9 denote the biased and the shifted distributions on S,,.

P;:;GCO(lfq)

The number of inversions of a permutation under stochasti-

b;G 1—
P, eof q), and under

cally dominates the number of inversions under
either of these distributions, a permutation tends to have many fewer
inversions than it would have under the uniform distribution. For fixed
n, both PLE°0=9 and pgi¢eel=9 converge weakly as ¢ — 1 to the
uniform distribution on S,,. We compare the biased and the shifted

PylZ%GeO(Qn)

distributions by studying the inversion statistic under and

piGeolan) g1 various rates of convergence of g, to 1. In the second
part of the paper we consider p-biased and p-shifted permutations for
the case that the distribution p is itself random and distributed as a
GEM(6)-distribution. In particular, in both the GEM(6)-biased and
the GEM(0)-shifted cases, the expected number of inversions behaves
asymptotically as it does under the Geo(1 — ¢)-shifted distribution with
0= l%q. We also consider another p-biased distribution with random p

for which the expected number of inversions behaves asymptotically as

it does under the Geo(1 — g)-biased distribution with 6 = +Z_.
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2 ROSS G. PINSKY
1. INTRODUCTION AND STATEMENT OF RESULTS

A permutation of N is a 1-1 map from N onto itself. Let p := {py}72, be a
probability distribution on the positive integers, with py > 0 for all k. From
this distribution, we indicate two methods for creating a random permuta-
tion I := {II; }7°; of N. Take a countable sequence of independent samples
from the distribution p: ni,ne, - - -. The first method is to define II; to be the
kth distinct number to appear in the sequence {nj,no,---}. Thus, for ex-
ample, if the sequence of independent samples from p is 7,3,4,3,7,2,5,-- -,
then the permutation II begins with II; = 7,1l = 3,113 = 4,11 = 2,115 = 5.
Such a random permutation is called a p-biased permutation. The second
method is defined as follows. Let II{ = nq and then for k& > 2, let II;, =
Yr(ng), where 9y, is the increasing bijection from N to N — {IIy,--- I }.
Thus, the sequence of samples 7,3,4,3,7,2,5,--- yields the permutation 11
beginning with I} = 7,1l = 3,II3 = 5,11y = 4,115 = 11,1l = 2,11y = 10.
Such a permutation is called a p-shifted permutation.

For any fixed n € N, one can also obtain p-biased and p-shifted permu-
tations of [n] (that is, p-biased and p-shifted distributions on S,,, the set of
permutations of [n]). Indeed, we simply ignore all values that land outside
of [n] and stop the process after a finite number of steps, when every value
in [n] is obtained. Thus, for example, if we take n = 5, and if, as before,
we sample the sequence 7,3,4,3,7,2,5,---, then we obtain the permutation
34251 € S5 in the biased case and 35421 € Sy in the shifted case. Let ng{p’“}
and ng{p 5} denote the biased and shifted distributions on the permutations
of N, and let Pf;;{p *} and Pﬁ;{p ¥} denote the biased and shifted distributions
on S,. It is easy to see from the construction that P,lf{p +} and Prf;{p * con-
verge weakly to PEP and PSP a5 00, in the sense that for each
k € N, one has

p&{pk}(nh o I) €)= lim Pg?{pk}((ﬂh o I0) € 4);

n—oo

Pgé{pk}([[h... ) € ) = lim P;f;{p’“}((ﬂl,'” ) € ).

n—oo

In this paper we consider p-biased and p-shifted random permutations in

the case that the distribution p is the geometric distribution Geo(1 — q):

(11) br = (]- - q)qk_l) k= 1725 Ty
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where ¢ € (0,1). We also consider p-biased and p-shifted random permu-
tations in the case that the distribution p is itself random and distributed
according to the GEM(0) distribution, for # > 0. In the p-biased case we
also consider another random distribution related to the GEM(6) distribu-
tion. We study the behavior of the inversion statistic for these random
permutations.

We begin with the Geo(1 — g)-biased and Geo(1 — g)-shifted random per-
mutations. Denote the corresponding biased and shifted distributions on the
permutations of N and on S, by P&Geo(l_@, ngGeo(l_Q), PffGeO(l_Q), P;?Geo(l_‘”.
It is known [7] that piGeell=a) the Geo(1 — g)-shifted distribution on S, is
actually the Mallows distribution with parameter q. The Mallows distribu-
tion with parameter ¢ is the probability measure on S,, that assigns to each
permutation o € S, a probability proportional to ¢?#(?), where Z,,(¢) is the

number of inversions in o3 that is Z,,(0) = >°; ;- <, 1{oj < 0i}. We extend

the inversion statistic Z,, to permutations ¢ = 0102 --- of N by defining
Tn(o) = Z 1{03'_1<Ui_1} = Z 1{Ul<0k}'
1<i<j<n 1<k<I<oo
O, 01<n

We have the following simple result.

P&Geo(l_q) cotncides with its

Pg(;)G’eo(l—q)

Proposition 1. The distribution of Z,, under

distribution under Pnb;Geo(l_q), and the distribution of Z,, under

coincides with its distribution under under PnS;Geo(lfq).
A little thought should give the reader the intuition that for any n, Z,
in the shifted case stochastically dominates Z,, in the biased case. We will

prove the following proposition.

Proposition 2. For all 1 <1 < j < oo, 1y -1, -1y under pcet=o
7 7

stochastically dominates 1{%—1<0i—1} under P&Ge"“‘q).

ch;)Geo(l—q)

Of course, it follows from the proposition that Z,, under stochas-

tically dominates Z,, under p(féGeO(l—Q)'

It is easy to see from the construction that as ¢ € (0,1) approaches 1,
both the Geo(1—g)-biased distribution PrGeel=9 and the Geo(1—q)-shifted
distribution PfGeo(l*q) converge weakly to the uniform measure on .S,,. We

compare the behavior of the distributions P&Geo(l*q) and P@Geo(l*q) in the
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context of inversions for various rates of convergence of ¢, to 1. We begin

however with the case of fixed ¢ € (0,1).

Proposition 3. Let g € (0,1).
1.

b; Geo(1—q) 00
E 7z 1
(1.2) lim 2 =y

—k
n—00 n pt 1+ q
and
b;Geo(l—q)I
1. lim(1 —q) lim ———~" = log 2.
(1.3) lim(1 —g) lim - og
Furthermore, under P&Geo(l*q), w-limnﬁoolnfn =3, ﬁ,
Es;G’eo(l—q)I
(1.4) lim —> N
n—00 n 1— q
and
s;Geo(lfq)I
lim(1 —¢) lim ——— " =1.
q—1 n— 00 n
Furthermore, under P;Geo(l*q), w-limn_)oo% — 1L_q_

Theorem 1. a. Let g, =1 — -5, with ¢ >0 and a € (0,1).

