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An overview

1.1 The Cahn-Hilliard equation

We shall focus in this text on the Cahn-Hilliard equation:

ut = ∇ ·M(u)∇[f(u)− ε24u], (x, t) ∈ Ω×R+, (1.1)

n · ∇u = n ·M(u)∇[f(u)− ε24u] = 0, (x, t) ∈ ∂Ω×R+, (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where 0 < ε2 ¿ 1 is a ”coefficient of gradient energy,” M = M(u) is a
mobility coefficient, and f = f(u) is a ”homogeneous free energy.” Here
u = u(x, t), whose evolution is prescribed by the Cahn-Hilliard equation
given above, represents the concentration of one of the components of
a two component system occupying the ”volume” Ω and n is a unit
exterior normal to Ω. Throughout the majority of our discussions, the
domain of definition of the problem, Ω, will be assumed to be a bounded
domain which possesses a ”sufficiently smooth” boundary ∂Ω. We shall
be more specific about the required regularity in the sequel. Evolution
will always be considered either for all times t > 0 as in the formulation
given in (1.1)-(1.3) or on some finite interval 0 < t < T < ∞.

Concentration should be understood as representing either volume
fraction or mass fraction, depending on the physical system under inves-
tigation. For example, if u(x, t) is to be interpreted as volume fraction
in a system containing two components which we shall denote by ”A”
and ”B,” then u(x, t) = VA/V, where VA (VB) represents the volume of
component ”A” (”B”) in a given arbitrarily small volume V = VA + VB

containing the point x. Clearly this corresponds to a continuous as
opposed to a discrete or lattice description of the material which is ap-
propriate under many but not all circumstances. Note in particular that
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2 An overview

this definition implies that u(x, t) should satisfy 0 ≤ u(x, t) ≤ 1. More-
over, we see that if u(x, t), the concentration of component A, is known,
then the concentration of the second component is given by 1 − u and
is hence also known. This allows us to ascertain the composition of the
material via the solution of a single evolution equation.

In the context of the Cahn-Hilliard equation, the two component sys-
tem could refer, for example, to a two component metallic system, such
as iron and aluminum, or a two component polymer system. We remark
that in materials science literature, concentration is given most often
not in terms of volume fraction or mass fraction, but in terms of mole
fraction. A mole refers to 6.02252 × 1023 molecules (Avogadro’s num-
ber of molecules), and hence the mole fraction is equal to the number
fraction, NA/(NA + NB), in an arbitrarily small volume V, where NA is
the number of A molecules in V and N = NA + NB is the total number
of molecules in V. Thus mole fraction and number fraction are equiv-
alent to volume fraction if the molar volume (the volume occupied by
one mole) is independent of composition; this is frequently assumed, but
is rarely strictly correct [13]. The appropriateness of the Cahn-Hilliard
equation often entails various approximations. Noticeably the model is
isothermal, and hence is appropriate only under carefully temperature
controlled circumstances. Also, for example, in two component polymer
systems when the polymers are long, the polymer spatial configuration is
typically compositionally dependent, which in turn influences the molar
volume. The Cahn-Hilliard equation has also appeared as the modelling
equation is numerous other contexts with very disparate length scales.
For example, models have been developed in which the Cahn-Hilliard
equation is used to represent the evolution of two components of in-
tergalactic material or in ecology in the modeling of the dynamics of
two populations or in biomathematics in modeling the dynamics of the
biomass and the solvent components of a bacterial film.

Why does the Cahn-Hilliard equation appear in so many different
contexts, and what behavior is predicted by the Cahn-Hilliard equation
which is common to all these systems? Off-hand, what is being modelled
with the Cahn-Hilliard equation is phase separation in the presence of
a mass constraint, and what one wishes to accomplish here is to model
the dynamics in a sufficiently accurate fashion so that many of the var-
ious features of the pattern formation evolution that one sees in nature
during phase separation can be explained and predicted. In materials
science this pattern formation is referred to as the microstructure of
the material, and the microstructure is highly influential in determining
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many of the properties of the material, such as strength, hardness, and
conductivity. See Figure 1.1. The Cahn-Hilliard model can be seen to
be rather broad ranged in its evolutionary scope in that it can serve as
a good model for many systems at early times, it can give a reasonable
qualitative description for these systems during intermediary times, and
it can serve as a good model for even more systems at late times. Often,
the late time evolution is so slow that the pattern formation or mi-
crostructure becomes effectively frozen into the system over time scales
of interest, and hence it is the long time behavior of the system which is
seen in practise. Our goal is to understand the predictions of the Cahn-
Hilliard equation, and to see what are its successes and its drawbacks.
Clearly, though, it is successful in mimicking many of the features of
phase separation dynamics, and whether one should be surprised by its
successes, or disappointed by its failures to describe even more, is, of
course, a matter of personal taste.

We hope that by the time the reader has read through this overview,
the notions of backwards diffusion and surface diffusion and their con-
nection with the Cahn-Hilliard equation will have been clarified, and
some general picture will have been conveyed of the nature of the physi-
cal phenomena which accompany phase separation and the ability of the
Cahn-Hilliard equation to captured these features. A first step towards
understanding the behavior encoded in the Cahn-Hilliard equation is to
understand the phenomenon of backwards diffusion.

