The Cahn-Hilliard Equation:

From Backwards Diffusion to Surface Diffusion

Amy Novick-Cohen

Contents

page 1
1
3
6
13
20
27
29
31
33
35
36
43
45
54
60
60
60
60
60
70
71
84
86
87

iii

5		c theory for the constant mobility case	89
	5.1 5.0	Existence and uniqueness	89
	$5.2 \\ 5.3$	Additional regularity	89 80
	5.4	Steady states and their stability in one-dimension	89 97
	0.4	Higher dimensional steady states	97
6	•	y behavior	98
	6.1	Spinodal decomposition	98
	6.2	The prolonged linear regime	98
	6.3	Scaling predictions	98
7	The	Cahn-Hilliard equation as a dynamical system	99
	7.1	Existence of a global attractor	99
	7.2	The structure of the global attractor in one dimension	99
	7.3	Dynamics in the neighborhood of the global attractor	99
8	Qual	litative long time dynamics in higher dimensions	100
	8.1	The Mullins-Sekerka problem: a formal derivation	100
	8.2	The Mullins-Sekerka Problem: rigorous justification	100
9	Coar	rsening	101
	9.1	Some distinguished limits	102
	9.2	Some auxiliary and technical results	105
	9.3	Three lemmas	107
	9.4	Proofs of the three lemmas	108
	9.5	Predictions of the Lemmas	115
10	The	deep quench limit	117
	10.1	The physical model	117
	10.2	Existence and regularity	117
	10.3	Steady states	117
	10.4	A sharp interface limit	117
	10.5	Coarsening	117
11	The	degenerate Cahn-Hilliard equation	118
	11.1	Existence, regularity, and non-uniqueness	118
	11.2	Steady states and spreading	118
	11.3	Surface diffusion: a formal derivation	118
12		rvey of numerical and computational results	119
	12.1	A finite element formulation	119
	12.2	Practical implementation	119
	12.3	A panoply of results	119
	12.4	Alternative approaches	119

iv

		Contents	v
13	Vari	ous generalizations of the Cahn-Hilliard model	120
	13.1	Non-isothermal systems and phase field models	120
	13.2	The viscous Cahn-Hilliard equation	120
	13.3	Gurtin type models	120
	13.4	Models with memory and other non-local effects	120
	13.5	Reaction terms and control problems	120
	13.6	Coupling conserved and nonconserved dynamics	120
14 Additional applications of the Cahn-Hilliard mod			
	14.1	Cahn-Hilliard equations: a characterization	121
	14.2	Biofilms	124
	14.3	An augmented thin film equation	129
	14.4	The rings of Saturn	136
	14.5	Image processing	142
	14.6	River beds	142
	14.7	Ecology	142
15	Furt	her directions and open questions	143
App	endix	1 Some results from functional analysis	144
References			148