. b; Geo(1—

i. Under Py eof q"),
; 7 log 2

W-hmn_)oonl% = E .

.. ;Geo(1—

ii. Under P o q"),
: 7z 1

W—hmnﬁoonlﬁ = c-

b. Let g, =1 — -, with c> 0.
1. Under P&Geo(l_qn),

. T 1 pl—e¢log(1-%) ,
w-limy, 0078 = 7 [ 2 dx = Iy(c).
g :Geo(1—qn
#. Under Ps, coll=g ),
. T 1 rl—e¢ 1 log(1—x .
w-limy, 007% = ) (— + %)dz = Is(c).

11—z
Also, Iy(c) < Is(c), lime—yoo Ip(c) = lime—yoo Is(c) = 0 and
1

lime—o Iy(c) = lime—o Is(c) = ;.
¢. Let qn=1—o(%). Under both PEC1=4) gpq pgiceelt=an),

n
. 7, 1
w-lim,, oo %=1

Remark. The stochastic dominance of the inversion statistic under Pﬁ;Geo(lfq")
as compared to under PS?GGO(“%) disappears asymptotically if ¢, = 1—0(%).
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Indeed, in such a case, both distributions mimic the uniform distribution for

which it is well-known that W—limnﬁoo% = %.

We now consider p-biased and p-shifted random permutations in the case
that the distribution p is itself random and distributed according to the
GEM(6) distribution, which we now describe. Let {W}}?2; be IID ran-
dom variables taking values in (0,1). Define a random sequence {Pj}7°,,

deterministically satisfying > 7>, Py = 1, by
(1.5) Pr=Wi, Pr=0-W1) - (1 =Wi_1)Wg, k>2.

Such a random distribution is called a random allocation model (RAM) or a
stick-breaking model. The GEM(6) distribution with § > 0 is the RAM model
in the case that the IID sequence {W},}?° | has the Beta(1, §)-distribution;
namely the distribution with density 6(1 — w)?~!, 0 < w < 1.

We denote by P&GEM(G) and P&GEM(G) respectively the corresponding
biased and shifted distributions on permutations of N, and call them the
GEM(6)-biased and the GEM(6)-shifted distributions. Note that we are
in the annealed setting. That is, we sample a sequence {p;}7°, from the
GEM(6)-distributed random variables {Py}3, and use this realization to

construct a p-biased and a p-shifted random permutation of N. We have
PHGEMO) () — /P;{p"‘}( )dPy{Pr} = {pr}), for x =bor x = s,

where Py is the GEM(0)-distributed probability measure on sequences {Py } 72 ;.
(With an abuse of notation, we will also use Py to denote the measure as-
sociated with the sequence {W},}?° | of IID Beta(1, #)-distributed random
variables used to construct the sequence {Py}32;.)

For the Beta(1,6)-distributed IID random variables {W}}72,, we have
EgWq = ﬁ and therefore Ey(1—W7) = %. Thus, comparing the random
distribution on N given by a realization of {P},}2° ;| as in (1.5), with {W,}32,
as above, with the deterministic geometric distribution on N given in (1.1),
it is natural to compare the Geo(1 — ¢)-biased or shifted distribution to the
GEM(0)-biased or shifted distribution, with ¢ and 6 related by ¢ = %,
or equivalently, 6 = li_q. It turns out that with respect to the inversion
statistic, this comparison is apt in the shifted case, but not in the biased

case. We will prove the following results.
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Theorem 2. Let 6 > 0. For Py-almost all {Py}72, = {pr}2;

T 00 o) k
(16)  w— lim =% kP =) kWi [J0 W),
k=1 k=1 i=1
where w — lim,,_,o denotes the weak limit under the measure Pgé{p ’“}. Fur-
thermore,
ES;GEM(G)I
(1.7) lim ——— " =¢.
n—o0 n
Theorem 3. Let 6 > 0. Then
b;:GEM(6)
E 7T
(1.8) lim — = =4.
n—o0 n

Remark 1. The calculations involved in the proof of Theorem 3 are the

most interesting ones in the paper, and contain several twists and novelties.

P;Geo(l—q)

Remark 2. As noted after Proposition 2, Z,, under dominates

Z,, under P&Geo(l*q). Note that this dominance is maintained in the limit

as n — oo in the sense that the right hand side of (1.4) is larger than the

right hand side of (1.2). Intuition would suggest that Z, under P;GEM(G)

P&GEM(Q), but we don’t have a proof. However, such a

dominates Z,, under
dominance, if it exists, does not maintain itself as n — oo in the sense that

the right hand sides of (1.7) and (1.8) are the same.

With regard to the discussion in the paragraph preceding Theorem 2,
compare (1.7) to (1.4). This establishes a connection in the shifted case

between PECEMO) and piteet=a) ity g = 1%’(1. However, comparing (1.8)

to (1.2) shows that such a connection does not carry over to P&GEM(G) and

P&Geo(l_q) the biased case. In light of this, we now consider another family
of p-biased distributions with random distribution p which, as we shall see,
better deserves to be considered as the natural random counterpart to the
family of P?Gee(1=0)_distributions. Let {Uy}3 ; be a sequence of IID random
variables distributed uniformly on [0,1]. Denote expectation with respect
to these random variables by the generic E. Let 8 > 0. Define a random

sequence {P;}22,, by

=

k
Pr=]]U’
=1



INVERSIONS FOR DISTRIBUTION-BIASED/SHIFTED PERMUTATIONS 7
Let
o0
D=> P
k=1

and define the random sequence {Pj}7°, by

D=

P11

We consider the p-biased distribution with p distributed as {Py}3°,, and
denote this distribution by P&Indepw). We note that the normalization ran-
dom variable D is known to have a so-called generalized Dickman distribu-
tion with parameter 6 [5]. However this normalization plays no role in the
construction of the p-biased distribution; indeed, from the construction it
follows that

7,

b;Indep(0 -1 -1\

1 .
Note that U/ has density 020~ 2 € [0,1]; thus Uy, dist 1—W,, where Wy, has

1
the Beta(1,0) distribution. In particular, EU’ = %. Comparing (1.1),
(1.5) and(1.9), we suggest that, with 6 and ¢ related by ¢ = %, or equiv-

alently, 0 = 1%’(1, the distribution P2™9P® rather than the distribution

P&GEM(G) should be considered as the natural random counterpart of the

distribution P&Geo(q)

supports this claim; indeed, compare (1.3) to (1.8) and (1.11).