1.2 Backwards diffusion and regularization

Let us suppose that f(u) = −u + u3, and that M(u) = M0, where M0

is a positive constant, and let us consider t ∈ (0, T ), 0 < T < ∞, and
Ω = (0, L). In most applications, Ω ∈ Rn with n = 2 or n = 3 is most
physically relevant. However, for simplicity we shall focus temporarily
on the bounded n = 1 case. Thus,

ut = M0[−u + u3 − ε2uxx]xx, (x, t) ∈ (0, L)× (0, T ), (1.4)

ux = M0[−u + u3 − ε2uxx]x = 0, (x, t) ∈ {0, L} × (0, T ), (1.5)

u(x, 0) = u0(x), x ∈ (0, L). (1.6)

Note that u(x, t) = 1
2 constitutes a steady state of (1.4)-(1.5) which

corresponds to a system containing equal amounts of each component.
Indeed u(x, t) = k constitutes a steady state of (1.4)-(1.5), where k is
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an arbitrary constant; however if u(x, t) is to represent concentration,
then clearly one must have that 0 ≤ k ≤ 1. Let us now suppose that
u0 = 1

2 + ũ0, where ũ0(x) represents a small initial perturbation from
spatial uniformity. Accordingly, assuming that the problem is well posed
and there is continuity from the initial data, and that u(x, t) = 1

2 +
ũ(x, t) is the solution for times 0 < t ¿ 1, then ũ(x, t) represents a
small perturbation from spatial and temporal uniformity which can be
assumed to be smooth, and (1.4)-(1.6) yields that

ũt = M0[−ũ + [ 12 + ũ]3 − ε2ũxx]xx, (x, t) ∈ (0, L)× (0, T ), (1.7)

ũx = M0[−ũ + [ 12 + ũ]3 − ε2ũxx]x = 0, (x, t) ∈ {0, L} × (0, T ),(1.8)

ũ(x, 0) = ũ0(x) := u0(x)− 1
2 , x ∈ (0, L). (1.9)

Since ũ has been assumed to be small†, we have that
[1
2

+ ũ
]3

≈ 1
8

+
3
4
ũ +O(ũ2).

Hence the equation and the boundary and initial conditions should be-
have roughly as

ũt = M0

[
−1

4
ũ− ε2ũxx

]
xx

, (x, t) ∈ (0, L)× (0, T ), (1.10)

ũx = M0

[
−1

4
ũ− ε2ũxx

]
x

= 0, (x, t) ∈ {0, L} × (0, T ), (1.11)

ũ(x, 0) = ũ0(x), x ∈ (0, L). (1.12)

We recall that we have assumed earlier that 0 < ε2 ¿ 1. Suppose that we
optimistically neglect terms in the system (1.10)–(1.12) which contain a
factor of ε2. Since we have assumed that M0 > 0, formally we obtain in
this manner that

ũt = −M0

4
ũxx, (x, t) ∈ (0, L)× (0, T ), (1.13)

ũx = 0, (x, t) ∈ {0, L} × (0, T ), (1.14)

ũ(x, 0) = ũ0(x), x ∈ (0, L). (1.15)

Let us now recall that the ”regular” diffusion equation (which is equally
well known as the ”heat equation”) with Neumann boundary conditions,

† We remark that while in this first chapter our analysis will be given on somewhat
of a qualitative level, many if not all of the topics covered here will be revisited in
later chapters with enhanced rigor, with precise reference to appropriate function
spaces, etc.
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can be written as

ũt =
M0

4
ũxx, (x, t) ∈ (0, L)× (0, T ), (1.16)

ũx = 0, (x, t) ∈ {0, L} × (0, T ), (1.17)

ũ(x, 0) = ũ0(x), x ∈ (0, L). (1.18)

We remark that the approximating system (1.13)–(1.15) which was ob-
tained above is identical to the regular diffusion equation except for the
additional ”minus sign” in (1.13). Noting that it is possible to elimi-
nate the minus sign in (1.13)–(1.15) by redefining time t → −t so that
time will ”run backwards,” we now see the source of the nomenclature
the backwards diffusion equation which is used in regard to the system
(1.13)–(1.15).

Let us pause to consider the properties of the backwards diffusion
equation. Suppose we set out as in the case of the classical diffusion
equation to solve (1.13)–(1.15) using the method of separation of vari-
ables. This is readily seen to be formally possible, and it will yield that:

u(x, t) =
A0

2
+

∞∑
n=1

Ane
n2π2

L2 t cos(nπx/L), (1.19)

where the coefficients Ai, i = 0, 1, 2, . . . are determined by the Fourier
coefficients of the initial conditions,

u(x, 0) = u0(x) =
A0

2
+

∞∑
n=1

An cos(nπx/L), (1.20)

i.e.,

Ai =
2
L

∫ L

0

u0(x) cos(nπx/L) dx, i = 1, 2, 3, . . . . (1.21)

These results are really not surprising. In fact the solution obtained
above can also be obtained by simply setting t → −t in the separation
of variables solution to the regular or ”classical” diffusion equation.

