
4

Linear theory and the spinodal

In §1.2, the spatially uniform state u(x, t) = 1
2 was shown to be un-

stable within the framework of a very naive stability analysis in which
both nonlinear and gradient energy terms were neglected. The analy-
sis there was not particularly satisfactory since the perturbations about
the uniform state were governed by an equation, the backwards diffusion
equation, which is ill-posed. In the present chapter we shall revisit the
stability analysis about the uniform state u(x, t) = 1

2 , this time tak-
ing into account the gradient energy terms but neglecting the nonlinear
terms as before. In this sense, it can be said that a linear stability anal-
ysis about the uniform state u(x, t) = 1

2 is undertaken. Within this
framework, it shall again be possible to obtain a formal solution to the
linearized problem (the linear stability problem) and to demonstrate that
instability of the uniform state u(x, t) = 1

2 is predicted as before. The
resultant solution will no longer be obviously ill-posed, as was the case
for the backwards diffusion equation. With this positive result in hand,
we then generalize the discussion of linear stability about u(x, t) = 1

2

and consider the evolution of perturbations about the uniform state
u(x, t) = ū, where ū ∈ R is arbitrary. In this manner, we shall see that
it is possible to distinguish between compositions ū ∈ (ū−, ū+) which
are exponentially unstable and compositions ū ∈ R \ (ū−, ū+) which are
stable, at least in the sense uniform stability in which that perturbations
which begin small stay small and only possibly get smaller.

The stability bounds mentioned above turn out to depend on both
ε/L, where L is the size of the domain. While ε reflects a material prop-
erty of the system, the parameter L can be varied with relative ease.
Since in most systems, the size of the system is very large relative to the
size of the (micro-)structures under consideration, the behavior of the

70
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stability limits as ε/L → 0 is of physical relevance. The limiting compo-
sitions, limε/L→0 ū±(ε/L), are known as the spinodal compositions.

In §4.2, it is demonstrated that the equation governing the evolution
of perturbations about an arbitrary uniform state is indeed well-posed,
and hence our conclusions with regard to linear stability have a firm
mathematical basis. Clearly it would be desirable to consider a fuller
nonlinear stability problem in which nonlinear terms are retained. Some
remarks are made with regard to certain aspects of the analysis here
which may be carried over and used in considering well-posedness of
the nonlinear stability problem, which should accompany any reasonable
study of the nonlinear stability. A more complete discussion is postponed
until later, since it can be done more easily and rapidly after a discussion
of the existence for the original equation has been given. Basically the
analysis of the nonlinear stability problem is similar though simpler than
that for the original (nonlinear) Cahn-Hilliard equation. To ease our
approach into the more complete nonlinear formulation, in the last two
sections of this chapter we present the main existence results which can
be obtained for the full nonlinear theory for both Cases I and II, and
the definitions of various spaces which are utilized.

Readers who are already well versed in linear stability theory in a
Hilbert space setting might like to skip directly to the main results of
the linear stability theory which are given . . . and to the statement of
the existence results which are given in §4.3.

4.1 The spinodal and the fastest growing mode

In §1.2, we considered the linear stability of the one-dimensional Cahn-
Hilliard equation in the context of Case I. There the growth of perturba-
tions about the initial state u0(x) ≡ 1

2 was analysed, and it was demon-
strated that if the gradient energy term was neglected, then the evolution
of perturbations was governed by the backwards diffusion equation. By
constructing formal solutions, we found that the backwards diffusion
equation was ill posed; i.e., that arbitrarily small perturbations could
become arbitrarily large, arbitrarily fast. Such a result is clearly prob-
lematic for any model which claims to be physically viable. We shall now
return to reconsider the linear stability analysis as before. This time,
however, the effects of the gradient energy term shall be included. As
a result the linear problem, which should be approximately satisfied by
sufficiently small perturbations, will no longer be obviously ill-posedness,
as it was in the case of the backwards diffusion equation. There after-
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wards, we shall generalize the analysis to treat perturbations about an
arbitrary spatially uniform state, u0(x) ≡ ū, where ū ∈ R is constant.
This shall allow us to formalize our definition of the spinodal, which cor-
responds to the limit of linear stability as ε/L → 0, or in other words, as
the domain becomes arbitrarily large and ε is held fixed. In the section
which follows, Section 4.2, the issue of well-posedness is treated with
greater care.

