
14

Additional applications of the Cahn-Hilliard
model

14.1 Cahn-Hilliard equations: a characterization

It seems that before presenting a list of applications and contexts in
which the Cahn-Hilliard equation arises, we must clarify a bit more
precisely just what features we should like to see in an equation before
we shall assert that the equation is indeed a Cahn-Hilliard equation.
Although an absolute answer may not be so clear, we can give a working
definition to be adopted throughout the present section.

In saying that a particular equation constitutes a Cahn-Hilliard equa-
tion, we should like the equation to be of the form:

ut = ∇ ·Q(u)∇[f ′(u) +4u], (14.1)

so that µ := f ′(u) +4u is the first variation of
∫

Ω

{f(u) +
1
2
|∇u|2} dx, (14.2)

where

(i1) Q(u) ≥ 0, and

(ii1) f(u) has the form of a double well potential; i.e., there exists {a, b}
such that f(a) = f(b) and f(u) > f(a) = f(b) for u 6= a or b.

Here, Q(u) and f(u) are assumed to be smooth functions such that
Q ∈ C(R) and f ∈ C1(R), although, as we shall see shortly, somewhat
less regularity can be required.

Note that equation (14.1) remains unchanged if f ′(u) is replaced by
f ′(u) + λ where λ ∈ R is arbitrary. This implies that the requirement
(ii1) is unnecessarily restrictive and can be replaced by the more general
condition
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Fig. 14.1. A sketch of the double tangency condition.

(ii′1) there exists a constant λ ∈ R such that

g(u) = f(u) + λu (14.3)

constitutes a double well potential.
Given then the function f ′(u), how is one to ascertain the existence

of a suitable λ? Let us suppose for the moment that f ′(u) ∈ C(R)
and hence that g(u) as defined by (14.3) is a smoothly defined C1(R)
function for any λ ∈ R. If g(u) has the form of a double well potential
with minima at u = a and at u = b, then





g(a) = g(b),

g′(a) = g′(b) = 0,

g(u) > g(a) = g(b) for u 6= a or b.

(14.4)

Hence (14.4) in conjunction with (14.3) implies that




f(a) + λa = f(b) + λb,

f ′(a) + λ = f ′(b) + λ = 0,

f(u) + λu > f(a) + λa = f(b) + λb for u 6= a or b.

(14.5)

From (14.5), we may conclude that

f(b)− f(a)
b− a

= f ′(a) = f ′(b), (14.6)

that there exists a line with slope λ = f(a)−f(b)
b−a which is tangent to f(u)
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at the points u = a and u = b, and that the function f(u) lies strictly
above this line away from the points of tangency, a and b. If f ∈ C1(R),
and there exists a double tangent to f(u), i.e. a straight line which lies
below f(u) which is tangent to f(u) at precisely two points, then (14.6)
holds, as does (14.5) with λ = f(b)−f(a)

b−a . Therefore (14.4) also holds

with g(u) defined via (14.3) with λ = f(b)−f(a)
b−a . Thus (14.5) can be

considered as the formulation of a double tangency condition, and (ii′1)
can be reformulated as

(ii′′1) f(u) satisfies the double tangency condition (14.5). See Figure 14.1.

It is possible to generalize the discussion above to accommodate less
smooth functions. Note that in the context of the double obstacle prob-
lem discussed in Section 10, Q ∈ C([a, b]) and f ∈ C([a, b]) ∩ C1((a, b)),
for some −∞ < a < b < ∞, and

(i2) Q(a) = Q(b) = 0, Q(u) > 0 for u 6= a or b,

(ii2) the line

y(u) =
[f(b)− f(a)

b− a

]
u +

[f(a)b− f(b)a
b− a

]
(14.7)

serves as a double tangent to f(u) in generalized sense that f(a) = y(a),
f(b) = y(b), f(u) > y(u) for u ∈ (a, b), and y′(a) (y′(b)) belongs to the
tangent cone [53] of f(u) at u = a (u = b).

It is also of some interest to make some intermediary considerations,
since for example in the case of the degenerate Cahn-Hilliard equation,
(i2) and (ii2) are satisfied with 0 < a < b < 1, and (14.5) is satisfied for
u ∈ (0, 1). One possible example of such intermediary considerations,
which shall be relevant in some of the examples which are given in the
present chapter, can be stated as follows

There exist constants {a, b, c}, ∞ < a < b ≤ c ≤ ∞, such that

(i3) Q ∈ C([a, c]), Q(a) ≥ 0, Q(u) > 0 for a < u < c, and Q(c) = 0 if
c < ∞, and

(ii3) f ∈ C([a, c])∩C1((a, c]), and (14.7) constitutes a double tangent to
f(u) in the generalized sense of (ii2) discussed above.