Recall that in the case of the classical diffusion equation, the solution
approaches a constant at large times. This can be seen by making the
transformation t → −t in (1.20), (1.21) to obtain for the classical heat
equation that

u(x, t) → A0

2
as t →∞.
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On the other hand, we see from (1.20)-(1.21) that in the case of back-
wards diffusion, exponential growth will always be predicted unless Ai =
0, i = 1, 2, . . . . This is easy to make more precise. Defining

||f ||2L2[0, L] :=< f, f >,

where

< f, g >:=
2
L

∫ L

0

fg dx,

it follows from Parseval’s equality (See Appendix A1.0.7.) that for the
regular diffusion equation

||u(x, t)||2L2[0, L] =
A2

0

2
+

∞∑
n=1

A2
ne−

2n2π2

L2 t, (1.22)

while for the backwards diffusion equation,

||u(x, t)||2L2[0, L] =
A2

0

2
+

∞∑
n=1

A2
ne

2n2π2

L2 t. (1.23)

Moreover, from (1.22) and (1.23) it is readily verified that whereas the
regular (or ”forward” ) diffusion equation is well-posed, the backwards
diffusion equation is ill-posed. Ill-posedness implies that arbitrarily small
perturbations in the initial data can give rise to arbitrarily large changes
in the solutions after a finite period of time (see Exercise 2), which cer-
tainly seems quite unnatural. While the ill-posedness of the backwards
diffusion equation is clearly problematic, it has nevertheless been em-
ployed constructively in certain applications such as in image processing
where the ill-posedness can be circumvented by seeking solutions within
an appropriately bounded set [16]. For the Cahn-Hilliard equation, the
ill-posedness of the backwards diffusion equation is avoided by the reg-
ularizing effects of the higher order terms, as we shall see in the sequel.

1.3 The Cahn-Hilliard equation and phase separation

Let us reflect for a moment on the solution to the backwards heat equa-
tion which we formally derived in the previous section, and let us recall
that u(x, t) is being taken to represent the concentration of one of the
two components in a binary system. Hence, as noted earlier, u(x, t)
should satisfy 0 ≤ u ≤ 1. We remark that indeed we do need to write
here ”≤” and not simply ”<” since there is nothing unphysical about
a system actually attaining the values 0 and 1; if u(x, t) = 0 or 1 at
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some specific points in space-time in, say, an Fe-Al system, it simply
means that the local composition of the material is either pure Fe or
pure Al. Thus, for a solution to physical, it should be bounded, and in
fact it should be bounded between 0 and 1. However, the formal solu-
tion which we found to the backwards heat equation was ill-posed, and
therefore cannot be guaranteed to maintain any bound even at short
times. In particular, it cannot be expected to remain bounded between
0 and 1. Thus we see once more that the formal solution to the back-
wards heat equation which was obtained is unphysical. The implication
here is that even if the full Cahn-Hilliard model is fairly physical, the
simplifications made in Section 1.2 were too drastic to yield a reasonable
physical description of phase separation.

Since the goal of this section is to demonstrate the connection between
the Cahn-Hilliard equation and phase separation, we must see how by
making less drastic simplifications and assumptions, a relatively credible
physical picture of phase separation can be attained. To make progress
in this direction, we now outline what are the physical features and
phenomena which we should wish to describe with the Cahn-Hilliard
equation.

As stated earlier, what we would like to describe is the dynamics
of pattern formation which typify phase separation in two component
systems. A typical scenario which we should like to be able to model
is that of quick quenching, which may be described as follows. Let us
consider some domain Ω ⊂ R3. For simplicity we may suppose that
Ω = [0, L] × [0, L] × [0, L]. And let us suppose that the domain Ω
initially contains a two component system which is spatially uniform:
u(x, 0) = u0(x) ≡ ū, where, to be physical, the inequality 0 ≤ ū ≤
1 must hold. If we suppose that there is no flux of material into or
out of the system under consideration, then the total amount of each
component should be preserved over time. This implies that

1
|Ω|

∫

Ω

u(x, t) dx = ū, 0 ≤ t ≤ T. (1.24)

Let us suppose that initially the temperature is given by Θ0, and let
us now cool the system (i.e., the cube of material contained in Ω,) very
rapidly to some lower temperature which we shall denote by Θ1. This
is the process known as quick quenching. In certain systems, such as in
certain polymer systems, quick quenching can actually refer to the rapid
heating of the system from Θ0 to some higher temperature Θ1. The
working supposition here shall be that the temperature of the system
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Fig. 1.1. A system quick quenched from (ū, Θ0) to (ū, Θ1
1) and from (ū, θ0)

to (ū, Θ2
1), where (ū, Θ0), (ū, Θ1

1), and (ū, Θ2
1) are as indicated in the phase

diagram in Figure 1.2.

equilibrates very rapidly to the new temperature, so that the temper-
ature can be taken to be effectively equal to new temperature Θ1 im-
mediately throughout the system. In reality, the equilibration process
cannot actually be immediate. However, if the thermal conductivity of
the system is large, as it is for example in binary metallic alloys, then this
does not constitute a bad approximation. Should we wish to take into
account thermal variations in the system, we could couple the Cahn-
Hilliard equation with an energy balance equation. This approach is
indeed feasible, and the resultant system is known as a conserved phase
field model. This system shall be discussed further in Section 13.1, but
it is beyond the scope of this introductory discussion.

The dynamics which can be expected to appear in the system Ω in the
wake of quick quenching can be explained roughly within the framework
of classical thermodynamics with the help of phase diagrams using the
approach of Gibbs [41]. This implies in particular that the expected be-
havior of the system can be determined by the values of certain thermo-
dynamic variables. In the present context, the relevant thermodynamic
variables would refer here to Θ0, Θ1, and ū, and whether or not phase
separation would be predicted to occur, and the nature of the phase sep-
aration which would be expected to occur, would be determined by the
location of (ū, Θ0) and (ū, Θ1) within the phase diagram. While phase
diagrams of varying levels of complexity can occur, a simplest nontrivial
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Fig. 1.2. A typical phase diagram in which (ū, Θ0) lies above the binodal
curve in the stable region, (ū, Θ1

1) lies in the ”metastable region” which lies
between the spinodal curve and the binodal curve, and (ū, Θ2

1) lies below the
spinodal curve. See also Figure 1.1.

level of phase diagram which can describe phase separation is portrayed
in Figure 1.2.