Let us now consider perturbations about the spatially uniform state,
u0(x) ≡ 1

2 , and in accordance with (1.26) we shall assume that M(u) =
M0 and f(u) = −u + u3. Setting

u(x, t) =
1
2

+ ũ(x, t), (4.1)

and substituting (4.1) into the one-dimensional Cahn-Hilliard equation
defined on (0, L)× (0, T ) for L > 0, T > 0,

ũt = M0[−ũ +
3
4
ũ +

3
2
ũ2 + ũ3 − ε2ũxx]xx, (x, t) ∈ (0, L)× (0, T ),(4.2)

ũx(0, t) = ũx(L, t) = ũxxx(0, t) = ũxxx(L, t) = 0, t ∈ (0, T ),(4.3)

ũ(x, 0) = ũ0(x), x ∈ [0, L].(4.4)

The perturbation ũ0(x) shall be assumed to be prescribed and to satisfy
|ũ| ¿ 1 for all x ∈ [0, L]. Moreover, let us assume that ũ0 is smooth, or
at least that ũ0 is in L2([0, L]), the space of square integral functions.†
As in §1.2, we shall neglect the nonlinear terms in ũ in (4.2), however
this time we shall maintain the (linear) term ε2uxxxx.

Thus, we must solve the linear initial-boundary value problem:

ũt = M0(−1
4
ũ− ε2ũxx)xx, (x, t) ∈ (0, L)× (0, T ), (4.5)

ũx(0, t) = ũx(L, t) = ũxxx(0, t) = ũxxx(L, t) = 0, t ∈ (0, T ), (4.6)

ũ(x, 0) = ũ0(x), x ∈ [0, L]. (4.7)

The question now arises as to how we might best proceed to solve (4.5)-
(4.7). In fact, there are various ways in which one might proceed at
this point. A possible approach is to attempt to solve the above system
by the method of separation of variables [106, 104, 88], which was seen
in §1.2 to be useful in our stability analysis when gradient effects were
neglected. That approach would imply here to look for solutions of the

† See Appendix 1 for a more precise definition of L2([0, L]).
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form

u(x, t) = X(x)T (t). (4.8)

By substituting (4.8) into (4.5), X(x) and T (t) can be seen to satisfy

T ′

M0T
=

(− 1
4X − ε2X ′′)′′

X
= λ, (4.9)

where λ is independent of both x and t. Since we wish to solve (4.9) and
to guarantee that the solution given by (4.8) also satisfies the boundary
condition (4.6), we must look for the eigenvalues and eigenvectors of the
fourth order eigenvalue problem

(−1
4
X − ε2X ′′)′′ = λX, x ∈ (0, L), (4.10)

X ′(0) = X ′(L) = X ′′′(0) = X ′′′(L) = 0. (4.11)

This approach seems plausible. Moreover, it can demonstrated that
there exists a countable set of eigenvalues {λn}∞n=0 and associated eigen-
vectors {Xn(x)}∞n=0 for (4.10)-(4.11), with fairly reasonable properties,
as we shall explain shortly. However, there is a far easier approach based
on using the well studied set of eigenvalues and eigenvectors which we
made use of earlier in §1.2, namely the eigenvalues and the eigenvectors
for the problem

X ′′ = λX, x ∈ (0, L), (4.12)

X ′(0) = X ′(L) = 0. (4.13)

For this second eigenvalue problem, we can recall (or easily calculate)
that the eigenvalues {λn}∞n=0 and eigenvectors {Xn(x)}∞n=0 are given by

λk =
kπ

L
, Xn(x) = cos(kπx/L), k = 0, 1, 2, . . . .

It is well known that the set of functions

cos(kπx/L), k = 0, 1, 2, . . . ,

spans L2([0, L]). This follows both from standard results in Fourier anal-
ysis [89, 104] and from standard results in Sturm-Liouville theory. We
shall explain Sturm-Liouville theory [106, 104, 88] briefly, since its results
can be readily generalized to a much wider setting.

Definition 4.1.1 An ordinary differential equation which can be written
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in the form:

(p(x)ux)x + [q(x) + λr(x)]u = 0, (4.14)

αu(a) + βux(a) = 0, γu(b) + δux(b) = 0,

where λ is a parameter, p′, p, q, r are continuous for x ∈ [a, b] and
p, r > 0, and α, β, γ, δ are constants such that α2+β2 6= 0 and γ2+δ2 6=
0, is called a regular Sturm-Liouville problem.

