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The coupled motion as a sharp interface limit

Coupled motion by mean curvature and surface diffusion can be obtained
in a sharp interface limit, from the Allen-Cahn/Cahn-Hilliard system:

ut = 4ǫ2∇ · Q(u, v)∇
δF

δu
, vt = −

1

4
Q(u, v)

δF

δv
,

where

F =

∫

Ω

{

F (u, v) +
1

2
ǫ2{|∇u|2 + |∇v |2}

}

dx ,

and

F (u, v) =
Θ

2
(G(u + v) + G(u − v)) + αu(1 − u) − βv2,

G(s) = s ln s + (1 − s) ln(1 − s), Q(u, v) = u(1 − u)(1/4 − v2),

which was proposed as a diffuse interface model for simultaneous
order-disorder and phase separation (J.W. Cahn & A. N.-C, 1994, Eguchi
& Ninomiya, 1988), to describe Krzanowski instabilities (Krzanowski &
Allen, 1986) in which droplets of a minor disordered phase coagulate
along a slowly curved boundary separating two ordered phases.



Background Introduction Mathematical Modeling Numerical Simulations Results References

Under appropriate scaling assumptions:
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Figure 1: The limiting motion.
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The coupled motion in the context of grain boundaries

The coupled motion also occurs naturally in the context of sintering , in
which small metal particles coalesce, typically under pressure, to form a
block of solid material, (M. Ashby, 1974, W. Zhang, et. al., 1994). In
this case, the exterior of the particles evolve by surface diffusion, and the
boundary between two particles evolves by motion by mean curvature.

Figure 2: Sketch of grains and grain boundaries after sintering.
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Grain, Grain Boundaries and Polycrystalline Materials. Thin Films

A grain is a solid composed of atoms on a crystalline lattice.

The crystalline lattice of a given grain is oriented spatially.

Grain boundaries are interfaces where different grains meet.

Polycrystalline materials are solids composed of a large number of
crystals of varying size and orientation.

At sufficiently high temperatures, grain boundaries migrate to reduce
surface free energy.

W.W. Mullins in 1957 considered the motion of the thermal grooves
which can be seen to appear on the exterior surface of polycrystalline
specimens, and formulated equations for their motion under the influence
of surface diffusion. W.W. Mullins had in 1956 considered the motion
of grain boundaries within polycrystalline specimens under the influence
of motion by mean curvature.
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Features of interest

Various physical phenomena connected to grain boundary migration
which influence film stability and robustness.

Thermal grooving.

Pitting at quadruple junctions.

Jerky motion.

(a) (b)

Figure 3: (a) Grooving (Rabkin, Mullins). (b) Jerky motion (Mullins).
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A Problem Formulation

We focus on the coupled motion of grain boundaries with external
surfaces, neglecting elasticity, anisotropy, evaporation/condensation,
defects. Following Mullins, 1957

Basic assumptions (Kanel, N.-C., & Vilenkin, 2003)

Grain boundaries evolve by motion by mean curvature.

Exterior surfaces evolve by surface diffusion.

Conditions along thermal grooves:

A persistence condition.
Balance of mechanical forces.
Continuity of the chemical potential.
Balance of mass flux.

Based on the above problem formulation, it is possible to consider the
existence of traveling wave solutions.
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Traveling wave solutions

Let Ψ(s) be the angle between the exterior surface and the grain
boundary, and let s be an arc-length parametrization of a traveling wave
profile, as in Figure 3(a). Then Ψ(s) should satisfy:

(PΨ)























Ψsss = sinΨ, s ∈ (−∞, 0) ∪ (0, ∞),
Ψ(0+) = Ψ(0−) + 2 arcsin(m/2),
Ψs(0

+) = Ψs(0
−),

Ψss(0
+) = Ψss(0

−),
Ψ(±∞) = 0.

where m =
γgrain boundary
γexterior surface

is the ratio of the surface energies.

Theorem

For any 0 ≤ m < 2, there exists a solution to (PΨ).