In terms of the phase diagram in Figure 1.2, there are two curves which
should be noted. There is an upper curve, known as the binodal or the
coexistence curve, and there is a lower curve, known as the spinodal.
The two curves intersect at a point which is referred to as the critical
point which we shall label as (ūcrit, Θcrit). In order for a system to be
expected to undergo phase separation, its initial state (ū, Θ0) should lie
above both the binodal and spinodal, and its final state (ū, Θ1) should
lie somewhere below the binodal, either above or below the spinodal.
The region above the binodal is known as the stable or one-phase region.
If both (ū, Θ0) and (ū, Θ1) lie above the binodal, no phase separation
is expected to occur and the system is expected to persist in its initially
uniform state, u(x, t) ≡ ū.

If the system is cooled from above the binodal curve, to below the
spinodal curve and ū 6= ūcrit, then phase separation is predicted to on-
set via a process known as spinodal decomposition. During this process
the evolution of the system is distinguished by a certain ”fogginess” re-
flecting the simultaneous appearance and growth of perturbations with
many different wavelengths. Phase separation via spinodal decomposi-
tion is fairly well described within the framework of the Cahn-Hilliard
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Fig. 1.3. Some effective time evolution snapshots of the system which has been
quick quenched from (ū, Θ0) to (ū, Θ1

1), which lies below the spinodal curve.

theory, and we will return to discuss it further shortly. See Figure 1.3
where some effective time evolution snapshots of a system which has
been quick quenched below the spinodal curve. We refer to these snap-
shots as effective time evolution snapshots, since while it is very difficult
experimentally to examine a specific specimen at different times, it is
relatively feasible to view similar specimens at various times.

If the system is cooled from a state which lies above the binodal to a
state which lies below the binodal but above the spinodal, then phase
separation can be expected to onset via a process known as nucleation
and growth. During this process, the uniform state u(x, 0) ≡ ū gives way
to a phase separated state, but no ”fogginess” is seen. Instead, phase
separation occurs via the appearance or nucleation of localized perturba-
tions in the uniform state ū which persist and grow if they are sufficiently
large. Smaller perturbations may also appear, but they afterwards in
general shrink and disappear. The rate at which phase separation takes
place via nucleation and growth increases with the distance of the final
state below the binodal, and the size of the critical nuclei, that is the
size that the localized perturbations must be in order to grow, decreases
with distance below the binodal. Though we mention the process of
nucleation and growth, we note that most of its features are less readily
modelled within the Cahn-Hilliard framework. To describe nucleation
and growth properly, alternative approaches such as the Lifshitz-Slyozov
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Fig. 1.4. Some effective time evolution snapshots of the system quick quenched
from (ū, Θ0) to (ū, Θ2

1), which lies in the metastable region.

theory of Oswald ripening [63] and its extensions [51, 2] have been used
to serve this purpose. See Figure 1.4.

We caution the reader that if |ū − ūcrit| ¿ 1, Θ0 > Θcrit > Θ1,

and Θcrit − Θ1 ¿ 1, then the above descriptions are inappropriate.
Phase separation will still take place but will be accompanied by cer-
tain critical phenomena [29], such as critical slowing down, which are
characteristic of second order phase transitions. If |ū − ūcrit| ¿ 1 and
Θ0 > Θcrit > Θ1 and Θcrit − Θ1 = O(1), then our earlier descriptions,
which are appropriate for first order phase transitions remain (essen-
tially) correct. Arguably Θ1 should be taken not too far from Θc, so
that the phase separation will proceed sufficiently slowly, and hence that
inertial and higher order effects can be neglected. Such effects would ren-
der the Cahn-Hilliard model inaccurate, and make it difficult to follow
the phase separation and to control the resultant microstructure. What
distinguishes a first order phase transition from a second or higher order
phase transition is the degree of continuity or regularity of the system
as the system crosses from the stable regime above the binodal into the
unstable regime which lies below it. In a second order transition, the
thermodynamic variables and their first derivatives are continuous, but
not all of their second derivatives are. In a first order phase transition,
the thermodynamic phase variables are continuous, but not all of their
derivatives are. In the present context, the chemical potential is con-
tinuous across the the coexistence curve, but its derivative with respect
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Fig. 1.5. Some effective time evolution snapshots of systems during the later
stages of coarsening which commenced phase separation i) at (ū, Θ1

1) and at
ii) at (ū, Θ2

1).

to ū is not, unless the coexistence curve is crossed via the critical point
(ūcrit, Θcrit) [64].

Whether the onset of phase separation occurs via spinodal decom-
position or via nucleation and growth, eventually the system begins to
saturate into spatial regions where u ≈ uA or by u ≈ uB , where uA

and uB denote the binodal or limiting miscibility gap concentrations
when Θ = Θ1. See (uA, Θ1) and (uB , Θ1) in Figure 1.2 and the ex-
perimental results in Fig. 1.5. The average size of these spatial regions
increases over time, with the larger regions growing at the expense of
the smaller regions. This process is called coarsening. After some period
of time, most of Ω is dominated by the concentrations uA and uB , and
the dominant feature of the dynamics is the motion of the boundaries
or interfaces between the various regions where u ≈ uA or u ≈ uB .
Since the system is constrained to satisfy mass balance, (1.24) must
be satisfied throughout the process of phase separation. This consti-
tutes a constraint on the relative volume or area of the domains where
u ≈ uA and u ≈ uB . However, within the limitations of this constraint,
the overall amount of interfaces continues to decrease as some limiting
configuration is seemingly approached.