Theorem 4.1.1 For a regular Sturm-Liouville problem defined on the
interval [a, b], the eigenvalues {λn}∞n=1 are real and can be arranged in
ascending order,

λ0 ≤ λ1 ≤ . . . .

Moreover, limn→∞ λn = ∞, and the eigenfunctions {Xn}∞n=0 which cor-
respond to λn can be prescribed as an orthonormal sequence which con-
stitutes a complete basis for L2([a, b]); i.e., for any w ∈ L2([a, b])

∞∑
n=0

| < w, φn > |2 = ||w||L2([a, b]),

where ||w||2L2([a, b]) = |< w, w > |, and < w, Xn >:=
∫ b

a
w(x)Xn(x)r(x) dx.

Proof See, for example, Courant-Hilbert [25] or Nagy-Riesz [72].

We comment that since (4.14) is a second order boundary value prob-
lem, for each λ ∈ R there are always either 0, 1, or 2 linearly independent
solutions to (4.14), and by the definition of an eigenvalue, λ constitutes
an eigenvalue if there is one or more nontrivial solutions. To reduce
the eigenvectors to an orthonormal sequence, by Theorem 4.1.1 one can
first order the λn as an increasing sequence. Then, if for a given eigen-
value there is only one associated eigenfunction, it is only necessary to
scale the eigenfunction so that its norm will be unity. If there are two
eigenfunctions, they can be reduced to orthonormal form via the Gram-
Schmidt procedure. The notions of spanning L2([a, b]) and comprising
a complete basis for L2([a, b]) are equivalent.

Turning now to (4.12)-(4.13), we see that in this context a = 0, b = L,
α = γ = 0, β = δ = 1, p(x) = r(x) = 1. Hence the conclusions of
the theorem above hold, and thus the set of eigenfunctions given by the
cosine series, {cos(kπx/L)}∞k=0 comprises a complete basis in L2([0, L]),
as claimed earlier. We remark that that the functions in the series
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{cos(kπx/L)}∞k=0 are orthogonal; i.e., < cos(iπx/L), cos(jπx/L) >= 0
if i 6= j, and to obtain an orthonormal basis in the sense of Theorem
4.1.1, the series {cos kπx/L}∞k=0 must be further normalized. However
it is convenient to continue to work here with the Fourier analysis nor-
malization which is commonly adopted in seeking formal solutions to
PDEs, [89]. Let us now suppose that for all t ≥ 0 our solution lies in
L2([0, L]). If this is the case then our solution can be represented in the
form

ũ(x, t) =
A0(t)

2
+

∞∑
1

Ak(t) cos(kπx/L), t ≥ 0. (4.15)

Note that for each k, k = 0, . . . ,∞, Xk(x) = cos(kπx/L) in fact satisfies
all of the boundary conditions in (4.5)-(4.7), even though in consider-
ing (4.12)-(4.13), the functions Xk(x) were only required to satisfy the
Neumann boundary conditions which also appear in (4.5)-(4.7). Hence
the boundary conditions in (4.6) will be satisfied by (4.15), if (4.15) can
be differentiated term by term. Therefore, it seems reasonable to look
for a formal solution to (4.5)-(4.7) of the form given in (4.15). We may
now proceed, as in the method of separation of variables, to obtain a
formal solution, with the hope of being able to justify the formal solution
afterwards.

In order to satisfy the initial conditions, we should require that

ũ0(x) =
A0(0)

2
+

∞∑
1

Ak(0) cos(kπx/L). (4.16)

Since it has been assumed that u0(x) ∈ L2([0, L]), the coefficients in
(4.16) may [89] be determined by

Ak(0) =
2
L

∫ L

0

ũ0(x) cos(kπx/L) dx, k = 0, 1, 2, . . . . (4.17)

Given now (4.15) and (4.17), it remains to determine the functions Ak(t),
k = 0, 1, . . . , for t > 0. Substituting (4.15) into (4.5) and differentiating
the series term by term as necessary, we obtain that

A′0
2

+
∞∑
1

A′k cos(kπx/L) = M0

∞∑
1

(k2π2

4L2
− ε2k4π4

L4

)
Ak(0) cos(kπx/L).

(4.18)
Since the sequence {cos(nπx/L)}∞n=0 is orthogonal, (4.18) yields that

{
A′0 = 0,

A′k = M0

(
k2π2

4L2 − ε2k4π4

L4

)
Ak, k = 1, 2, . . . .