If (i3)-(ii3) hold, it is easy to verify that λ, the slope of the double
tangent line, satisfies

λ =
f(b)− f(a)

b− a
= −f ′(b), (14.8)

and tangency holds at b. Condition (14.8) constitutes an easy necessary
condition which can be readily checked. The requirements in (i3) on the
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vanishing of Q are imposed in order to guarantee that supp u(x, t) ⊂
(a, c]. It may or may not be necessary to require that Q(a) = 0; see the
discussion in Chapter 11. An analogous discussion can be readily given
with the rôles of a and b interchanged.

Within the framework of the existence theory, what regularity is re-
quired of Q(u)? of f(u)? Return after relevant sections are written,
etc.

14.2 Biofilms

Recently Klapper & Dockery [58], have shown that the degenerate Cahn-
Hilliard equation can arise in the context of modeling the structure of
biofilms. The world is full of microorganisms such as bacteria, fungi, and
protozoa, and commonly these microorganisms live within an organic
structure known as a biofilm. For simplicity we shall refer to bacteria,
although our conclusions are pertinent to many of other microorganisms
which live within biofilms. Within the biofilm, the bacteria are encased
within a matrix of extracellular polymers which they have excreted.
This encasing layer allows the bacteria to thrive and allows them to
protect themselves from disinfectants and other elements which might
do them harm. These biofilms are to be found almost everywhere in
our everyday surroundings, such as in kitchens, bathrooms, etc., and as
such constitute a perhaps an all too unavoidable topic of interest. For
an overview, see Costerton [24].

The model which is presented in [58], while it cannot explain biofilm
generation, allows some of the key features of the structure of biofilms
to be explained. According to their theory, the structure which can be
seen in biofilms is a result of cohesion forces which also give rise to the
”stickiness” of biofilms.

Let us now outline the key features of their model. The basis of their
model is a two phase biomass-solvent theory, where the biomass phase
includes both the bacteria and other ambient microorganisms as well
as the extracellular encasing polymer material mentioned earlier. The
variables φb(x, t), ub(x, t) and φs(x, t), us(x, t), are employed, where φb

and φs represent the volume fraction of the bacteria and of the solvent
respectively, and ub and us represent the velocities of the two phases,
the bacterial phase and the solvent phase. Note that since φb and φs

represent the volume fractions in a two phase flow model, they must
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Fig. 14.2. A photo of a biofilm (details), reproduced curtesty of (details).

satisfy

φb + φs = 1. (14.9)

Since a two phase flow model is being considered, mass conservation
and momentum balance equations must be satisfied by each of the two
phases. With regard to the mass conservation equations, taking the
densities of the biomass phase, ρb, and of the solvent phase, ρs, to be
constant, and neglecting any possible growth of one phase at the expense
of the other, one obtains that

∂φb

∂t
+∇ · (φbub) = 0, (14.10)

∂φs

∂t
+∇ · (φsus) = 0. (14.11)

With regard to the momentum, neglecting inertial and convective effects,
they propose to consider the equations

0 = ζ(ub − us)− φb∇p + φb∇ ·Π(c) +∇ ·Π(b), (14.12)

0 = −ζ(ub − us)− φs∇p +∇ ·Π(s). (14.13)

Here Π(c), Π(b), Π(s) represent stress tensors, to be described shortly,
p represents a hydrostatic pressure, and ζ represents a drag coefficient.
The drag coefficient is taken to be of the form ζ = ζ0φsφb where ζ0 is a
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positive constant, since the drag effect can expect to vanish as the two
phase flow degenerates into a one phase flow.

Their assumptions on the stress tensors may be explained as follows.
Since the solvent can be expected to behave as a Newtonian fluid, clearly
it is reasonable to take Π(s) as the standard Newtonian shear stress.
Clearly also the stress tensor for the biomass phase must contain a
component, which we shall denote here as Π(b), which represents the
viscoelastic stress tensor of the biomass, and if the biofilm is being ex-
amined on a time scale which is not too short, then the elastic component
in Π(b) may be neglected and Π(b) may also be taken as the standard
Newtonian shear stress. A less classical element in the description of
the stresses for the biomass phase is contained in the term Π(c), which
perports to represent the stresses which arise as a result of cohesion (or
”sticky”) forces in the system. More specifically, the assumption is that
there is a cohesion energy for the system which may be prescribed by

E =
∫
{f(φb) +

1
2
κ|∇φb|2} dV, (14.14)

where f is a homogeneous ”cohesion” free energy, κ is a gradient energy
coefficient, and Ω ⊂ Rn, n = 2, 3, denotes the volume containing the
two phase biomass/solvent layer. Within the context of biofilms, it is
reasonable to assume that the ”homogeneous cohesion free energy” f(φb)
satisfies

(i) f(0) = 0,
(ii) f(φb) has a global minimum at φb,0, and φb,0 > 0.