The question now arises as to what the Cahn-Hilliard equation can
and cannot say with regard to this physical description. We have al-
ready hinted that nucleation and growth is somewhat of a weak spot
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for the Cahn-Hilliard theory. However, before jumping into these de-
tails and more, it is convenient to sidestep the general formulation of
the Cahn-Hilliard equation given in (1.1)-(1.3), and to consider some
specific formulations. In this regard, we shall consider two particular
formulations, though our later analysis will again be more general.

1.4 Two prototype formulations

Perhaps the easiest nontrivial formulation to consider is the formula-
tion given in (1.4)-(1.6) which was introduced in the beginning of our
discussion of the backwards diffusion equation. In this formulation the
mobility was taken to be a positive constant and the homogenous free
energy, as we shall see, corresponded to a quartic polynomial. For fu-
ture reference, we shall refer to this case as Case I, which is summarized
below.

Case I: The constant mobility - quartic polynomial case.

In Case I,

M(u) = M0 > 0, M0 a constant , and f(u) = −u + u3. (1.25)

Note that it follows from (1.25) that

f(u) = F ′(u), F (u) =
1
4
(u2 − 1)2. (1.26)

Within the framework of (1.25), the Cahn-Hilliard equation is given by

ut = M04(−u + u3 − ε24u), (x, t) ∈ Ω× (0, T ), (1.27)

n · ∇u = n · ∇4u = 0, (x, t) ∈ ∂Ω× (0, T ), (1.28)

in conjunction with appropriate initial conditions. Clearly the value of
M0 may be changed by rescaling time. Hence if we wish we may set
M0 = 1. However, we maintain M0 within the formulation (1.27)-(1.28),
since typically it appears in the literature in this form [74]. Note that
(1.27) is invariant under the transformation u → −u. This it is natural to
consider (1.27) for u in an interval which is symmetric about the origin,
u ∈ [−a, a]. The formulation (1.27) is typically obtained by considering
the dynamics for u = cA − cB = 2cA − 1, where cA satisfied a Cahn-
Hilliard equation with constant mobility and a polynomial free energy;
thus, u(x, t) should assume values in the interval [−1, 1].
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Fig. 1.6. The initial stages of spinodal decomposition for Case I, based on the
numerical scheme discussed in Chapter 12.

The analysis and treatment of Case I is relatively easy, at least ini-
tially. Existence, uniqueness, well-posedness, and regularity results are
described in detail in Sections 5.1-5.2. Basically, (1.27)-(1.28) corre-
sponds to a fourth order semilinear parabolic equation which is some-
what more complicated to treat than second semilinear parabolic equa-
tions, such as the reaction diffusion equation

ut = ε24u− f(u), (1.29)

which arises in a wide variety of applications, from populations genetics
to tiger spots, [70, 71]. Nevertheless, many of the tools which were de-
veloped for second order semilinear parabolic equations can be employed
here also. However, the maximum principle, which is one of the main-
stays in the treatment of second order equations, does not in general
carry over into the fourth order setting [65]. An existence theory can
be given in terms of Galerkin approximations [90, 96] which can also
be used to construct finite element approximations that can be imple-
mented numerically. From numerical calculations, it can be seen that
for an appropriate choice of initial conditions, Case I gives a reasonable
description of the spinodal decomposition process, see Figure 1.6. All
these notions are amplified and explained in the Chapters which follow.
See in particular Chapters 5, 6, 7, 8, and 12. An unfortunate feature of
the Cahn-Hilliard variant which we have denoted by Case I is that its
solutions need not always remain bounded between 0 and 1 even if the
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initial data lies in this interval. This effect, which is clearly undesirable
and unphysical, is demonstrated in Figure 1.7. In the formulation given
below as Case II, this drawback is indeed avoided by making an appro-
priate choice of a free energy with logarithmic terms and of a degenerate
mobility, in other words, a mobility which is not strictly positive [31]. We
remark that an alternative approach is to work with say a polynomial
free energy and with a degenerate mobility which vanishes at u = −1
and u = 1 (or at u = 0 and at u = 1), and to define solutions to be
identically equal to −1 or 1 outside of the range (−1, 1). This consti-
tutes a free boundary problem approach to the Cahn-Hilliard equation,
which under appropriate assumptions can be successfully implemented
[80]. An example of such a formulation is given in Section 14.2.

Case II: The degenerate mobility - logarithmic free energy case.

In Case II we set

M(u) = u(1− u), and f(u) = F ′(u), (1.30)

where

F (u) =
Θ
2
{u ln u + (1− u) ln(1− u)}+ αu(1− u), (1.31)

with Θ > 0, α > 0, where Θ denotes temperature, or more accurately
a scaled temperature. Here the resultant Cahn-Hilliard formulation is
given by:

ut = ∇ ·M(u)∇
{Θ

2
ln

[ u

1− u

]
+ α(1− 2u)− ε24u

}
, (x, t) ∈ ΩT ,

n · ∇u = 0, (x, t) ∈ ∂ΩT ,

n ·M(u)
{ Θ

2u(1− u)
∇u− 2α∇u− ε2∇4u

}
= 0, (x, t) ∈ ∂ΩT ,

where ΩT = Ω × (0, T ), ∂ΩT = ∂Ω × (0, T ). Formally, since M(u) =
u(1− u), it can be written more simply as

ut =
Θ
2
4u−∇ ·M(u)∇{2αu + ε24u}, (x, t) ∈ ΩT , (1.32)

n · ∇u = n ·M(u)∇4u = 0, (x, t) ∈ ∂ΩT . (1.33)