(4.19)
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Solving (4.19), we obtain that
{

A0(t) = A0(0),

Ak(t) = Ak(0)e
k2π2

L2 [ 14− ε2k2π2

L2 ]t, k = 1, 2, . . . .
(4.20)

Thus, in summary, we have obtained the formal solution

u(x, t) =
A0(0)

2
+

∞∑
1

Ak(0)e
k2π2

L2 [ 14− ε2k2π2

L2 ]t cos(kπx/L). (4.21)

Before discussing the behavior and physical implications of (4.21), let
us see what would have happened had we continued to work within the
framework of (4.10)-(4.11) and (4.9). For this purpose, let us consider
the generalization of Sturm-Liouville problems which we referred to ear-
lier, namely eigenvalue problems for certain self-adjoint operators [67].

Definition 4.1.2 Suppose that A : D(A) → X is a linear operator,
where X is a Hilbert spaces and D(A) = X. We say A is a self-adjoint
operator if D(A) = D(A) and A = A∗.

In Definition 4.1.2, A∗ denotes the operator which is adjoint to A.
The definition of an adjoint operator in a Hilbert space setting may be
given as follows:

Definition 4.1.3 Let A : D(A) → X be a linear operator, where D(A) =
X and X is a Hilbert space. Let A∗ denote the Hilbert space adjoint to
A. Then y ∈ D(A∗) iff there exists an z ∈ X such that

(Ax, y) = (x, z), for all x ∈ D(A),

and for y ∈ D(A∗), we may define A∗ : D(A∗) → X by A∗y = z.

To aid in identifying self-adjoint operators, we remark that a linear
operator A : A → X where X is a Hilbert space, is said to be symmetric
if

(Ax, y) = (x, Ay) for all x, y ∈ D(A).

Hence it follows from Definition 4.1.2 that A : D(A) → X is self-adjoint
iff it is symmetric, D(A) = X, and D(A) = D(A∗).

The eigenvalues and eigenvectors for many self-adjoint operators be-
have very much like the eigenvalues and eigenvectors of Sturm-Liouville
problems. To elucidate this point, we first recall the definitions of the
resolvent set, the resolvent operator, and compact operators.
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Definition 4.1.4 Let A be a linear operator in a normed space X. The
resolvent set of A, denoted by ρ(A), is defined as the set of all λ ∈ C for
which there exists a bounded linear operator R(λ) : X → X such that

(1) for every y ∈ X, R(λ)y ∈ D(A) and (A− λ)R(λ)y = y,

(2) R(λ)(A− λ)x = x for all x ∈ D(A).
When λ ∈ ρ(A), R(λ) is called the resolvent of A at x and is usually
denoted by (A− λ)−1.

Definition 4.1.5 Let X be a Banach space and let A : X → X be
a bounded linear operator. Then A is said to be compact if for every
bounded sequence {xn}∞n=1 in X, there exists a subsequence {xnk

}∞k=1,

where nk are integers such that n1 < n2 < . . . , such that {Axnk
}∞k=1

converges to an element of X.

Theorem 4.1.2 Let X be a Hilbert space, and let A : D(A) → X be
a self-adjoint operator whose resolvent (A− λ)−1 is compact. Then the
spectrum of the eigenvalue problem

Ax + λx = 0, x ∈ X,

is real and consists of a countable set of eigenvalues. To each eigenvalue
there corresponds a finite set of linearly independent eigenfunctions. The
eigenvalues may be arranged in ascending order λ0 ≤ λ1 ≤ . . . , where
eigenvalues are repeated in accordance with their multiplicity (the dimen-
sion of the span of their eigenfunctions), and limn→∞ = ∞. Moreover,
the corresponding eigenfunctions, {Φk(x)}∞k=0, can be prescribed as an
orthonormal sequence spanning X.

Proof The results stated here follow from Theorems 1.7.16 and 2.6.8 in
[67].