(Kanel, N.-C. & Vilenkin, 2004, Also Cahn & Penrose, 2003).
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The Initial Geometry
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The Governing Equations

Motion by mean curvature:
nV A k=

On the grain boundary:

On the exterior surface:

Motion by surface diffusion:

Along the thermal groove: 

Young's law (balance of mechanical forces)

Continuity of chemical potential

Balance of flux

n sV B k= ∆
On the exterior surface:



The Problem Parameters and Variables

Physical parameters:

Geometric parameters:

Length and time scales:

2 4

2 2, [ ] , , [ ] , , [ ] , , [ ]gb gb ext surf ext surf
X X M MA A B B
T T T T

γ γ γ γ= = = =

0 0, [ ] , , [ ]R R X L L X= =

Length and time scales:

Dimensionless parameters:
2 ,B BT X

AA
= =

( )0
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extsurf

R Lm R L
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γ
γ

   = = =     



The mean curvature along the grain boundary  
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R R
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+
=

2R
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r



Definition of variables in the central cross section 

h,u h(r,t)

h(r,0)=0,  u=L u=u*

r=R(t)

r

h(r,0)=0,  u=L

r(u,0)=R0r(u,t)

u=u*

u=0



The Mathematical Problem Formulation
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Boundary conditions along the groove root: 



An Annihilation-Break Up Transition 

Break Up  /   AnnihilationBreak Up  /   Annihilation
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The Grain Radius R(t) as a Function of Time.

R0 = 10. Only annihilation is seen here. 

R0 =112.5 and  R0 =114.05. Annihilation and break 

up are both seen.

In (a) and (b), m=0.1, L=1. The dashes lines indicate R(t) for m=0.

The annihilation-break up transition occurs  at R(t)= 112.7.
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( )R t

break up

stagnation



Depth of the Groove as a Function of Time  

Here m=0.1, L=1, and the critical radius of 

annihilation-break up transition is 112.75 

R0=10 (dotted line),  R0 =112.5, R0 =114.05  

(two coinciding solid lines),
annihilationannihilation

annihilation

break up

R0 =112..5  (dashed line), 

R0 =114.05 (solid line). 



Shape of Grain Boundary during Break up

Here m=0.1, L=1, R0 =114.05. 

The critical radius for the annihilation-break up transition here is 112.75



Speed of grain boundary motion

Motion seen in calculations for  0<m<<1:

Motion of grain boundary when m=0: Rt=-1/R



Shape of grain boundary
Grain boundary when m=0:   flat 

Grain boundary when 0<m<<1:    parabolic



A bit of asymptotic analysis

Reformulate problem onto a fixed interval taking into account the 

of the solution:structure
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A distinguished scaling limit

Focus on a distinguished scaling 

limit :
00 / 1,m L R< = ≪

Expand the functions: ( , ), ( , ),H p t g s tExpand the functions: ( , ), ( , ),H p t g s t
in powers of m

To leading order, we get a coupled system for the evolution of 

the exterior surface:
, , 0.t tH R g= = ≈… …



Implications of the Asymptotics

2( , ) ( ) (1 / 2 )( 1 / 3),s t t sρ ρ= + −

0g ≈The equation:                    implies that to leading order

the grain boundary profile is parabolic:

and for the motion of the thermal groove we get:

( ) 1
.

* ( )
t

t
R

u t R

θ 
= − 
 



Two limits

A) If                                             , then the groove root 

is quasi-stationary, and pinch-off ensues.

B) If                                              , then                           

and annihilation 
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Further verification of law of motion

Some details with regard to parameters used in numerics
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The basic assumptions

We analyze the coupled motion of a grain boundary attached at a groove

root to an exterior surface in a half-loop geometry in thin samples.