Again the equation and boundary conditions must be considered in con-
junction with appropriate initial conditions. Within the context of this
formulation, u(x, t) is taken to represent concentration of one of the two
components, and hence should satisfy 0 ≤ u(x, t) ≤ 1.
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The mobility in (1.30) is referred to as a degenerate mobility, since
it is not strictly positive and can vanish over the domain of interest,
0 ≤ u ≤ 1. It is interesting to note that a concentration dependent mo-
bility was already considered by Cahn in 1961 [13]. In fact a degenerate
mobility similar to (1.30) had already included by Hillert in his 1956
formulation [49, 48] of a one-dimensional discretely defined precursor of
the Cahn-Hilliard equation. The use of a logarithmic free energy, which
arises naturally from thermodynamic considerations as we shall explain
in Chapter 2, also actually appeared already in the work of Hillert [49, 48]
as well as in the 1958 paper of Cahn and Hilliard [14] in their discussion
of the free energy. However, very rapidly the degenerate and concentra-
tion dependent mobilities were replaced by constant mobilities and the
logarithmic terms were expanded into polynomials, in order to simplify
the problem and to allow at least some progress to be made in regard
to the qualitative behavior of the equation. In fact, early analyses were
totally linear, as the inclusion of nonlinear terms in the free energy in a
higher order equation was found to be much of a challenge. The first one
to include even these nonlinear terms was deFontaine [27], who did so in
the context of his early numerical studies of the Cahn-Hilliard equation.

The problem which we have formulated as Case II can be described
as a degenerate fourth order semilinear parabolic problem. Galerkin
approximations can be used to prove existence, which in turn can be
used to construct finite element approximations that can be implemented
numerically. However the degeneracy of the mobility and the singularity
in the logarithmic terms give rise to various technical complications.
Basically a way to overcome these difficulties is to approximate M(u)
using nondegenerate (nonvanishing) mobilities and to approximate f(u)
using nonsingular approximants. The details with regard to existence
for Case II are given in Chapter 11, and the details with regard to
numerical schemes for Case II are given Chapter 12. One of the rewards
for working with this more complicated formulation lies in the fact that
within the context of this model, if 0 ≤ u0(x) ≤ 1, then 0 ≤ u(x, t) ≤ 1
for t ≥ 0, as shall be demonstrated in detail in Chapter 11.

Chapter 2, which follows, contains a derivation of both of the above
Cahn-Hilliard variants. It is more natural to first justify the physically
more realistic formulation of the Cahn-Hilliard equation given above as
Case II and then to obtain Case I by making appropriate simplifying
assumptions; this is the approach which is adopted in the derivation
given in Chapter 2.
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Fig. 1.7. A numerical run of the Case I variant of the Cahn-Hilliard equation
from which it can be seen that solutions which begin within the interval [0, 1],
need not stay there. For the numerical method, see Chapter 12.

In terms of spinodal decomposition, it turns out that during the early
stages of phase separation nonlinear effects are not of primary impor-
tance and linear stability analysis can provide considerable insight into
the process. Moreover, when 0 ≤ u0 ≤ 1, 0 < ū0 < 1, and f ′(ū0) < 0 the
results for Cases I and II are not too different. While this may not be
immediately obvious, it can be roughly explained as follows. The con-
straint f ′(ū0) < 0 can be seen to imply that ū0 is bounded away from
the values {0, 1} which are problematic for Case II. Well-posedness then
implies that u(x, t) remains bounded away from the problematic values
{0, 1} over some finite period of time. During this initial interval, spin-
odal decomposition can start to get underway. Hence, perhaps it is not
surprising that the initial behaviors are not too unsimilar. See Figures
1.6 and 1.8. Further details concerning the initial behavior are given in
Chapter 6.

As time goes on, the importance of the nonlinear terms becomes more
and more pronounced. It is the nonlinear effects which keep the am-
plitude of the solution from becoming unbounded and which cause the
system to saturate near the binodal values, uA and uB . After the initial
stages of saturation, certain regions, in which uA or uB dominate, grow
at the expense of other regions. Within the context of the Cahn-Hilliard
theory it is possible to obtain predictions for the motion of the parti-
tions between the uA regions and the uB regions. These partitions are
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Fig. 1.8. The initial stages of spinodal decomposition for Case II, based on
the numerical scheme discussed in Chapter 12.

commonly referred to as interfaces and the concentrations uA and uB

are referred to as the phases. This process is known as coarsening. The
differences between the two Cahn-Hilliard variants becomes more pro-
nounced during coarsening than during spinodal decomposition. This is
due in part to the proximity of the binodal concentrations uA and uB

to the points of degeneracy of the mobility in the Case II. Some of these
differences will be further amplified in Section 1.5.