We remark that if X is a Hilbert space and A : D(A) → X is self-
adjoint, and suppose that

(1) there exists θ ∈ R such that

(Ax, x) ≥ θ(x, x) for all x ∈ D(A),

and

(2) (A− λ0)−1 is compact for some λ0 < θ,
then (see Theorem 2.6.6 in [67]) λ0 ∈ ρ(A) and by Theorem 1.7.16 in
[67], (A−λ)−1 is compact for all λ ∈ ρ(A). Therefore the conclusions of
Theorem 4.1.2 again follow.
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In reference to the operator appearing in problem (4.10)-(4.11), we
may state the following

Lemma 4.1.1 The operator A : D(A) → X defined by

Au := M0(−(1/4)uxx − ε2uxxxx),

where X = {u ∈ H4([0, L]) |ux(0) = uxxx(0) = ux(L) = uxxx(L) = 0},
and Y = L2([0, L]), is self-adjoint.

Proof We define A, X, Y by . . .. See . . . for definition.

From (4.1.1), we may conclude that if for all t ≥ 0 the solution to
(4.5)-(4.7) lies in L2([0, L]), then it may be represented in the form

ũ(x, t) =
∞∑

k=0

Bk(t)Yk(x), (4.22)

where {Yn(x)}∞n=0 denotes the complete set of eigenfunctions for (4.10)-
(4.11). It is possible to calculate the eigenvectors (eigenfunctions) explic-
itly, see Exercise 1. However, as anyone who bothers to solve the exercise
can verify, the eigenfunctions {Yn(x)}∞n=0 are considerably more clumsy
and uninviting than the cosine series. Thus working with the cosine
series seems definitely preferable.

Let us now rewrite the formal solution obtained in (4.21) in the more
convenient form

u(x, t) =
A0(0)

2
+

∞∑
1

Ak(0)eσ(k)t cos(kπx/L), (4.23)

where the coefficients {Ak(0)}∞k=0 are defined in (4.17) and where σ(k)
is given by

σ(k) =
k2π2

L2

[1
4
− ε2k2π2

L2

]
, (4.24)

for k ∈ Z+, where Z+ denotes the set of non-negative integers. From
(4.24), we see that we may distinguish between the growing modes which
we define by {k ∈ Z+ |σ(k) > 0 }, the neutral modes given by {k ∈
Z+ |σ(k) = 0 }, and the decaying modes given by {k ∈ Z+ |σ(k) <

0 }. Even though from the point of view of (4.23) it is only necessary
to consider k ∈ Z+, it is constructive to consider σ(k) as a function
defined for all k ∈ R. Moreover, σ(k) = −σ(−k), it is only necessary
to consider σ(k) for k ≥ 0, see Fig. 4.1. The function σ = σ(k) is
known as the growth rate or dispersion relation. Examining σ(k) it is
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Fig. 4.1. The dispersion relation σ = σ(k) as a function of k.

easily seen that σ(k) vanishes at k1 = 0 and at k2 = L/(2επ), it is
positive for k ∈ (k1, k2), and has a unique critical point (a maximum)
at k3 = L/(2

√
2επ), and it is negative elsewhere. In particular, we may

conclude that

σ(k) ≤ σ(k3) =
1

64ε2
, k ≥ 0. (4.25)

Even if k3 ∈/Z+, the mode k3 is known as the fastest growing mode.
From (4.24) and from (4.20), we may conclude that for k > k2, Ak(t)

decreases (in absolute value) as a function of time. Moreover the number
of growing modes is finite and depends on the parameters of the problem,
ε and L. Let us amplify this last remark. The number of growing modes is
determined by the number of integers k ∈ Z+ such that k1 < σ(k) < k2.
Thus considering (4.24), we see that

# growing modes =

[
L

2επ

]
, (4.26)

where the [s] refers to the integer value of s. It follows from (4.26) that
as L increases or ε decreases, the number of growing modes increases.
Note that if L is sufficiently small or ε is sufficiently large, then [ L

2επ ] = 0
and there are no growing modes at all.

Up to now in this section we have assumed that ū = 1/2. However,
this assumption has not strongly influenced our analysis. Indeed it is
readily verified that if the assumption (4.1) is replace by the more general
assumption that

u(x, t) = ū + ũ(x, t), (4.27)

then (4.5)-(4.7) should be replaced by the more general initial value
problem

ũt = M0((−1 + 3ū2)ũ− ε2ũxx)xx, (x, t) ∈ (0, L)× (0, T ), (4.28)
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ũx(0, t) = ũx(L, t) = ũxxx(0, t) = ũxxx(L, t) = 0, t ∈ (0, T ), (4.29)

ũ(x, 0) = ũ0(x), x ∈ [0, L]. (4.30)

The formal solution to (4.5)-(4.7) given in (4.20) and (4.21) will also
constitute a formal solution to (4.28)-(4.29) if σ(k) is defined by

σ(k) =
M0k

2π2

L2

[
(1− 3ū2)− ε2k2π2/L2

]
, (4.31)

which generalizes (4.24), and the number of growing modes can now be
seen to be given by

# growing modes =

{ [
L
√

1−3ū2

επ

]
, − 1√

3
< ū < 1√

3

0 otherwise
. (4.32)

Note in particular that for ū ∈ (−∞, −1/
√

3)∪ (1/
√

3, ∞) for all L > 0
and ε > 0, there are no perturbations ū0(x) ∈ L2(Ω) which are predicted
to grow. See Exercise 2.