, at least as ¢ — 1 and 8 — oco. The following theorem

Theorem 4. Let 8§ > 0. Then
b;Indep(0
(1.11) T}Eﬂow =0log?2.

Note that for the shifted case in Theorem 2 we have a weak law of large
numbers as well as an asymptotic result for the expected value, whereas for
the biased case in Theorems 3 and 4 we only have an asymptotic result for
the expected value. The following proposition, of independent interest, con-
cerning the generic shifted case constructed from an arbitrary deterministic
distribution on N, makes it easier to prove a weak law in the shifted case.
The proposition will also be used in the proof of the law of large numbers

for the shifted case in Proposition 3 and Theorem 1.
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Proposition 4. Let p := {py}32, be a probability distribution on N, and let
P(fé{p kY denote the corresponding p-shifted distribution on the permutations
of N. Let I;j(o) denote the number of inversions involving pairs {{i,j} :
1 <1i<j}, for o a permutation of N. Under ng{pk}, the random variables

{I<j}?il are independent. Furthermore, the distribution of I; is given by

(1.12) p;{pk}(jqzl):};liﬂ, 1=0,1,--,j—1.
> k=1Dk

Remark 1. In the case that the distribution p is the Geo(1 — ¢) distribu-

tion, the proposition shows that I.; is distributed as a truncated geometric

distribution with parameter 1 — g, starting from 0 and truncated at j — 1:

s;Geo(1— 1—q)q
pieti=ny_, _ j — e

the case that p is the Geo(1 — ¢) distribution is well-known and follows from

1=0,1,---,7—1. Actually, Proposition 4 in

an alternative construction of the Mallows distribution—see [6] for example.
This alternative construction appears generically in Remark 2 below.
Remark 2. From Proposition 4 it follows that the p-biased random per-
mutation (the measure Pgé{p “} or the measure P,f;{p ’“}) can be constructed
in the following alternative manner by sequentially placing the numbers 1
to n down on a line at various positions between the numbers that have
already been placed down. First place down the number 1. For j > 2, as-
sume that the numbers {1,--- ,j— 1} have already been placed down. Then
there are j possible spaces in which to place the number j; namely, to the
right of any of the j — 1 numbers that have already been placed down, or
to the left of the leftmost number that has already been placed down. For
l=0,---,j—1, with probability % place the number j in the (I+1)-th
rightmost position. Note that this give 1.; = [.

Although we won’t need it here, we note that four out of the five mod-
els of random permutations discussed above are examples of strictly re-
generative permutations. (The exception is the GEM(#)-shifted case.) For
k e N, let [k] = {1,--- ,k}. For a permutation m = 7q417a42 " * Tatm, Of
{a+1,a+2, -+ ,a+m}, define red(m), the reduced permutation of 7, to be
the permutation in Sy, given by red(7); = m4+; —m. A random permutation
is strictly regenerative if for almost every realization II of the random permu-
tation, there exist 0 = Ty < T1 < Ty < - -- such that II([T}]) = [T}], j > 1,
and II([m]) # [m] if m & {T1,T5,---}, and such that the random variables
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{T), —Tk-1}32, are IID and the random permutations {red(Il|iz, (7, _,1}32;
are IID. The intervals {T}, — T}—1}72, are called the blocks of the permuta-
tion. The three aforementioned models are positive recurrent, which means
that the block length has finite expected value; that is, FT} < oo. For
more on this, see [7] and references therein. In particular, in the specific
context of Mallows distributions, for fixed ¢, see [4] for more on general con-
structions, and see [1] for an analysis of the length of the longest increasing
subsequence; for ¢, — 1, see [2] for an analysis of the length of the longest
increasing subsequence and see [3] for an analysis of the cycle structure.

In section 2 we prove Propositions 1 and 2. In section 3 we analyze the
expected number of inversions, E&Geo(l*q")fn and E;Geo(l*q)ln, for ¢, =
as in Proposition 3 and for the various cases of ¢, as in Theorem 1. In
section 4, applications of the second moment method yield the proofs of
Proposition 3 and Theorem 1. The proofs of Proposition 4 and Theorem 2
are given in section 5. The proof of Theorem 3 is given in section 6 and the

proof of Theorem 4 is given in section 7.

2. PROOFS OF PROPOSITIONS 1 AND 2

Proof of Proposition 1. It suffices to prove the result for the indicator random
variables 1{03'_1<gi_1}’ for1 <i<j<n.

From the definition of the biased distribution, it is clear that both the

P&Geo(l_q) Pﬁ;Geo(l_q)-probability of the event

-probability and the
pj
pj+pi”

For the shifted case, it is clear that on the first step of the construction,

{1(y-1c,—1y = 1} are equal to
J i

the probability that j will appear, conditioned on either ¢ or j appearing
by

pjt+pi”

j will appear, conditioned on either ¢ or j appearing, and conditioned on

on that step, is equal to On subsequent steps, the probability that

neither of them having already appeared on earlier steps, depends on what
numbers have appeared in earlier steps. However, from the construction, it
is clear that this probability does not depend on the previous appearance
of any number larger than j, and thus a fortiori, of any number larger than

n. Thus, 1, -1_ -1, has the same distribution under PGl a5 it does
J 1

under Pﬁ;Geo(lfq). O
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Proof of Proposition 2. As noted in the previous proof Pb Geo(1=0q) (O'j_l <

-1\ _ _Pj q’
) = Pyl This probablllty is equal to Trd We now show that
PgéGeO(l_q) (O’;l < 0;1) > qjiqi' As noted in the previous proof, for the

shifted case, it is clear that on the first step of the construction, the proba-

g

bility that j will appear, conditioned on either ¢ or j appearing on that step,

Py
pj+pi’ J+ v
first step is k # i, j, then the probability that j will appear on the second

is equal to which is equal to If the number appearing on the

step, conditioned on either ¢ or j appearing on that step, depends on the

. [ e . . p _
value of k. If k& > j, then this probabﬂlty is again - o = 7 +q If k < 4,
. o1 . Pi—1 _
then this probability is pj_l’ il +q However if i < k < j, then this

pj-1 ¢!
e o i q]+q Thus, the probability that

j will appear on the second step, conditioned on either ¢ or j appearing on

probability is equal to

that step, and conditioned on neither of them having already appeared on

the first step, is greater or equal to —L— (in fact, strictly greater if j—i > 1).