(iii) f(φb) has a unique inflection point at φ̄b, where 0 < φ̄b < φb,0,

Then, in analogy with the Cahn-Hilliard theory presented in §2, the
”cohesion” stress tensor, Π(c), is taken to be the Fréchet derivative of
the cohesion free energy, which can be interpreted as the ”driving force”
arising as a result of the tendency towards ”local relaxation” of the
cohesion energy. Assuming that there is no biomass flux into or out of
the biofilm, then n · ∇(φbub) = 0 along the boundary of Ω, and hence

Π(c) ≡ δE

δφb
= f ′(φb)− κ4φb. (14.15)

We now show how, by making certain reasonable assumptions, the
equations above reduce under appropriate assumptions to the degenerate
Cahn-Hilliard equation. Subtracting φb× (14.13) from φs× (14.12) and
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Fig. 14.3. A sketch of a free energy which would be appropriate for modeling
biofilms.

using (14.9), we find that

ub − us = −1
ζ
[φsφb∇ ·Π(c) + φs∇ ·Π(b) − φb∇ ·Π(s)]. (14.16)

Adding (14.10) and (14.11) and recalling (14.9), we obtain that

∇ · u = 0, (14.17)

where u ≡ φbub + φsus represents a mean velocity of the two phase
flow system, and (14.17) expresses the incompressibility of the system
in terms of the mean velocity. Adding (14.12) and (14.13), we get that

∇p = φb∇ ·Π(c) +∇ · (Π(s) + Π(b)). (14.18)

Note that (14.10) may be written in terms of u and ub − us,

∂φb

∂t
+∇ · (φbu) = −∇ · [φsφb(ub − us)]. (14.19)

Using now (14.17), we obtain that

∂φb

∂t
+ u · ∇φb = −∇ · [φsφb(ub − us)]. (14.20)

If, as is reasonable to assume for a two phase flow that is possibly
undergoing phase separation, there is much more ”relative” flow than
”net” flow, then |u| ¿ |ub − us| and (14.20) is well approximated by

∂φb

∂t
= −∇ · [φsφb(ub − us)]. (14.21)
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Substituting (14.16) into (14.21),

∂φb

∂t
= − 1

ζ0
∇ · [φsφb∇ ·Π(c) + φs∇ ·Π(s) − φb∇ ·Π(s)]. (14.22)

Assuming now that the effects of the cohesion forces are large compared
to the effects of the compressive stresses, (14.22) reduces to

∂φb

∂t
= − 1

ζ0
∇ · [φsφb∇ ·Π(c)]. (14.23)

Recalling the definition of Π(c) and using (14.9), the degenerate Cahn-
Hilliard equation,

∂φb

∂t
= − 1

ζ0
∇ · [φb(1− φb)∇ · {f ′(φb)− κ4φb}], (14.24)

is obtained.

Exercises

14.1 Define

f̄(φb) = aφ3
b(φb/4− b).

a) Show that f̄(φb) satisfies the conditions (i)-(iii) if a, b > 0.

b) Show that f̄(φb) has a unique inflexion point and that it is
located at φb = 2b.

c) Show that there exists a unique value of φm
b such that

φm
b f̄ ′(φm

b ) = f̄(φm
b ),

and that φm
b = 8b/3.

d) Draw a phase diagram based on f̄(φb) in terms of the variable
b as a (temperature like) control parameter and the mean mass
1
|Ω|

∫
Ω

φb dx, indicating the spinodal, the limit of coexistence,
and the stable region.

How is it that the applications and explanations are roughly
the same, yet the scaling is so different?)
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Fig. 14.4. A sketch of a thin layer of viscous film lying on a flat substrate in
an inert gas.

14.3 An augmented thin film equation

The classical thin film equation

ht +
1
c
∇ ·

[h3

3
∇4h

]
= 0, (14.1)

was developed by Sharma & Ruckenstein [91] in 1986 to describe the
time evolution of a thin film or layer of a viscous liquid on a flat surface,
see Figure 14.4. Here h = h(x, y, t) denotes the (dimensionless) height
of the viscous film. The derivation of (14.1) is based on the Navier-
Stokes equations and the lubrication approximation, as we shall explain
shortly. The coefficient c in (14.1) is a scaled capillary number which
can be prescribed more explicitly as c = (L

a )3 U0µ
σ , where a is a typical

film height, L is a length scale characterizing spatial variation along the
film, U0 is a typical horizontal velocity, and µ and σ are respectively the
viscosity and the surface tension, which are taken here to be constant.