Let us pause to summarize what we have done so far. In Chapter 1 the
evolution of perturbations about the uniform, steady state u(x, t) = 1/2
were considered within the context of the Cahn-Hilliard equation as
prescribed in Case I. Nonlinear terms in the perturbation were neglected,
the coefficient ε was set to zero, and as a result, and backwards diffusion
was predicted. Were we to replace the assumption u(x, t) = 1/2 +
ũ(x, t) in the analysis there by the more general assumption (4.27) as
we did here, we would readily find that we could get a formal solution
to the problem considered there, which in fact would correspond to the
formal solution obtained in (4.20), (4.21), (4.31) with ε set to zero. Note
however that setting ε = 0 in (4.28)-(4.30) yields the forward (regular)
diffusion equation for ū ∈ (−∞, −1/

√
3) ∪ (1/

√
3, ∞) and it yields the

backwards diffusion equation for ū ∈ (−1/
√

3, 1/
√

3). In other words,
there are values of ū for which the uniform state u(x, t) = ū is stable in
the sense that

u(x, t) → ū +
A0

2
as t →∞. (4.33)

Since ũ0(x) has been assumed to be small as a function in L2([0, L]), it
follows from Parseval’s equality that A0(0) must also be small. Hence
from (4.33) we see that if A0(0) = 0, then u(x, t) converges to the uni-
form steady state u(x, t) = ū, and if A0(0) is small but non-zero, then
the solution u(x, t) converges to a ”nearby” uniform (steady) state. On



4.1 The spinodal and the fastest growing mode 81

the other hand, there is also an interval of values of ū for which per-
turbations grow. In fact, it is easy to check that unless Ak(0) = 0 for
all other than k = 0, then the predicted growth is exponential. How-
ever, the conclusion that (−1/

√
3, 1/

√
3) corresponds to an ”unstable

regime” is somewhat dubious in this context, since the backwards diffu-
sion equation has been seen to be ill-posed and therefore of questionable
validity in modelling a physical process.

Turning our attention to the analysis which was undertaken in the
present section, we can see that as in the discussion above, if ū lies
outside the interval (−1/

√
3, 1/

√
3), then σ(k) ≤ 0 for all k ∈ Z+.

Moreover by considering (4.21),(4.31), we see that

u(x, t) → ū +
A0

2
+ ξAk2(0) cos(k2πx/2) as t →∞, (4.34)

where ξ = 1 if k2 ∈ Z+ and ξ = 0 otherwise. Again, we may argue that
the limit is close, if not identical, to the spatially homogeneous steady
state, u(x, t) ≡ ū. If ū lies outside the interval (−1/

√
3, 1/

√
3) where

”stable behavior” is predicted, it is not difficult to demonstrate well-
posedness of the linear problem satisfied by the perturbations, (4.28)-
(4.30), both when ε > 0 and when ε = 0. See Exercise 3.

By considering (4.32), we can see that if ū ∈ (−1/
√

3, 1/
√

3), then
there exist growing modes if L

√
1− 3ū2/επ > 1, in other words if

−1√
3

[
1−

(επ

L

]2)1/2

< ū <
1√
3

[
1−

(επ

L

)2]1/2

. (4.35)

From the solution (4.23), it can be seen that exponential growth is pre-
dicted, so long as at least some of the amplitudes of the growing modes
are non-vanishing in the initial perturbation, ũ0(x). The interval desig-
nated in (4.35) may be considered as defining the range linear instability,
so long as the linear stability problem given in (4.28)-(4.30) can be seen
to be well-posed. This indeed is not very difficult to demonstrate, as we
shall see in the section which follows. Note that it follows from (4.35)
that the regime of linear instability depends on ε and on L, as well as
on ū. It is physically reasonable to assume (outside of the nano con-
text in which systems on the order of nanometers, i.e. 10−9 meters, are
considered) that εL−1 ¿ 1. Hence we may approximate the regime of
instability by

−1√
3

< ū <
1√
3
. (4.36)

Note that this corresponds precisely to our earlier (ε = 0) predictions.