Figure 1: The half-loop geometry.
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The equations

We assume that the grain boundary evolves according to

motion by mean curvature ,

V = Aκ,(1)

and the exterior surface evolves by surface diffusion

V = −B∆sκ,(2)

where V is the normal velocity , κ is the mean

curvature and ∆s is the Laplace-Beltrami operator.
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Boundary conditions

Assuming mechanical equilibrium along the triple line (Herring [3]):

III
∑

j=I

(

γ
j
τ

j +
∂γj

∂nj

)

= 0.(3)

In the isotropic case, γ is independent of orientation, and as the two grains

comprising the bicrystal are identical, γI = γII. Hence, setting m := γIII

γI ,

τ
I + τ

II + mτ
III = 0.(4)

The persistence condition states that surfaces remain attached

X
I = X

II = X
III

.(5)
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From a sketch, it is clearer...

Figure 2: Cross-sectional view of a triple junction.
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More boundary conditions

Continuity of the surface chemical potentials may be expressed as

µ
I = µ

II
,(6)

where µI, µII are the chemical potentials of X I, X II. In the isotropic case, µi ∝ κi,

so

κ
I = κ

II
.(7)

Balance of the mass flux along the triple junction line may be written as

< τ
I
, ~J

I
> + < τ

II
, ~J

II
>= 0.(8)

Setting ~J = c∇sκ, where c is a physical constant,

< τ
I
,∇sκ

I
> + < τ

II
,∇sκ

II
>= 0.(9)
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Dimensionless formulation

We assume 0 < m≪ 1. We use L and Q to scale length in

z-direction and in xy-plane, respectively, and Q2

A
to scale time.

Figure 3: View from above, the coordinates (d, s).
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Parametrization of our surfaces

We assume the following parametrization of our three surfaces

X I(d, s, t) = (ϕI(d, s, t), ψI(d, s, t), hI(d, s, t)),(10)

X II(d, s, t) = (ϕII(d, s, t), ψII(d, s, t), hII(d, s, t)),(11)

X III(s, z, t) = (ϕIII(s, z, t), ψIII(s, z, t), u(s, z, t)),(12)

where

u(s, z, t) =
1

L
ū(s, t)z, 0 ≤ z ≤ L, ū(s, t) = L+ h(0, s, t),(13)

– p. 8/16



What happens when m = 0?

When m = 0, there is no groove root . The grain boundary traverses the entire

thickness of the thin sample and remains perpendicular to the exterior surface,

and our problem reduces a 2D problem .

If Γt(x) = {(x̃(t) + x, ξ(x, t))|0 < x < ∞, 0 < t < ∞} is a smooth curve in the

xy-plane and ξ(x, t) = ξ(x − V t) is a traveling wave solution , then ξ satisfies

V ξx = −
ξxx

2(1 + ξ2
x)

, 0 < x < ∞, V := x̃t.(14)

Solving (14),

ξ(x) = ∓1 ±
2

π
arcsin (e−

π

2
x), V =

π

4
.(15)
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Asymptotic analysis

For the asymptotic analysis we assume that Q is large relative to L in the

following sense
L

Q
= m1/3.(16)

We make asymptotic expansions in m2/3 for all of the functions, namely

ξ = ξ0 +m2/3ξ1 +m4/3ξ2 + O(m2),(17)

D = D0 +m2/3D1 +m4/3D2 + O(m2),(18)

ū = ū0 +m2/3ū1 +m4/3ū2 + O(m2),(19)

hj = h
j
0

+m2/3h
j
1

+m4/3h
j
2

+ O(m2), j = I, II.(20)

– p. 10/16



Rationale for this choice

Let

a =
L

Q
,(21)

and let us assume that all of the unknown functions, ξ,D, ū and

hj , j = I, II, can be expressed as

ξ = ξ0 + bξ1 + b2ξ2 + O(b3),(22)

D = D0 + bD1 + b2D2 + O(b3),(23)

ū = ū0 + bū1 + b2ū2 + O(b3),(24)

hj = h
j
0

+ bh
j
1

+ b2h
j
2

+ O(b3), j = I, II,(25)

where a and b are assumed to be a, b = o(1) with respect to m.