Often, however, in many applications, additional physical effects are
present which cannot be neglected to leading order. Such additional
physical effects may include, for example, gravity, van der Waals forces,
thermo-capillarity effects or evaporation. In such situations, (14.1) no
longer adequately describes the evolution of the film height, though by
considering the governing equations and re-running through the lubri-
cation approximation arguments, it is often possible to obtain a suitable
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augmented thin film equation. For an overview of this approach, see the
ample review article by Oron, Davis & Bankoff [84] which appeared in
1997. See also the discussion in [81] for background.

Such possibilities are of interest to us here in the context of this book
since, when certain physical effects are taken into account, a Cahn-
Hilliard equation arises as the resultant augmented thin film equation.
This, in particular, is what happens when the effects of gravity and
thermo-capillarity are taken into account. To be more specific, when
gravitational and thermo-capillarity effects are taken into account, the
equation

ht+
1
c
∇·

[h3

3
∇4h

]
+∇·

{[
−1

3
Gh3+

1
2
MB

h2

(1 + Bh)2
]
∇h

}
= 0 (14.2)

is obtained, where c is as defined earlier, G = ρga2

µU0
is a gravitational coef-

ficient, B = αtha
kth

is the Biot number, and M = ( 4σ
µU0

) 2πa
λ is a Marangoni

number. In the definition of the Biot number, αth and kth denote the
coefficients which appear in Newton’s cooling law

kth∇θ · ~n + αth(θ − θ∞) = 0, (14.3)

which is assumed to hold along the upper surface of the thin film. In
(14.3), θ denotes the value of the temperature along the upper surface of
the film, θ∞ denotes value of the temperature in the gas above the film,
kth is a coefficient of thermal diffusivity, αth is a specific heat capacity,
and ~n is a unit normal pointing outwards from the film along the gas-film
interface. In the definition of the Marangoni number,

4σ = σ|θ∞ − σ|θ0
, (14.4)

where θ0 denotes the temperature of the solid substrate. With regard
to the surface tension, the constitutive assumption that σ = σ(θ) has
been adopted here to account for thermo-capillarity effects. In thin films
heated from below, typically 4σ > 0. See Figures 14.4 and 14.5.

We note that, as defined, B and G are positive, and as explained
above, for films heated from below M can be expected to be positive.
We shall now see that under the assumption that B, G, M > 0, equation
(14.2) has all the characteristics of a Cahn-Hilliard equation as outlined
in Section 14.1. Let us rewrite (14.2) as

ht +∇ ·
[(h3

3

){1
c
∇4h−

[
G− 3

2
MB

h

1
(1 + Bh)2

]
∇h

}]
= 0.
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Fig. 14.5. The thermal boundary conditions above and below the thin viscous
film.

In other words,

ht = ∇ ·
[
Q(h)∇

{1
c
4h + f ′(h)

}]
, (14.5)

where

Q(h) =
1
3
h3,

and

f(h) =
G

2
h2 − 3

2
MBh ln

[ h

1 + Bh

]
.

By considering Figure 14.4, we see that in the context of thin films,
it is necessary to require that h = h(x, y, t) ≥ 0. Moreover, it would
be reasonable to formulate a Cauchy problem with compact support or
a boundary value problem with, say, periodic boundary conditions or
Neumann and no flux boundary conditions.

We are thus led to consider the criteria of Section 14.1 for (14.5) to
constitute a Cahn-Hilliard equation on the interval [0, ∞). Note first
that Q(u) ∈ C([0, ∞)) with Q(0) = 0 and Q(u) > 0 for u > 0. With
regard to f(u), we note that f(u) ∈ C([0, ∞))∩C1((0, ∞)), and that for
B, G, M > 0,

f(0) = 0, f(u) > 0 ∀u > 0, (14.6)

f ′′(0) = −∞, f ′′(∞) > 0, f ′′′(u) > 0 ∀u > 0, (14.7)
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and that there exists a unique h∗ > 0 such that

f(h∗) = h∗f ′(h∗). (14.8)

From (14.6)-(14.8) it can be concluded using (14.6) that the double
tangency condition is satisfied with tangency at the points u = 0 and u =
h∗. Therefore by the discussion in Section 14.1, g(u) = f(h)− f ′(h∗)h is
a double well potential on [0, ∞), and thus (14.2) constitutes a Cahn-
Hilliard equation.