An obvious question which arises is experimental verification of the
Cahn-Hilliard theory. While it can be seen from the figures which have
been presented in this chapter that the qualitative comparison between
experimental and numerical data seems reasonable, a more quantitative
test is clearly desirable. An approach which has been developed to
study and compare the evolution of various physical systems undergoing
phase separation with the predictions of numerical solutions to the Cahn-
Hilliard equation is by using the structure function which can be defined
as:

S(k, t) = |{u− ū}̂(k, t)|2

where ū = ū(t) := 1
|Ω|

∫
Ω

u(x, t) dx, and ”̂ ” denotes the Fourier trans-
form. When the characteristic length scale of the features of the sys-
tem are much smaller than the characteristic size of the system, it is
reasonable to ignore edge effects and to take Ω ≈ Rn. Under these
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Fig. 1.9. Comparison of experimental and numerical results for the structure
function S(k, t), within the context of Case I.

circumstance, if the system in question is effectively two dimensional,
then

S(k, t) ≈ 1
4π2

∣∣∣
∫

R2×R2
f(x̄, t)f(ȳ, t) e−k·(x̄−ȳ) dx̄dȳ

∣∣∣
2

, ∀k ∈ R2, (1.34)

where f(s, t) = u(s, t) − ū(t). The structure function can be used as a
basis of comparison from the earliest stages and throughout the coars-
ening regime. For example as coarsening occurs, the average size of
the regions where u ≈ uA or u ≈ uB grows, so that the dominant
wavelengths, k, which have the dimensions of length−1, can be expected
to become smaller. This behavior can be seen in Figures 1.9 and 1.10
where S(k, t) is portrayed for experimental data as well as for the nu-
merical calculations portrayed in Figures 1.6 and 1.8, for Cases I and
II respectively. Various conjectures and studies have been made for the
time evolution of the structure function and for possible self-similar be-
haviors, see e.g. [36]. Although the majority of these conjectures have
yet to be rigorously verified, some rigorous results giving upper bounds
on coarsening rates have been given [59].

Recently some more refined computational tools based on Betti num-
bers have been developed to study the topological changes which oc-
cur during phase separation [39]. Betti numbers, βk, k = 0, 1, . . . , are
topological invariants which is to say that they are numbers (indices) as-
signed to a spatial structure which remain unchanged under continuous
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Fig. 1.10. Comparison of experimental and numerical results for the structure
function S(k, t), within the context of Case II.

deformation and which reflect the topological properties of the struc-
ture [55]. The first Betti number, β0 gives a count of the number of
connected components, and the second Betti number, β1 gives a count
of the number of loops (in two dimensions) or the number of tunnels (in
three dimensions). Reasonable qualitative agreement between theory
and experiment [52] has been reported in these studies.

1.5 Long time behavior and limiting motions

We should like to be able to describe coarsening, and in particular we
should like to be able to get a hold on a description of the motion of the
interfaces. It is within this context that the Mullins-Sekerka problem and
motion by surface diffusion appear. These both constitute free boundary
problems where by free boundaries we are referring in this context to the
interfaces between the phases. We remarked earlier that Cases I and II
differ in their behavior during the later coarsening stages, and indeed
this can be seen in the fact that the behavior for Case I of the Cahn-
Hilliard equations at long times can be described by the Mullins-Sekerka
problem, and the behavior for Case II of the Cahn-Hilliard equation is
described by surface diffusion if Θ = O(ε1/2). We note that the Mullins-
Sekerka problem and motion by surface diffusion should not be viewed
only as consequences of the Cahn-Hilliard equation; both first appeared
earlier in various other problems in materials science [69, 4].
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Fig. 1.11. A schematic portrayal of a system during coarsening

How now do we pass from the Cahn-Hilliard equation which describes
the evolution of the concentration at all points in the system, to a de-
scription which focuses on the evolution of the interfaces during the
coarsening period? One possibility is to derive the limiting motions
mentioned above from the Cahn-Hilliard equation by utilizing certain
formal asymptotic expansions [86, 12]. We shall see in the Chapter
8 and in Section 11.3 how this can be undertaken, and the necessary
asymptotic tools will be defined and developed there. A more difficult
task is to rigorously justify the formal asymptotic analysis. Under appro-
priate assumptions, the passage from the Cahn-Hilliard equation to the
Mullins-Sekerka problem can be made rigorous [1, 20]. However, so far,
the passage to motion by surface diffusion from the degenerate Cahn-
Hilliard equation has yet to be rigorously justified, although numerical
computations indicate that the limiting motion has been correctly iden-
tified [6].

Since coarsening is supposed to describe the evolution of the limiting
motion after the system has sufficiently saturated near the binodal con-
centrations, we shall assume that during coarsening the domain Ω can
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Fig. 1.12. Limiting motion as t →∞ for Case I: the Mullins-Sekerka problem.

be envisioned as being partitioned by N interfaces, Γi, i = 1, . . . , N, and
that the description of the evolution of the system can be given in terms
of these N partitions, see Figure 1.11.

The Mullins-Sekerka Problem

For Case I, the following laws are seen to govern the evolution of the
system of interfaces, Γ = Γ1 ∪ Γ2 ∪ . . . ΓN . For t ∈ (0, T ), 0 < T < ∞,

away from the interfaces

4µ = 0, x ∈ Ω\Γ, (1.35)

and along the interfaces

V = −[n · ∇µ]+−, x ∈ Γ, (1.36)

and

µ = −κ. (1.37)

In (1.35)-(1.37), µ = µ(x, t) denotes the chemical potential which
will be discussed further in the next chapter. In terms of the original
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formulation µ = f(u) − ε24u. Note that in the limiting problem, the
concentration u = u(x, t) no longer appears explicitly, but only via
the chemical potential, µ. In (1.36), V = V (x, t) denotes the normal
velocity at a given point x ∈ Γ, and n = n(x, t) denotes a unit exterior
normal to one of the components Γi which comprises Γ, assuming that
orientations have been arbitrarily chosen for the parameterizations of
the curves Γi, i = 1, . . . , N. Here the normal velocity V is prescribed by
V = n · ~V where ~V = ~V (x, t) denotes the velocity at x ∈ Γ. See Gurtin
[45] for background. Note that Γ is also actually time dependent in this
formulation. The expression [n · ∇µ]+− denotes the jump in the normal
derivative of µ across the interface at x ∈ Γ. In (1.37), κ denotes the
mean curvature. For curves in the plane, the mean curvature κ = κ(x)
is given by