– p. 11/16



Implications of Young’s law

Substituting the series into the Young’s law, the third coordinate yields that

− abhI
1d + abhII

1d + O(ab2) = −m.(26)

Hence, it is reasonable to assume that

ab = m.(27)

From the first coordinate of Young’s law, dominant balance implies

a2b2 = m
b2

a
.(28)

From (27) and (28), we get a = m1/3, and b = m2/3. Thus, we set
L
Q = m1/3, and all unknown functions are to be expanded in m2/3.

– p. 12/16



Finding D1, D2, ξ1, V1

After some work, we get that

D1 ≡ 0, D2(s, u, t) = −
1

4

[

h
I
1d(0, s, t) + h

II
1d(0, s, t)

]

(u2 − 1);

namely, the grain boundary has a parabolic profile. Moreover,

ξ1t =

[

ξ1x

2(1 + ξ0
2

x)

]

x

+ V0ξ1x + ξ0xξ̄1t + G(hI
1, h

II
1) − ξ0x

∫

∞

0

G(hI
1, h

II
1)dx,

with

G(hI
1, h

II
1) =

1

4

[

h
I
1d(0, s, t) + h

II
1d(0, s, t)

]

√

1 + ξ0
2

x,

and

V1 = −

∫

∞

0

G(hI
1, h

II
1)dx.
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What is Aeff?

Consider the projection of the U-shaped grain on the xy-plane, as in experiment.

Looking down from above, the U-shaped grain moves with dimensional velocity

V ∗(t), where V ∗(t) is the horizontal component of the velocity at the “nose."

Assuming there exists a constant Aeff such that

V
∗(t) = Aeffκ

∗

nose,(29)

where κ∗

nose is the projection of mean curvature at the “nose” of the surface X I on

the xy-plane, and substituting κ∗III = 1

Q
κIII and V

∗III = A
Q
V

III into (29), we get that

Aeff

A
=

V (t)

κnose
,(30)

where V (t) = π
4

+ m2/3V1(t) + O(m4/3).

– p. 14/16



The ratio between A and Aeff . . .

At the “nose,” we can calculate the projection of κ on the xy-plane up to O(m4/3)

accuracy as

κ = −
ξ0xx + m2/3ξ1xx + O(m4/3)

2
[

1 + (ξ0x + m2/3ξ1x + O(m4/3))2
]

3/2
,(31)

yielding that

κnose =
π

4
−

m2/3

2

[

ξ1x

(1 + ξ0
2

x)3/2

]

x

∣

∣

∣

∣

x=0

+O(m4/3).(32)

Hence, substituting (32) and the expression for V (t) into (30), we get

Aeff

A
= 1 − m

2/3 2

π

{

2

∫

∞

0

G(hI
1, h

II
1)dx −

[

ξ1x

(1 + ξ0
2

x)3/2

]

x

∣

∣

∣

∣

x=0

}

+ O(m4/3).
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(Polycrystalline) Thin Films

Thin films refer to thin material layers ranging in thickness from a
fraction of nanometer to several microns. Typically solid thin films are
polycrystalline. They are highly important in many technological
applications.

Some applications

Electronic semiconductors, microchips, computer memory.

Optical coatings (household mirrors, two-way mirrors, silvering).

Solar photovoltaic systems.

Thin film drug delivery (thin films that dissolve in liquid).

Thin film batteries (can be deposited directly onto chips with
arbitrary shape or size).
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Features of interest

Various physical phenomena connected to grain boundary migration
influence thin film stability and robustness.

Thermal grooving.

Pitting at quadruple junctions.

Jerky motion.

(a) (b)

Figure 1: (a) Grooving. (b) Jerky motion.
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A Special 5 and 3 Grain Geometry

We focus on grain boundary migration in an idealized system of 5 grains,
see Fig.2(a). Since even the system with 5 grains in the special geometry
is difficult to study in full generality, we make symmetry assumptions
which reduce our problem to a system of 3 grains, see Fig.2(b)

(a) (b)

Figure 2: Sketch of 5 grain and 3 grain geometries.
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The Problem Formulation

We neglect elasticity, anisotropy, evaporation/condensation, defects. We
focus on the coupled motion of grain boundaries with external surfaces.