This would seemingly be the whole story, but in considering the deriva-
tion of the equation (14.2) we shall see that it is convenient to introduce
a particular scaling so that the value h = 1 shall assume somewhat of a
special rôle. More specifically, in [97] a was taken as the mean height of
the film, which, in analogy with the earlier discussion of the mean mass,
is a conserved quantity and hence affects, for example, the set of steady
states which are accessible as t → ∞. We shall now outline how (14.2)
may be derived, indicating in the process the derivation of (14.1).

The derivation of (14.2) is based on the incompressible Navier-Stokes
equations and an energy balance equation. The incompressible Navier-
Stokes equations may be written as

ρ
[ ∂

∂t
~v + [∇~v]~v

]
= −∇p + µ4~v −∇φ, (14.9)

∇ · ~v = 0, (14.10)

where ~v is the fluid velocity, ρ, p, and µ are respectively the density, the
pressure, and the fluid viscosity, and φ = ρgz is a gravitational force
potential and g is the gravity coefficient. The notation ~v = (u1, u2, w),
with ~v = ~v(~x, t) and ~x = (x1, x2, z), has been adopted, since the vertical
and horizontal components of the flow play distinguished rôles in the
context of thin films, see Figure 14.4. The density ρ is taken to be
constant, and equation (14.10) is known as the equation of continuity.
See e.g. Chorin & Marsden [21] or Temam [95] for a general discussion.
The energy balance equation may be written as

ρc
[ ∂

∂t
θ + ~v · ∇θ

]
= kth4θ, (14.11)

where θ = θ(~x, t) denotes the temperature field, and c and kth denote
respectively the heat capacity and the coefficient of thermal conductivity,
which are taken to be constant.

Equations (14.9)-(14.11) are to be considered in conjunction with ap-
propriate boundary conditions on the solid substrate and along the free
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surface. Along the solid substrate, z = 0, and reasonable boundary
conditions to impose are

~n · ~v = 0, (14.12)

ui − β
∂ui

∂z
= 0, i = 1, 2, (14.13)

θ = θ0. (14.14)

In (14.12), ~n denotes a unit normal vector to the solid substrate, and
(14.12) expresses the inability of the fluid to penetrate into the solid
substrate. Condition (14.13) corresponds to the Navier slip condition,
and β is a slip coefficient which is assumed to be constant. Condition
(14.14) states that the solid substrate is held at a uniform temperature,
θ0. We shall assume the free surface of the thin film to be single valued
and expressible as z = h(x1, x2, t). Reasonable boundary conditions
along the upper surface are

w −
2∑

i=1

ui
∂h

∂xi
=

∂h

∂t
, (14.15)

−p = κσ, (14.16)

T · ~n · ~ti = ~ti · ∇σ
[
1 + [~ti · ∇h ]2

]−1/2

, i = 1, 2, (14.17)

kth ~n · ∇θ + αth(θ − θ∞) = 0. (14.18)

Condition (14.15) is the kinematic condition which states that the nor-
mal velocity of the fluid at the free surface coincides with the normal
velocity of the free surface. In (14.16), κ denotes the mean curvature
of the free surface. Condition (14.16) is known as Laplace’s equation,
and expresses a balance of normal forces. The next condition, (14.17),
expresses a balance of the tangential forces along the upper surface of
the thin film, and in (14.17), T denotes the Newtonian stress tensor [44],
~n is a unit normal to the free surface pointing outwards, and ~ti, i = 1, 2
correspond to an ortho-normal basis for the tangent plane to the free
surface at z = h(x1, x2, t). The final condition, (14.18), is Newton’s
cooling law, which we saw earlier as (14.3).

A critical step in obtaining (14.2) from the equations above is to inte-
grate the equation of continuity (14.10) with respect to z from z = 0 to
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Fig. 14.6. A sketch of a slipper lubrication bearing.

z = h, and then to use the boundary conditions for w given in (14.12),
(14.15) to obtain that

∂h

∂t
+

2∑

i=1

∂

∂xi

∫ h

0

ui dz = 0. (14.19)

To obtain (14.2) from (14.19), it is necessary to express ui, i = 1, 2,

in terms of h. This can be accomplished by making appropriate scal-
ing assumptions, in particular by adopting scaling assumptions which
correspond to the lubrication approximation made by O. Reynolds in
1886 in the context of modeling slipper bearings [30], see Figure 14.6.
One assumption shall be that the spatial variations in x1× x2 plane are
much smaller that the spatial variation in the vertical z direction. This
assumption can be formulated by stating that 0 < ε ¿ 1, where ε = a

L .