κ =
1
R

,

where R is the signed radius of the inscribed circle which is tangent to
Γ at x ∈ Γ. The sign of the radius is taken here to be positive if the
inscribed circle lies on the ”exterior” or ”left” side of the curve whose
orientation has been fixed. For interfaces (hypersurfaces) in R3, κ is
given by

κ =
1
2

( 1
R1

+
1

R2

)
,

where R1 and R2 denote the principle radii of curvature. See Gurtin
[45] for a discussion in R2, and Finn [33] or do Carmo [28] for precise
definitions in R3.

Along the boundary of the domain Ω,

n · ∇µ = 0, x ∈ Γ ∩ ∂Ω, (1.38)

and

Γ ⊥ ∂Ω, x ∈ Γ ∩ ∂Ω. (1.39)

The system of equations and conditions given above in (1.35)-(1.39)
together constitute the Mullins-Sekerka problem [69]. Clearly it is a
nonlocal problem in that we can not ascertain the motion of the inter-
faces without taking into consideration what is happening within the
regions bounded by the interfaces. In Chapter 8 a formal asymptotic
derivation of these laws governing the limiting motion will be presented,
some properties of the Mullins-Sekerka system will be given, and the
method by which the system can be justified as a limiting motion will
also be outlined.
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Surface Diffusion

In Case II, if Θ = O(ε1/2), then at long times after a suitable amount of
preliminary saturation has occurred, the limiting motion in the degenerate-
logarithmic case is given by

V = −π2

16
4sκ, x ∈ Γ. (1.40)

Here V , κ and Γ have the same connotations as in the discussion of
the Mullins-Sekerka problem given above, and 4s denotes the surface
Laplacian, known also as the Laplace-Beltrami operator . Along curves
in the plane one has that

4sκ = κ,ss,

where s refers to an arc-length parameterization of the components of
Γ; i.e., along Γi, i ∈ {1, . . . , N},

s(p) =
∫ p

p0

√
ẋ2 + ẏ2 dτ,

where {x(τ), y(τ) | p0 ≤ τ ≤ p } denotes an arbitrary parameterization
of Γi and p0 refers to an arbitrary point on Γi. For a more general defi-
nition of the surface Laplacian, see [38] or the discussion in Section 11.3
where (1.40) is derived. Equation (1.40) is to be solved in conjunction
with a no-flux boundary condition where interfaces intersect the exterior
boundary of the domain ∂Ω which may be written as

n · ∇sκ = 0, x ∈ Γ ∩ ∂Ω (1.41)

and the curves Γi which comprise Γ should intersect the exterior bound-
ary normally,

Γi ⊥ ∂Ω, i = 1, . . . , N, x ∈ Γ ∩ ∂Ω. (1.42)

In the plane the boundary condition (1.41) may be written simply as

κs = 0, x ∈ Γ ∩ ∂Ω.

at intersections of Γ with ∂Ω.

The motion here is geometric in that it is not necessary to know what
is happening away from the interfaces {Γi}N

i=1 in order to ascertain the
resultant motion. A formal asymptotic derivation of (1.40)-(1.42) is
presented in Chapter 11. We remark that the system (1.40)-(1.42) can
also be shown to describe the long time limiting motion for the deep
quench limit [12]; the deep quench limit is an obstacle problem which is
obtained from Case II in the limit Θ ↓ 0. See Chapter 10 for details.
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Fig. 1.13. Limiting motion as t →∞ for Case II: Motion by surface diffusion.

Exercises

1.1 Verify the solution (1.19)–(1.21) given above.
1.2 Prove that the backwards diffusion equation is ill-posed; i.e.,

for any δ > 0, C > 0, and t̄ > 0, there exists an initial per-
turbation ũ0 ∈ L2[0, L] such that ||ũ0||L2[0, L] < δ and the so-
lution, ũ(x, t), to (1.13)-(1.15) satisfies ||ũ(x, t̄)||L2[0, L] > C.

Hint: It suffices to consider perturbations of the form ũ0 =
Ak cos(kπx/L).

1.3 Suppose that Ω is a circular domain in the plane with radius
R1 whose center lies at the origin in R2, and that Ω contains
only one interface which we shall denote as Γ1, Γ1 = Γ1(x, t).
Suppose that at time t = 0, Γ1 constitutes a circle with radius
R0, 0 < R0 < R1, whose center lies at the origin. Under the
assumption that the motion of Γ1 = Γ1(x, t) is governed by the
Mullins-Sekerka problem, find the shape of Γ1 at times 0 < t <

∞.

1.4 Suppose as in Exercise 3 that Ω is a circular domain in the plane
whose radius is R1 > 0 and whose center lies at the origin in
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R2, and that Ω contains one interface, Γ1, Γ1 = Γ1(x, t). Under
the assumption that at time t = 0, Γ1 constitutes a circle with
radius R0, 0 < R0 < R1, whose center lies at the origin, find
the location of Γ1 at times 0 < t < ∞ if the motion of Γ1 is
governed by surface diffusion.