+
Continuing in this vein proves the prop081t10n. O

3. ANALYSIS OF THE EXPECTED NUMBER OF INVERSIONS

To calculate the expected number of inversions in the biased case, we

write I = > 1cicj<n 1{071<071}. As noted in the proof of Proposition 1,

b;Geo(1—q) _Dj
it is immediate from the construction that Eo} 1 {0]__1 <Y T 5 Jipi.
Thus
‘ B ¢
) Bty Py L 5ok
1<i<j<n ¢ +q 1<i<j<n 1+ qz 7 k=1 1+q”

To calculate the the expected number of inversions in the shifted case,
we represent Z, as Z?:l I, where I_; is as in Proposition 4. By that

proposition and the remark following it, we have

j-1 j-1 :
Geo(1— 1—gq (1-q)q 1 (-qqd 1-¢
Es,Geo(l q)I L 9, k_ =94 ]{Jk 1_ = =
g1+ (G -1 —jd™)
(1-¢)(1-q)

Thus,

Eg;oGeo(l—q)In _ Z Q(l + (] - 1)qj —Jj¢ )

= (1-¢)(1—-gq)
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Performing some algebra [8], this reduces to

Geo(1— q i
(3.2) B = (=) =) 7
We now use (3.1) and (3.2) to analyze the asymptotic behavior of the

expectation for various choices of ¢ = g,,.

The case of fixed g € (0,1):

From (3.1), we obtain

b;Geo(1—q) ()
(3.3) lim — " =

n—00 n

Approximating by Riemann sums gives

(3.4) /Oo L 4 <i LR +/oo L4 1

. T r, a = —loggq.
1 1+eaw —k:11+q—k—q+1 1 1+eax 24q
We have

»_1 © e log(1+e~)  log(1
(3.5) / dg;:/ e e og(l+e) _log(1+q)
1 1+ eax 1 e ar 4 1 a *logq

From (3.3)-(3.5) it follows that
b;Geo(lfq)I
(3.6) lim(1 —¢) lim ——" = log 2.

q—1 n—oo n

From (3.2) we obtain

. 00 n 4
(37 T g
The case of g =1—--%, ¢>0,a€(0,1).
From (3.1), we write
1 — ok
(3.8) EhGeoll-—an)7 — - _
kzl L+ qn ; L+ g

Similar to (3.4), we have
(3.9)

n—1

n - In n—1 1
r < + —dx, a, = —logq,.
/1 1+ew ;urqn G+ 1 /1 1+ eane " &
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Integrating, similar to (3.5), we obtain
(3.10)

/n s = log(1+c )]}
——dz=——1o e =
1 14 ean® an & 1 —log qy,

(log(1+gn) —log(1+qy)).

Since a € (0, 1), we have lim,,_,~ ¢ = 0. Thus, from (3.9) and (3.10), the
first term on the right hand side of (3.8) satisfies

n—1

1 log 2
(3.11) e
=1 L+ an ¢

We now consider the second term on the right hand side of (3.8). We
break it up into two parts. Let § € (a, HTO‘) We have

[nf)]
k

3.12 < n?P.
(3.12) ; L+g "~
And we have

n—1 n—1 1
3.13 —— <n .
. ; 1+gn™ ™ 2 1+ g."

[nA]+1 [nfl+1

Similar to the argument in (3.9)-(3.11), we have

(3.14)
! 1 ; .
2 I+g."  —logg (log(1+g;") —log(1 +gy)) = O(n"e™™" 7).
[n]+1 " "

From (3.8) and (3.11)-(3.14), we conclude that

phGeetl=a) _ log?2

. c

(3.15) nl;rgo TFa o = 1-— o @ € (0,1), ¢>0.
Now we turn to ES 07, From (3.2), we write
n—1 .3
(3.16) Egleli-ang, = I 1) N JI
1—qn = 1 q%
Of course,
1+a

(3.17) -1y~ "
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One can check that the function fie:; is decreasing for x € [1,00), for

a > 0. Thus by Riemann sum approximation,

n—1

s J n —anx
jq ze
(318) 1 _nqj N/l md%, Ay = —logqn
j=1 n
We have
(3.19)

n e~ an® 1 Nan ye—y 1 —nlogqn ye—y
1 l—ean at J,, 1—e7¥ (loggn)? J10gq, 1—e€7¥

Since « € (0, 1), we conclude from (3.18) and (3.19) that

n-1 . j 2a oo —y
= 1— q%, C 0 1—eY

From (3.16), (3.17) and (3.20), we conclude that

ES;GBOU*Qn)I 1
(3.21) lim == " — — g, =1——, ac(0,1), c>0.
C n

n—o0 nlta

The case of g=1—- 7, ¢>0.

The expectation phGeelmm g given in (3.8). By Riemann sum ap-
proximation,
n—1
n—k " n—x
3.22 ~ dx, ap, = —loggq,.
522 14 q" /1 1+ ean® " &n

Substituting g, = 1 — = in (3.10), we obtain

n—1 2

1
(3.23) n Z ~ log

k& .
—1+qn c 1+ec

Integrating by parts, we have

n T n —anx
/ T e / I =
| 1+ ean® | 14 emane

T —AanT\|N 1 " —anT
—a—log(1+e n|T +a— log(1 4 e **)dx.
1

n n

(3.24)



14 ROSS G. PINSKY

We have
(3.25)

x

— —log(l +e )|} =
o ol = —0ga

n n? e n? e

—log2 — —log(l+e ¢ ~ ——1log(l+e ).

c c c

Making a change of variables, we have

a

1 [ 1
/ log(1+ e ")dr = —
G,

(3.26) 11

qn ] 1 2
[ s |
(log Qn) qn Yy c e

From (3.24)-(3.26), we have

(3.27) /1” — T gz ~n? (i /1 log(ly—ky)

1+ ean® 2 ).

From (3.8), (3.23) and (3.27), we conclude that
(3.28)

log(l + Qn) -

" log(1+y)

n Je nan Yy

log(1 +qp,) ~

n

dy =

L log(1 +y)
—c y

dy.