As mentioned earlier, a useful way to scale the film height is to take a

as the mean film height,

a =
1
Ω

∫

Ω

h0(x1, x2) dx1 dx2, (14.20)

where Ω is the domain of definition of the problem and h0(x1, x2) cor-
responds to some prescribed initial conditions for (14.2). However, for
the discussion at hand, the assumption (14.20) is in no way essential. In
accordance with the discussion above, the dimensionless scaled variables

Xi =
ε

a
xi, i = 1, 2, Z =

1
a
z, T =

εU0

a
t, (14.21)
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are introduced, where the time scale has been chosen so as to reflect the
time scale for spatial evolution in the x1 × x2 plane. Moreover, we shall
set

Ui =
1
U0

ui, i = 1, 2, W =
1

εU0
w, H =

h

a
, Θ =

θ − θ∞
θ0 − θ∞

. (14.22)

For slipper bearings, the analysis of Reynolds identified px ∼ µ∂2u
∂z2 as

the dominant balance, see Figure 14.6. Assuming this dominant balance
to remain valid also in the thin film setting, we set

(Φ, P ) =
εa

µU0
(φ, p), and

∑
=

ε

µU0
σ. (14.23)

The analysis now proceeds by assuming regular perturbation expan-
sions in ε for U , W, P, H, Θ, and by assuming that Re, c, B, M, G, and
β0 are all O(1) as ε → 0, where c, B, M, and G are as previously defined
earlier and Re = ρU0a

µ , β0 = β
a . To leading the governing equations are

∂2Ui

∂Z2
=

∂

∂Xi
(P + Φ), i = 1, 2, (14.24)

0 =
∂P

∂Z
+ G, (14.25)

∂2Θ
∂Z2

= 0, (14.26)

∂H

∂T
+

2∑

i=1

[∫ H

0

Ui dz

]
= 0, i = 1, 2. (14.27)

At Z = 0, the boundary conditions to leading order are

Ui − β0
∂Ui

∂Z
= 0, i = 1, 2, (14.28)

Θ = 1, (14.29)

and at Z = H(X1, X2, T ), to leading order

∂Ui

∂Z
=

∂
∑

∂Xi
, i = 1, 2, (14.30)

−P =
1
c

2∑

i=1

∂2H

∂X2
i

, (14.31)

∂Θ
∂Z

+ BΘ. (14.32)
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To obtain (14.2), one may proceed as follows. Using (14.25)-(14.26)
and (14.29), (14.31), (14.32), P and Θ may be expressed in terms of
H = H(X1, X2, T ). Then using these expressions as well as (14.24),
(14.28), and (14.30), it is possible to express U in terms of H. Plugging
this expression for U into (14.27), (14.2) is now obtained.

Note that setting B = G = M = 0 in the above discussion yields the
”regular” thin film equation, (14.1).

Exercises

14.1 Adapt the existence proof given in Chapter 11 to prove exis-
tence for (14.5) with Neumann and no flux boundary conditions.
What can be said here in regard to uniqueness?

14.4 The rings of Saturn

As fate would have it, the Cahn-Hilliard equation appears not only in the
context of modeling very small structures, such as in the microstructure
of binary alloys and in biofilms, but also in modeling some very large
structures, such as in certain patterning features which have been seen
in the inner ”B” ring which revolves around the planet Saturn. Saturn
has rings which are observable with even a light telescope, and there is
an outer ”A” ring and an inner ”B” ring which are separated by a gap
known as the Cassini divide. While these general features have been
known since the time of Kepler (Is this correct ??), it is only since the
1980-1981 missions of Voyager I and II that the structure of these rings
became known in some detail. More specifically, both the A and the B
ring exhibit some amount of structural irregularity. The irregularities in
the structure of the A ring can be readily explained by considering the
interaction of the ring with impinging satellites, however this explanation
cannot be used in explaining the structural irregularities of the B ring.
This is because interactions with satellites leave characteristic trails in
their wake, and while such trails are seen in the A ring, they are not to
be found in the B ring.

A bit unexpectedly, the explanation for the irregularities in the B
ring which has been proposed by Tremaine [98] has certain similarities
with the explanation which was given earlier for biofilms in §14.2 and
it is within this context that the Cahn-Hilliard equation again appears.
The B ring has an inner width x1 ≈ 92, 000 km and an outer width
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x2 ≈ 122, 000 km. The features in the B ring appear to be axi-symmetric
on scales which are presently accessible which are on the order of 50 km
or more, and certain radial striations are discernable with a dominant
wavelength of about 100 − 200 km. It has been suggested by Tremaine
[98] that the radial striations represent a radial variation between regions
of ”liquid” and ”solid” within the ring. The composition of the rings
is known to be made up of particles of varying sizes with an upper
cut off of a few meters, and whether a region is to be considered a
liquid or a solid depends on how the particles are glued together. The
distinction between snow, sleet, ice, and mush, in general, even on Earth,
is of a similar nature, and the ability of the particles to stick together is
determined by certain (weak) cohesive forces. It is, for example, precisely
such weak cohesive forces that bond ice particles together which are
covered by a layer of frost.