82 Linear theory and the spinodal

Thus our earlier, very simplistic calculation, had indeed set us thinking
in the right direction. The interval (4.36) can also be considered as the
unstable regime in the limit as L → ∞; in other words it corresponds
to the unstable regime on an infinite domain. Since the approxima-
tion which lead us to (4.36) seems well justified on physical grounds,
it should roughly correspond to the range of instability as measured
in experiment. As such, the bounding concentrations for this interval,
ū = ±1/

√
3, have achieved a name of their own and are known as the

spinodal compositions. More generally, as discussed in Chapter 1, the
spinodal concentrations can be expected to be temperature dependent,
and should thus correspond to the locus sketched in Figure 1.2. In the
following section, we shall discuss in what sense the formal solutions
obtained here do indeed constitute solutions to (4.28)-(4.30).

Arguably, to obtain these limiting concentrations, one should directly
consider the Cahn-Hilliard equation defined on the whole real line, (−∞, ∞).
This approach is possible and is undertaken in Exercise 4, using Fourier
transforms and a continuously defined dispersion relation.

Certainly it would make good physical sense to extend the discussions
above to the more physically realistic context of domains Ω ⊂ Rn, with
n = 2 or 3. This is indeed possible, and the conclusions are quite similar.
However, the analysis is somewhat less explicit except in some very
geometries, since in general one must work with eigenfunctions which
are no longer explicitly prescribed.

In the multi-dimensional case, one may easily verify that the lineariza-
tion of the Cahn-Hilliard equation about a spatially homogeneous steady
state, u(x, t) = ū, in other words the linear stability problem, is given
by

(LP )





ũt = M0((1− 3ū2)4ũ− ε42ũ), (x, t) ∈ ΩT ,

n · ∇ũ = n · ∇4ũ = 0, (x, t) ∈ ∂ΩT ,

ũ0(x, 0) = ũ0(x), x ∈ Ω.

(4.37)

To solve (4.37), we rely again on the results mentioned earlier on self-
adjoint operators, this time in regard to the Laplacian with Neumann
boundary conditions

Lu := 4u = 0, x ∈ Ω,

n · ∇u = 0, x ∈ ∂Ω,
(4.38)
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where L is now considered as an operator from H4(Ω)† to L2(Ω). Within
this setting, one may again conclude based on Theorem 4.1.2 that there
is a countable sequence {λ}∞n=0 of real eigenvalues, each with finite multi-
plicity, which approaches infinity as n →∞, and that the corresponding
eigenfunctions can be prescribed as an orthonormal sequence {Φk}∞k=0

where Φk = Φk(x) for x ∈ Ω, which spans L2(Ω).
In analogy with (4.15)-(4.17), we may assume that

ũ(x, t) =
A0(t)

2
+

∞∑

k=1

Ak(t)Φk(x), (4.39)

where

Ak(0) =
∫

Ω

ũ0(x), Φk(x) dx.

Substituting (4.39) into (4.37) and making use of the orthonormality, we
obtain a system of equations analogous to the system (4.19) obtained
earlier, which may be solved to yield that

ũ(x, t) =
A0(0)

2
+

∞∑

k=1

Ak(0)eσ(k)tΦk(x, t),

where

σ(k) = ((1− 3ū2)− ε2λ2
k)λ2

k,

where λk are the eigenvalues of the Laplacian, discussed above.
Again, we remind the reader that the discussion above only makes

sense if well-posedness can be demonstrated for (LP) in some appropriate
sense. This is undertaken in the section which follows.

So far we have focused on the Cahn-Hilliard equation in the context of
Case I. It is natural to inquire at this point with regard to linear stability
and the spinodal compositions (concentrations) for the degenerate Cahn-
Hilliard equation, Case II. It turns out that the analysis is quite similar,
and that a very similar discussion can be given with regard to linear
stability and the spinodal, see Exercise 5.

Exercises

4.1 Find the eigenvalues and eigenfunctions for (4.10)-(4.11).
4.2 Verify (4.28)-(4.30), (4.31), and (4.32).

† A definition of H4(Ω) is given in §4.4.