1 —c
dy — Elog(l +e ))

b;Geo(1—gn) 1
R O 7, 1 1 ey 1 log(1+y)
nlgrolo—nQ _EIOg1+e_C+EIOg(1+€ )—0—2 - , dy =
1 1 (! log(1+y 1 ' log2 log(l+y
c c? Jo—c Yy € Jo—e b Yy Y
1 177 log2 log(2—=z) 1 (¢ log(1—2) c
- _ de = — = 279 =1——,¢>0.
02/0 (17m 11—z )dz 2 Jo z—1 o n ©
Now we turn to EgéGeo(l_q")In. The expectation E&Geo(l_qn)l'n is given
by (3.16). Of course,
(320 1)
. n — ~ —.
1—qn c
From (3.18) and (3.19), we have
n—-1 .5 2 c y
(3.30) S
= 1— qn C 0 1—e¥
By a change of variables, we have
c —y =" o0(1 —
(3.31) / A - —/ log(1 =),
0o 1—e™¥ 0 T
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From (3.16) and (3.29)-(3.31), we conclude that

. 1—qn
’ E&Geo( q )Zn
hm s =
n—+00 n

1 1 [ log(l—

2L log(1—z) , _
c cJy x
(

I A | log(1 —
2 / =+ x))dx‘
c® Jo 1—2 T

4. PROOFS OF PROPOSITION 3 AND THEOREM 1

(3.32)

Proof of Proposition 3. For the shifted case, we represent Z,, as Z = Z?:Q I,
where I; is the number of inversions involving pairs {{7,j} : 1 <i < j}. In
the shifted case, by Proposition 4 and the remark following it, the random
variables {1;}22, are independent and have truncated binomial distribu-
tions with fixed parameter 1—q; thus their variances are uniformly bounded.
Denoting variance in the shifted case by Vargi_4, we have Varg_4(Z,) =
> i—e Varsi—g(I<;) < Cn, for some constant C. In section 3 we showed that
with fixed ¢, the expected value of Z,, in the shifted case is on the order n.
Thus, by the second moment method,

(4.1) w— lim I

— T = s;Geo(1—q)
n—00 EgéGeo(l_q) 1 under Poo .

Proposition 3 for the shifted case follows from (4.1) and (3.7).

Let Vary,;_, denote variance in the biased case. In section 3 we showed
that with fixed ¢, the expected value of Z,, in the biased case is on the order
n. We will show that Vary;_4(Z,) is also on the order n.

It is clear from the biased construction that 1 {05 <07} and 1 (o7 <o)
are independent if {i,j} N {k,1} = 0. Writing Z, = 37, <, 1

have

b;Geo(1— 2 _ bGeo(1— -
B eo( q)(In) - Z Z EZ eo( q)l{gj_1<oi_1}1{gl—1<gk_1} =

1<i<j<n 1<k<i<n

b;Geo(1— ieoll=
Z ( Z B eo( q)l{U;1<U;1}EOO eof Q)1{0;1<U;1})+
1<i<j<n  1<k<i<n:{ij}n{k,1}=0

Z ( Z E&GeO(I_Q)1{U;1<0;1}1{01_1<0k_1}) <

1<i<yj<n  1<k<i<n:{i,j}n{k,i}#0

b;Geo(1— 2 biGeo(l
(Eoo eof q)In) + Z ( Z Eoo eof( q)1{0;1<0;1}1{0f1<0121}) .
1<i<j<n  1<k<i<n:{i,j}0{k,1}£0

~1, we

i

-1
g; <o
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Thus,
(4.2)
Varb;l—q(In) < Z < Z E&Geo(l—Q)1{o;1<0;1}1{0f1<0;1}>.

1<i<j<n  1<k<i<n:{i,j}n{k1}#0

We break the sum on the right hand side of (4.2) into five parts, depending
on the values of (k,[). The first part is with (k,!) satisfying [ = j and k # i;
the second part is with [ = 7; the third part is with & = j; the fourth part is
with & =14 and [ # j; and the fifth part is with (k,1) = (4, j).

The fifth part is equal to E&Geo(l_q)In, so it is of order n. We will now
show that each of the first four parts is also of order n. Denote the ith part

by I;(n). For the first part, since [ = j, we have 1 < k < j as well as k # 1.

_ biGeo(1—q)
Thus I1(n) = 321 <; pejcnkri oo oV 1{0;1<0;1}1{0;1<U;1}. We have
) J
EbGeo(l-a)y | 1. _, _, — Pj -7 .
> L A R R a &
Therefore
@3) O S—
J k
1<ihej<n & TE T4

By Riemann sum approximation, we have

J =1 J
Z Zq_]k‘g/ ) jq zloquwS
g 15 t@+d" T o @ e

j le—vlosa ] ¢ iy i
- - T < - — lo +q 7).
/0 14 (¢t + ¢/)e~wloea ™ = (=logq)(¢’ + ¢°) B(2+4")

From (4.3) and (4.4) we have
(4.5)

N < o 3 hslos2 g ) -

1 q _ n q
E n—r log(2+¢ ") < C + (= log g)r) < Cin,

for constants C,C7 > 0.
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The other three parts follow similarly. Indeed
_ b;Geo(1—
Ig(n) — Z EOO eo( q)]_{a_j—1<a_i—1}].{o_i—1<o_k—l

1<k<i<j<n

J
Z ._|_pj,+ ]_;_Z < Z i+qj+ k>’
IO TR TR TS U T S R

and the right hand side above is less than the right hand side of (4.3). Also,
b;Geo(1— _
L= >, By =
1<i<j<l<n
!

DI (R o
. . . = PSRy L
\<iSieep PiTPITPIPiTP; 2 4T T

and the right hand side above is less than the right hand side of (4.3).
Finally,

b;Geo(1—
I4(n) = > B! q)l{ S ooy =
1<i<j<n,lefi+1, n}—{j}

Z ( Dj bi 4 pi Dj ) <

I<icj<nletitl o my—{iy P +tpj+pipi+tp Pt Pt PP+ D

J l J
2 Z qij_qjqij_qlzz Z iq Z iq

J 1=
1<i<j,l<n 1<i<j<n ¢ +aq i<i<n ¢ +4q

l

2 ¥ S ise ¥ —onpetor,

1<i<j<n 1<z<]<n
for some C' > 0.
Since Vary,1—q(Z,) is on the order n, by the second moment method,

In
(4.6) w — lim

_ b;Geo(1—q)
Jim Eb Geolig) = 1 under P>V 9,

Proposition 3 for the biased case then follows from (4.6) along with (3.3)
and (3.6). O