Before pursuing the line of explanation outlined above, we remark
that independent estimates of the viscosity and the scale of these fea-
tures which are seen indicate that the features would have been washed
out by viscosity millenia ago were they not being actively sustained by
some mechanism. Moreover, explanations which have been developed
to explain structures which occur in accretion disks yield inappropriate
estimates for the viscosity, density, and the spatial and temporal varia-
tion when applied to the B ring of Saturn. However, certain elements
of the explanations which were developed in that context nevertheless
reappear here.

To get started we need some governing equations, and in the present
context it is not unreasonable to adopt a certain variant of the incom-
pressible Navier-Stokes equations, known as Hill’s approximation [99].
This approximation can be obtained by writing out the incompressible
Navier-Stokes equations using a rotating Cartesian coordinate system
(x, y) whose origin (0, 0) rotates around a central mass M at a distance
R with an angular velocity ΩK(R), and êx points radially outward from
the origin and êy points in the direction of rotation. Here ΩK(R) is
the ”Keplerian” angular velocity of a particle rotating around a central
mass due to gravitational effects. By considering radial distances from
the origin which are small compared with R (”Hill’s approximation”),
ignoring vertical variation in the system, taking µ to be the surface den-
sity, and assuming the system to be axi-symmetric, the following system
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of equations is obtained:

∂u

∂t
+ u

∂u

∂x
= 3Ω2x + 2Ωv +

1
µ

∂

∂x

∑
xx

, (14.1)

∂v

∂t
+ u

∂v

∂x
= −2Ωu +

1
µ

∂

∂x

∑
xy

, (14.2)

∂µ

∂t
+

∂

∂x
(µu) = 0. (14.3)

Here v(x, t) = u(x, t)êx +v(x, t)êy is the velocity in the rotating frame
and

∑
ik are the components of the vertically integrated stress tensor.

To understand the implications of these equations, we first note that
they admit certain special solutions. These include a solution with zero
stress gradients in which

u = 0, v = −3Ωx/2, ∂
∂tµ = 0,

∑
xx = constant1,

∑
xy = constant2,

(14.4)

which corresponds to the Keplerian orbit of a particle about a point
mass. There is also a zero shear solution,

u = 0, v(x, t) = vs = constant1, ∂
∂tµ = 0,

∑
xy = constant2, ∂

∂x

∑
xx = −µ(2Ωvs + 3Ω2x),

(14.5)

which describes the motion of a solid rotating disk. While neither of
these solutions quite correspond to the motion of rings about a planet,
they can be used to obtain certain predictions. The constant shear
solution (14.4), which neglects compressibility, is known to be stable and
hence cannot explain the striations seen in the B ring of Saturn. Thus
some compressibility is apparently necessary. The zero shear solution,
(14.5), which allows for compressibility but neglects rigidity, can be used
to estimate the strength of the material which comprises the B ring.
Suppose that the tensile stress of a ring of radius 4x ≈ 100 − 200 km
satisfies (14.5), and that the tensile stress vanishes along the edges of
the ring, where x = x1 and x = x2. Then the maximal tensile stress
can be estimated as ≈ 1× 104 dyn cm−2. This value is high for solid ice
and low for water, but gives a feasible estimate for ice rubble in which
there are cohesive forces due to a thin layer of frost on the ice particles.
Assuming the value 1×104 dyn cm−2 to be realistic, the tensile strength
of the material can be understood to limit the size of the ring striations.

To analyse the system (14.1)-(14.3) in greater depth, one needs ap-
propriate constitutive assumptions. Tremaine [98] suggests proceed-
ing as follows. Clearly the stress should dependent on the tangential
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shear, s ≡ vx as well as on the density, given here in terms of the
variable µ. Since the weak cohesive forces described earlier are non-
Newtonian in nature, it makes sense to assume that

∑
xy =

∑
xy(µ, s)

and
∑

xx =
∑

xx(µ, s), where
∑

xy and
∑

xx are nonlinear functions.
More specifically, it is reasonable to assume that

∑
xy = 0 if s = 0,

and that
∑

xy and s should have the same sign, though ∂
∂s

∑
xy may

change sign. In fact, if ∂
∂s

∑
xy < 0, then making the assumptions men-

tioned above and linearizing about the special solution (14.4), certain
known instabilities may be reproduced. With regard to

∑
xx, it could

indeed change sign depending on whether the material being described
was more like a liquid or more like a solid (ice), though this possibility
shall not be critical to the discussion which follows.