Basic assumptions

Grain boundaries evolve by motion by mean curvature.

Exterior surfaces evolve by surface diffusion.

Conditions along thermal grooves:

A persistence condition.
Balance of mechanical forces.
Continuity of the chemical potential.
Balance of mass flux.

Conditions along internal triple junction lines and at corner points...

Symmetry of the system with respect to the bounding planes and to
the mid-plane of the specimen.
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Equations of Evolution

We define

Vn - the normal velocity of an evolving surface.

H - the mean curvature of an evolving surface.

Motion by mean curvature (for grain boundaries)

Vn = A H . (1)

Here

A - the reduced mobility of the grain boundary surface.

Motion by surface diffusion (for exterior surfaces)

Vn = −B △sH . (2)

Here

△s - the surface Laplace - Beltrami operator (the surface Laplacian).

B - the surface diffusion coefficient.
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Parametric Representations of the Evolving Surfaces

Let X (α, β, t) = (x(α, β, t), y(α, β, t), z(α, β, t)) be a parametric
representation of an evolving 2D surface in 3D, where 0 ≤ α, β ≤ 1.

The unit normal −→n to X may be expressed as: −→n =
Xα×Xβ

‖Xα×Xβ‖ .

The normal velocity Vn of X can be written as: Vn =
〈

Xt ,
−→n

〉

.

The mean curvature of X is given by

H =

〈

〈Xβ , Xβ〉 Xαα − 2 〈Xα, Xβ〉 Xαβ + 〈Xα, Xα〉 Xββ ,−→n
〉

2 g

where g = 〈Xα, Xα〉 〈Xβ , Xβ〉 − 〈Xα, Xβ〉
2
,

. . .

Instead of specifying tangential velocities, we impose uniform grid
spacing ‖Xα‖α = 0, ‖Xβ‖β = 0, which may be written as

〈Xα, Xαα〉 = 0, 〈Xβ , Xββ〉 = 0. (3)

which improves numerical performance (Pan & Wetton, 2008).
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Conditions at the Quadruple Junction

Assumptions:

Local limiting regularity at the quadruple junction: in a limiting
neighborhood of the quadruple junction, triple junction lines are straight.

Young’s law holds along all triple junction lines, up to the quadruple
junction.

A

B

Q

D

C

surfacesurface

grain boundary

Figure 3: Sketch of a quadruple junction.
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A Tetrahedron Construction and Balance Angles at the Quadruple Point

Geometric considerations imply that

0 ≤ ϕ ≤
2π

3
,

π

2
≤ ψ ≤ π, (4)

that the angles ϕ, ψ are given by

cos (ϕ) = −2 − m2

4 − m2
, (5)

cos (ψ) = − 1√
3

m√
4 − m2

, (6)

and m must satisfy m ∈ [0,
√

3] ⊂ [0, 2].

Building a tetrahedron based on the
vectors τA, τB and τC yields the
following construction:

A

B

C

Q

E

F G

H

O

J
L

Figure 4: A tetrahedron construction
at the quadruple junction.
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Discretization of the PDAE System and Boundary Conditions

Finite difference methods and a staggered grid are used to discretize the
governing equations and boundary conditions:
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Figure 5: Sketch of mesh grid.

We set βj = (j − 1/2) hβ, αi = (i − 1/2) hα, j = 1, . . . ,M, i = 1, . . . ,N,
where hα, hβ denote staggered grid spacings, and N = 1

hα
, M = 1

hβ
.

We let X k
i,j = X (αi , βj , tk) denote the approximation of evolving surface X at

the staggered grid point (i , j) at time tk ≥ 0.
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Thermal Grooving for m = 0.1
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Figure 6: Results for m = 0.1 at times (a) t = 10, (b) t = 100.
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Corner points

Figure 7: Corner points.
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The Height of Thermal Grooving at the Corner Points
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Figure 8: The height of the corner points as a function of time, for the parameter
m = 0.1.
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Thank you for your interest!
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