Proof of Theorem 1. Consider ¢, as in part (a) or part (b). For the shifted
case, we use the same method of proof used for the shifted case in Proposition
3. Let Var,.1—4, denote variance in the shifted case. We represent 7,, as 7 =
2?22 I;, where I; is the number of inversions involving pairs {{7,j} : 1 <
i < j}. By Proposition 4 and the remark following it, the random variables
{1<;}52, are independent and have truncated binomial distributions with

parameter 1 — ¢,. Thus, under the assumption of part (a), Varsi—q, (1<;) <
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Cn?®, for some C' > 0 and all j, while under the assumption of part (b) the
same inequality holds with a = 1. Consequently, Vargi_q,(Z,) < Cnlt2@
under the assumption of part (a), while under the assumption of part (b) the
same inequality holds with o = 1. In section 3 we showed that EsGeo(l=an)T
is on the order n!*® under the assumption of part (a), and on the order n?
under the assumption of part (b). Therefore, both in parts (a) and (b) we
have Vargi_q, (Z,) = o((EggGeo(l_q”)In)Q). Thus, by the second moment
method,

(4.7) w— lim Ln

™ _ 1 under P5Geo(l=an)
n—00 E;Geo(lfqn) o0

The weak law stated in part (a) for the shifted case follows from (4.7) along
with (3.21), while the weak law stated in part (b) for the shifted case follows
from (4.7) and (3.32).

Now consider the biased case. Let Vary;_g, denote variance in the biased

case. In the biased case, it is clear from the construction that 1 {o71<o1y and

J [
Ligricgoty are independent if {i, j}N{k, [} = 0. WritingZ, =31, 10{1<Uz~_1’
we have

BT = D YL Byl =

1<i<j<n 1<k<i<n

b;qn b;qn
> > B (o1 <oty Bod 1{o—f1<o;1}>+
1<i<j<n  1<k<i<n:{i,j}N{k,1}=0

bian
> > B 1{o;1<o;1}1{af1<o,:1}) =
1<i<j<n  1<k<i<n:{3,j}n{k,1}£0

b;qn 2 b;qn
(BnT,)* +4n  »  EY1,

1<i<j<n

(4.8)

ojt<o T (BETo)? + 4n B T,,.
Thus Vary 4, (Z,) = O(nEggq"In). In the cases of g, as in parts (a) and
(b) of the theorem, EZIT, is on a larger order than n. Consequently, it
follows that Varyi_g,(Z,) = o((Eggq"In)Q). Thus, by the second moment
method, (4.7) holds with s replaced by b. Using this with (3.15) proves the
weak law stated in part (a) for the biased case, while using this with (3.28)
proves the weak law stated in part (b) for the biased case.

This completes the proof of part (a), and it completes the proof of part
(b) except for the statement concerning the behavior of I(c) and I5(c). We

leave it to the reader to check the claim regarding the behavior of these two
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functions as ¢ — 0 and as ¢ — co. It remains to show that [(c) < Is(c). Of
course, I(c) < Is(c) follows by the stochastic dominance in Proposition 2.
It suffices to show that
1 log(l —xz) log(l—%
n 8( ) I g(1—3)
1-2z z 1—2z

>0, 0<z <.
Multiplying by z(1 — x), it suffices to show that
F(z):=2+ (1 —x)log(l —z)+ zlog(l — g) >0, 0<z <1,

We have F(0) = 0. Differentiating gives

x
2—x

F'(z) = —log(1 — x) + log(1 — g) -

We have F’(0) = 0. Differentiating again gives

1 2 z
-2z 2—-z (2—2)%
We have F”(0) = 0. Differentiating a third time gives

F'(z) =

1 3 2r 2+ x— 222
Jakd _ . . — 1.
S G s R o A (e TSR U

This completes the proof of part (b).

For g1 < g2 and i < j, it is easy to see from the construction that 1_-1__-1
J 1

under P&Geo(l_@) (PoséGeo(l_qZ)) stochastically dominates 1 -1__-1 under

<o;

P&Geo(l—ql) (PgéGeo(l—ql)) P{S;Geo(%)

J
. Thus, for ¢, as in part (c), Z, under
51—+

(PyiGeoln)y gtochastically dominates Z,, under P, M (Pn” ™), for any

P&Geo(l—qn)

fixed ¢ > 0 and sufficiently large n. Also, Z,, under or under

P&Geo(l*q") is stochastically dominated by Z,, under the uniform distribu-
tion. It is well-known that in the uniform distribution case, w—1lim,,_, %’5 =

%. By part (b), w — lim, i—’g is equal to Iy(c) under PobéGeO(l_q") and is
equal to I5(c) under piGeoll=an), Furthermore, lim.—,o I(c) = lim._0 Is(c) =

1. Part (c) now follows. U

5. PROOFS OF PROPOSITION 4 AND THEOREM 2

Proof of Proposition 4. We first prove that the distribution of 1; is given by
(1.12). From the construction of the shifted permutation, it follows that for
i€ {l,---,7}, the probability that from among the numbers {1,--- ,j}, the

first one to be placed down in the permutation will be i is — -~ Thus,
k=1Pk
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pj

- 1pk:
i

With probability %, the number j will not be the first number to be

k= k
placed down from amolng the numbers {1,--- ,j}. It follows from the shifted

in particular, in the case ¢+ = j, we obtain Pcfé{p"'}( =j-1) =

construction that conditioned on this event, the probability that the number
j will be the second number to be placed down from among the numbers

{1,---,4} is equal to Epj L. Thus, it follows that Posé{p’“}(lq =j—2)=
] k=1 P

Pk pii B

ShoaPk APk b1 Pk
We now prove the independence of the random variables {1;}72;. By

Continuing in this vein, we obtain (1.12).

induction and by what we have already proved, it suffices to show that

PS;{pk}(I<2 =ag, I3 =az, - 7I<j+1 = aj+1) =
Paji+1 Lsipy
5.1 PR (Ico = ag, I<3 = az,- -+, I<; = aj),
(5-1) it

for0<a;<i—1,i=2,---,j+1, and j > 2.

As is well known, specifying the values Ioo = as,I<3 = a2, - ,I<j41 =
aj+1, uniquely determines a permutation of {1,---,j + 1}, call it o =
o1---0j41, specifying the values I.o = ag, I3 = az,--- ,I; = a;, uniquely
determines a permutation of {1,---,j}, call it 7 = 7y - - - 7;, and the permu-
tation obtained by deleting the number j+1 from o is 7. Let ¢* = aj:_ll. Note
then that 1.;41(0) = j+1—4*. Since we are assuming that 1-j41(0) = aj41,
it follows that * = 7+ 1 — aj4+1.