The idea now is to focus on ”striated” solutions of (14.1)-(14.3) which
are somewhat like (14.5), but which exhibit locally periodic structure in
the x direction. Thus we are led to look for solutions of the form

v = (0, v(x, t)), x ∈ [x1, x2], (14.6)

such that

v(x2, t) = v(x1, t), s(x2, t) = s(x1, t), t > 0. (14.7)

Using (14.6) in (14.1)-(14.3) yields

0 = 3Ω2x + 2Ωv + 1
µ

∂
∂x

∑
xx, (14.8)

∂v
∂t = 1

µ
∂
∂x

∑
xy, (14.9)

∂µ
∂t = 0. (14.10)

From (14.10) it follows that µ = µ(x), and (14.8) can be interpreted as
prescribing the constitutive relation for

∑
xx in terms of v(x, t) and µ(x).

For simplicity we may consider solutions in which µ is x independent.
Note that if we proceed as before and require that

∑
xx = 0 at x = x1

and x = x2, then (14.8) implies that

∑
xx

(x, t) = −2µΩ
∫ x

x1

v(x̄, t) dx̄ +
3
2
µΩ2(x2 − x2

1), (14.11)

and hence that ∫ x2

x1

v(x̄, t) dx̄ =
3
4
Ω(x2

2 − x2
1). (14.12)

It remains now to focus on (14.9). Differentiating (14.9) with respect
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to x, we obtain that
∂s

∂t
=

1
µ

∂2

∂x2
g(s), (14.13)

where g(s) =
∑

xy(s). The µ dependence has been dropped for simplicity
from

∑
xy, since µ has been assumed to be constant. Note that the

periodicity of v(x, t) in (14.7) implies upon integrating (14.13) that

∂

∂x
g(s(x2, t)) =

∂

∂x
g(s(x1, t)), (14.14)

and the periodicity of s(x, t) in (14.13) implies that

g(s(x2, t)) = g(s(x1, t)). (14.15)

From (14.13) it follows that steady states of (14.13) must satisfy

g(s(x)) = ax + b,

where a and b are constants. From (14.14), it follows that a = 0.

Note now that if we linearize (14.13) about some typical value of s

which we shall denote by sK , and if we assume in conjunction with our
earlier discussion that g′(sK) < 0, we obtain within the context of linear
theory

st =
1
µ

g′(sK)sxx,

which clearly corresponds to backwards diffusion. Thus is appears that
we are in a Cahn-Hilliard like setting with ε = 0, and the conditions to
be satisfied by g should now to be formulated.

Since the term g represents a shear stress, the following assumptions
seem reasonable:

(i) g(s) = −g(−s) (changing the direction of the shear should change
the sign of the shear stress),

(ii) g(0) = 0 (there is no stress if there is no shear),
(iii) sgn g(s)/s = 1 (positivity of the viscosity).

A simple example of a function which satisfies these conditions is

g(s) = s(as2 + b|s|+ c), a, c > 0, b > −(3ac)1/2. (14.16)

It is easy to check that (14.16) yields two spinodal parameter regions
rather than one, see Figure 14.7. This, however, has little net effect
on the double tangent construction considerations discussed in Section
14.1, see Exercise 1 for details.
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Fig. 14.7. The function g(s) from (14.16

Two steps remain to be undertaken to complete the theory above.
Firstly, it is necessary to identify the natural source of a ”regulariz-
ing term, such as the εsxxxx term which appears in the Cahn-Hilliard
context in order to obtain a well-posed problem (The original problem
prior to approximation was seemingly well posed). Although there may
be numerous ways in which this could be accomplished, and easy way to
reproduce an εsxxxx term would be to proceed as in the biofilm discus-
sion given in §14.2, by introducing a ”cohesion energy” which includes
gradient terms. Here, though, gradient term would reflect gradients in
the shear rather than in the concentration. The inclusion of shear gradi-
ent energies has, however, been suggested already many years ago in the
context non-Newtonian fluid mechanics in modelling non-simple fluids,
[101]. A second step could be to return to the more general setting of
(14.13) to the wider setting of (14.1)-(14.3), and to consider stability of
the solution which has been identified within the more limited setting of
(14.13) within this wider framework.

Exercises

14.1 Consider the function g(u) defined in (14.16). Demonstrate that
for any a, b, and c which satisfy the conditions given there, the
double tangency condition (14.6) described in Section 14.1 holds
on two intervals, {Ai, Bi}, i = 1, 2, which are not intersecting.

14.2 Suppose that we include in (14.13) the fourth order regulariz-
ing term εsxxxx discussed above. Can the resultant equation
be considered a Cahn-Hilliard equation in accordance with the
discussion given in Section 14.1? What expression assumes the
rôle here of the ”mean concentration,” and what is its value?