From the observations in the previous paragraph, it follows from the
shifted construction that

j+1

. Do,
(52) PP (Ig =g, Ieg=as, - Ijp1 = aj1) = H Zg+2 o
i=1

for a certain appropriate choice of {b; }] 1, with 1 <b; <j+2—14, and in
particular, b+ = j + 2 — ¢*, and that

(5.3)
i*—1 j+1

. Db; Py,
PP Iy = ag, Teg = ag, -+ A<y =a5) = H J+1 ‘p H J+2 ’
i=1 Z i=1*+1 Z Pk

The difference between the right hand side of (5.2) and the right hand
side of (5.3) is that the right hand side of (5.2) has the extra factor py,.
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in its numerator and the extra factor Z 1 pg in its denominator. Now

Po,« Djro—i* Pajiq+1 F
= = rom these facts, (5.1) follows. O
1 1 1
Z]+1pk ZJJrlpk Z{:rl Ic ’ ( )

Proof of Theorem 2. Let {wy}32, be a realization of the IID Beta(l, a)-
distributed random variables {Wj}7°,, and let {p;}7°, denote the corre-

sponding realization of {Pj}7°,. So

k—1
(5.4) pe=wi [J(1—w), k=1,2,---.

i=1
By Proposition 4, under Pgé{p ’“}, the random variables {1.;}32, are in-
dependent and distributed according to (1.12). In particular then, under
P(fé,{p ©} these random variables converge in distribution as j — oo to a
random variable X with distribution P(X = k) = pgs1, k = 0,1,---.
From (5.4), we write py = wkezi‘:ll log(1=wi) and note that by the law of
large numbers, %Zle log(1 — w;) converges Py-almost surely as k — oo to
Eglog(1 — Wy) < 0. Consequently, Pyg-almost surely, the {p;}72, decay ex-
ponentially. Therefore, EX? < 0o Py-almost surely. Since the distributions
of the {1;}72, are truncated versions of the distribution of X, the random
variable X stochastically dominates all of the {1.;}%° pary Thus, the second
moments of the {1 }‘;‘;2 are Py-almost surely uniformly bounded. We have
lim; o0 Egé{p k}1<j = EgX =3 72, kpk, Pp-almost surely. From these facts,
we conclude that Py-almost surely, the weak law of large numbers holds for
{1<j}32, in the form w — lim, o0 1 diolej=EX =372 kpgy1. Using
this with (5.4) and the fact that Z,, = >°7_, 1<;, we obtain (1.6).

We now prove (1.7). From the previous paragraph and (1.12), we have

%% W;
(55) ES GEM( )1< — E@Z k?+1 Hl 1(P )
k=1 k=1"Fk
Also,
(5.6)
sz+1H 1
lim k = kW, (1-W5), —almost surely.
Wz s 2 kHH

Recalling that P; = Wi and Py = (1 — Wp)Ws, we have

- .
e Wk+1 Hz 1 1 — Wk+1 Hz 1 W)

N2k < L
k=1 Zk 1731C k=1 Wi 1

, for all j > 2.
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We will show that

Wi [T, (1 - W)
5.8 E § k i= < .
(5.8) o Wh + (1 — Wh)Wa

It then follows from (5.5)—(5.8) and the dominated convergence theorem that

(5.9) lim ESCEMO)] . — ZkEngH H 1—

Jj—o0

A straightforward calculation will reveal that

00 k
(5.10) > kEWin [J(-Wi) =0
k=1 i=1
Since ESCPMO T — > o ESQGEM(H)lq, it then follows from (5.9) and

(5.10) that lim;, s %E;GEM(G)LL = 0, completing the proof of (1.7). Thus,

it remains to prove (5.8) and (5.10).

We have
P TT00 -~ W0) = B (Butt - ) -l
=1
Thus,
ZkEé)Wk+1 H(l Wz) 1+6 k(1+9)
k=1 =1 k=1
0 d 1

(1+6)2 T ey =0
proving (5.10).
We now turn to (5.8). For the kth summand in (5.8), we have
(5.11)
Wi ITi (1 = Wi) _ g, (L= W) — W)

k
EgWiy [[(1-W3), for k > 3,

W (= W)W W (L= W) 11
while for k = 2 we have
Wo(1 — W
(5.12) Ep " +2((1 — Wll))WQ <1.
We have
: 1 0 k-2
(5.13) EgWist [J(1 = Wi) = EgWi (Eo(1 — W1))" % = m(m) .

=3
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And finally,

(1—Wy)(1 — Wh) 2/ / (1 —w)’(1 — wy)’
Ey =62 [ d d <
Wi+ (1 — W) Wa e e

1_
92/ dwl/ dw2w+1f“w) _
514 1 1)W2

6> / dwy (1 —w1)? 1 log (w1 + (1 = wi)ws)|p,—0 =
0

1
— 92/ (1-— wl)ef1 log wy dwy < oc.
0

Now (5.8) follows from (5.11)-(5.14). O

6. PROOF OF THEOREM 3

Recall that Py and Ey denote respectively probability and expectation
with respect to the IID Beta(1,6)-distributed sequence {W},}32, that is
associated with the GEM(0) distribution. Analogous to the first paragraph
of section 3, to calculate the expected number of inversions, we write Z,, =

Zngjgn 1{03-_1<0¢_1}' It is immediate from the construction that

(6.1)
EMCEMO) | _ g (A=W (1 - W;_ )W _
> {oj <o} (1=W1)-- (1= W)W + (1 = W) - (1 — W)W,
1
1 —Ep —W; -
L+ (1= Wiga) - (1= W)W
1
1— Ep— . k=j—i.
1+ 1(1 —Wg) (1 _Wk)WkJrl
Thus,
(6.2)
n—1
1
EUGEMO) T —N"(n — k) (1 - E, .
* ;( N R T I TRTA T,
We will show that
(6.3) 3 (1-Ey— =7 ! ) =106
k=1 14+ S (1= Wa) - (1= Wi) Wi

From (6.2) and (6.3) it follows that

- ghGEMO) 7
lim — =4¢.
n—oo n
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Indeed, note that the summands in (6.3) are positive, which follows from
(6.1), and note from (6.3) that for any e > 0, there exists a K, such that

o] 1
Zk:ko (1 — FEy 1WW1( (1*Wk)Wk+1) < €, for kg > K.. Thus, for

1+ 1-W3)-
n > K57
n—1 1
k(1 — B, < K0+ en.
; ( 1+1;VVp<1_w2>---<1—Wk>Wk+1)

To complete the proof of the theorem, we now turn to the proof of (6.3).
We calculate the density fi-w, (2) of the random variable 1= W1 . We have
Wi

_ 1
P@(l g < Z) = Pg(Wl > 1 ) = / 9(1 — w)efldw,
(142)~1

from which it follows that

926_1
f%(z)zm, 0<z<oo.
Letting
ap=(1—=Ws)--- (1 = Wi)Wgiq1, k>1,
we have
(6.4)

1 1 201

=0F
14_1 Wl(l_WQ)...(l_Wk)Wk+1 9/0 1+ apz (1+2)0+1

FEy dz.

Making the substitution u = we obtain

_Z
1422

9/ 9/ Ul Ukl A /1 [
dz = u=1-0a ———du
1+akz +z9+1 1—u+ apu o T—u+au

From (6.4) and (6.5) we have
(6.6)

1
1—FEp

1
= 9Epa —du.
14+ 45881 = Wa) -+ (1 = W) Wi ’ ’“/0 1 —u+ agu

We now write
(6.7)

' u@ ! 0 = m m
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We have
(6.8) Epaltt = (Byp(1 — W) ) Byt
Also,
i+1 ! 41 0—1 9
6.9 Ey(1—W)it = [ (1 —w) ™01 — ) ldw = ———
(69)  Ep(1-W) /O< W) 00— w) e = o

and from the well-known normalization for the Beta-distributions,

: r OT(O)T' (i + 2)
E i+1 — i+1 1— 0—1 — —
‘10 A /0 WO —wl e = T
(6.10) O+ 6+ G+ 1
L'+i+2) e+ (tHhy

Substituting (6.8)-(6.10) in (6.7), and using this with (6.6), we obtain

1
1—-F =
’ 17WW1—W@%'%1—W%WW%1
6.11
(6.11) ei (i (" 0 )k—l)‘
m= m+0+1 =0 0—:_}:_1) 9+Z+1

k—1
O+i+1 ) =

Epap(1—ax)™ > 0. Thus, summing (6.11) over k£ and invoking the monotone

Recall from the above calculations that Y"1 (—1)* (9(;;21)( g
i+1

convergence theorem, we obtain

e 1
kzl 1_E(’71+1 (1 — W) - (1—Wk)Wk+1):
- i (1) 0+i+1y

> 1
emzomwﬂ( ()

In light of (6.12), to complete the proof of (6.3) we need to show that

i: 1

o0 m

(6.13) Zm+9+1(§: ‘))_1 0> 0.

=0
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We first prove (6.13) for § € N. When 6 € N, we can write (9;7") =

(5) = Gt Thus,

=0 i i
6! m L (mA e
(6.14) (m+1) (m—i—@);(_) 9—|—z>_
v 0! =, i (m+o
O e () oem

where the last equality follows from the fact that Em+9( 1) (m;.'g) =0.

We now show that

-1
(6.15) (1)1 - Y (-1 (m + 9) 1.

(m+1)-- m—|—6—1 g=0

Let

0—-1
flm) = (=1)"7%( —1'2 (m+0), g(m) = (m+1)---(m+6-1).

Jj=

Both f and g are polynomials of degree § — 1. They both have leading order
coefficient equal to 1. The roots of g are {—6 + l}?:_ll. We now show that f
has the same roots, from which (6.15) follows. Of course it suffices to show
that h(m) := Z? (1)( 1)J (m;ro) has the same roots. We have

h(—0+1) = 92_;1)(—1)J’ (;) = Zl:(—l)j (j) =0,1=1,---0—1,

J=0

o,

where the second equality follows from the fact that (;) =0, for
j=l+1---,0—1
From (6.14) and (6.15) we have

(6.16) ()i =——, 0N, m=0,1,--.
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From (6.16) we conclude that

(6.17)
1)y
Vzom—FH—i—l(g(_)(e;m))_
9°° 1 _ei( 1 1 J—1 den
wp (A Om+ O+ emtmt 6 m o+l '

We now show that (6.13) in fact holds for all # > 0. From (6.16) and
(6.17), it suffices to show that (6.16) holds for all > 0. Fix m € {0,1,---}.
Define

A0) =S (-1 ((efﬁ) BO) =
=0 7

Then A is analytic for § € C—{—[}}",, and B is analytic for § € C—{—m}.
Define A(0) = A(3) and B(#) = B(3). Since limg_,g A(0) = limg_,o B(6) =
1, it follows that # = 0 is a removable singularity for A and B. Hence, defin-
ing A(0) = B(0) = 1 makes A and B analytic functions in a neighborhood
of the origin. Since A and B coincide on {0} U {1}2° . it follows from the

uniqueness theorem for analytic functions that A = B on C — {—[}}",, and
thus in particular, A(6) = B(#), for 6 > 0. O

7. PROOF OF THEOREM 4

Let the generic P and E denote respectively probability and expectation
with respect to the IID sequence {Uj}72, of uniformly distributed random
variables on [0, 1]. Analogous to the first paragraph of section 3, to calculate

the expected number of inversions, we write Z,, = Zl§i<j§n I{J; } It

1<J;1
is immediate from the construction that

i 18
U
b;Indep(0 _ =11 _
Eliinden( )1{%_,1@;1} e e
(7.1) [ U + 112U
1 1
L+ Tl U 1+][-, 0
Thus,
- 1
(7.2) BP0, =Y (n—k)(1-E

[
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We will show that

o0

1
(7.3) > 1-E———) =0log2.
Just as the displayed equation after (6.3) follows from (6.2) and (6.3), it
follows from (7.2) and (7.3) that

b;Indep(6)
E Z,
(7.4) lim 2 " _glog2.

n—oo n

To complete the proof of the theorem, we turn to the proof of (7.3). We

have
o] k 1 o) m
B =y ()" = ) =
(75) 1+ I, U/ m=0 =1 m=0
00 . ) fos) . 9
Gt =1 S )

From (7.5) we have

1 0o 00 . 9
R I ) N

k=1 L+II.. 0 k=1m=1

(7.6)
K M 0
m—1 k
k=1m=1

We have

K M 9 M Le _ (LQ)K—H

-1 m—1 k _ -1 m—1 m+ m+

S = 3 () s

k=1m=1 m=1 m+6
(7.7) Iy u

(—1)m-1 im+0, 0 g
0 - Hm
mz::l - m:1( ) ol Geny),
Note that
0 (_1)m—1

7.8 ———— =log2.
(7.8) mZ::I - og
Since %w(mLW)K *+1is decreasing in m, the second alternating series in (7.7)
satisfies the estimate
(7.9)

M
+6 0 0
< _qymt Y T VKR 4 gy (— VK for MUK S 1.
0 3 () PR S () for M2
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Now (7.3) follows from (7.6)-(7.9). O
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