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The Cahn-Hilliard equation

Cahn and Hilliard introduced the equation:





ut = ∇ · M(u)∇{f(u) − ǫ2△u}, (x, t) ∈ ΩT ,

n · ∇u = n · ∇{f(u) − ǫ2△u} = 0, (x, t) ∈ ∂ΩT ,

u(x, 0) = u0(x), x ∈ Ω,

(1)

in 1958, 1961 to model phase separation in binary alloys. In (1), u(x, t) is the concentration
of one of the two components of a binary alloy, M(u) ≥ 0 is the mobility coefficient, and
f(u) = F ′(u), where F (u) is the homogeneous contribution to the free energy.

We shall assume that Ω ⊂ R
N , N = 1, 2, 3 is bounded and convex.

Since u(x, t) is a concentration, it should satisfy 0 ≤ u0(x), u(x, t) ≤ 1.

Often (1) is not completely accurate, as it neglects anisotropy, elastic effects, thermal effects,

coupling to fluid flow. Nevertheless, the simple model (1) is important, as it also models

population dynamics, galaxy formation, biofilm structure formation, swarm formation, and

more.
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Cahn-Hilliard dynamics

In order to understand phase separation, let’s consider the evolution of a system which is
initially nearly spatially uniform at a linearly unstable concentration.

If such a system is rapidly cooled or quenched into a region in the thermodynamic phase
diagram where the mean concentration is linearly unstable, then phase separation onsets.

During the initial stages of phase separation, a dominance of the length scale predicted by
the fastest growing or "most unstable" mode will be apparent, until the system locally
saturates near equilibrium phases.

Afterwards, certain of the saturated regions grow as others shrink, and the overall length
scale of the system increases. This is the process known as coarsening.

To understand the coarsening process, it is instructive to define some dominant length scale,

l(t), and to analyze its development. Often l(t) has been said to exhibit scaling behavior .
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Some numerics...

Figure 1: Early stages of evolution (D. Eyre).
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Some numerics...

Figure 2: Middle stages of evolution
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Some numerics...

Figure 3: Late stages of evolution
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The derivation

The variables u1, u2, describe the two components, via their volume or molar fractions.
Conservation of mass implies that in the absence of reactions producing or destroying either
of the two components,

u1t = −∇ · J1, u2t = −∇ · J2,(2)

where Ji is the flux of ui, i = 1, 2.

Relying on non-equilibrium thermodynamics (Gibbs, Onsager), we take there to be two
chemical potentials, µ1, µ2, corresponding to the two components in the system. This
implies there to be two driving forces in the system, ∇µ1, ∇µ2. Non-equilibrium
thermodynamics now implies that

J1 = −L11∇µ1 − L12∇µ2, J2 = −L21∇µ1 − L22∇µ2,(3)

where Lij , are phenomenological coefficients.

Microscopic reversibility (the requirement that at a microscopic level all motions are
reversible) implies that L is symmetric, and the second law of thermodynamics
(non-negativity of the entropy production) implies that L is non-negative definite.
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Mass conservation requires that

J1 + J2 = 0.(4)

To guarantee (4), we set L12 + L22 = L11 + L21 = 0. Now, since L is symmetric and
non-negative definite,

L11 = L22 = −L12 = −L21 ≥ 0.(5)

If either u1(x, t) ≡ 0 or 1, there is no local mass flux. Thus we may set

Lij = u1u2L̃ij , l = L̃11 ≥ 0,(6)

yielding

J1 = −l u1u2∇(µ1 − µ2), J2 = −l u1u2∇(µ2 − µ1),(7)

and thus that

∂u1

∂t
= ∇ · (lu1u2)∇(µ1 − µ2),

∂u2

∂t
= ∇ · (lu1u2)∇(µ2 − µ1).(8)

To avoid redundancy, we may consider, say, the first equation in (8) only. Constitutive
assumptions now determine µ1, µ2.
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Constitutive assumptions

In Cahn-Hilliard theory (1958), it is assumed that there is a free energy , F ,

F =

∫

Ω

{
homogeneous

free energy
+

contributions from

spatial gradients

}
dV,(9)

whose Fréchet derivatives, δF
δu1

, δF
δu2

, determine µ1, µ2, respectively. We assume the
homogeneous free energy to contain entropy and interaction energy contributions,

homogeneous free energy =
Θ

2
{ln u1 + ln u2} − αu1u2,

and that the spatial gradient energy contributions = 1
2
ǫ2{|∇u1|2 + |∇u2|2}.
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The degenerate Cahn-Hilliard equation

For notational simplicity, we set u(x, t) = u1(x, t), and the starting point for our analysis will
thus be the Cahn-Hilliard, (1), with

M(u) = M0(1 − u2), f(u) =
Θ

2
{ln(1 + u) − ln(1 − u)} − αu,(10)

where f(u) = F ′(u).

This formulation is in line with the assumptions of Cahn & Hilliard (1958, 1961), and
corresponds to a formulation discussed by Elliott & Garcke (1997).

In (10), u represents the difference in the concentrations of the two components, and thus

should satisfy |u(x, t)| ≤ 1. For (1),(10), existence, regularity, and invariance of the region

|u| ≤ 1 were proven by Elliott & Garcke (1996). See also Jingxue (1992).
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Some distinguished limits...

Setting x′ = (α1/2/ǫ)x, t′ = (α2M0/ǫ2)t, and dropping primes,

(CH)





ut = ∇ · (1 − u2)∇[ θ
2

ln[ 1+u
1−u

] − u −△u], (x, t) ∈ ΩT ,

n · ∇u = 0, (x, t) ∈ ∂ΩT ,

n · (1 − u2)∇[ θ
2

ln[ 1+u
1−u

] − u −△u] = 0, (x, t) ∈ ∂ΩT ,

u(x, 0) = u0(x), x ∈ Ω,

where θ = Θ/α denotes a scaled temperature.

The "shallow quench" limit: θ = 1 − δ, x′ = (δ/2)1/2x, t′ = (δ2/4)t, u′ = (3δ)−1/2u, and
δ ↓ 0,

ut + △[2(1 − u2)u + △u] = 0.

The "deep quench" limit: let θ → 0,

ut + ∇ · (1 − u2)∇[u + △u] = 0.
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Existence and regularity

Theorem 1 (Elliott & Garcke, Kohn & Otto,[4]) Let Ω be bounded and convex, u0 ∈ H1(Ω), and |u0| ≤ 1,

and let M(u) and f(u) be as prescribed. Then for any T > 0, there exists (u, J) such that

1. u ∈ L2(0, T ; H2(Ω)) ∩ L∞(0, T ; H1(Ω)) ∩ C([0, T ]; L2(Ω)),

2. ut ∈ L2(0, T ; (H1(Ω))′),

3. u(0) = u0 and n · ∇u = 0 on ∂ΩT := ∂Ω × (0, T ),

4. |u| ≤ 1 a.e. in ΩT := Ω × (0, T ),

5. J ∈ L2(ΩT ; R
n), and ut = −∇ · J in L2(0, T ; (H1(Ω))′),

6. J = −M(u)∇ · (−ǫ2△u + f(u)) in the sense that for all η such that

η ∈ L2(0, T ; H1(Ω, R
n)) ∩ L∞(ΩT ; R

n) and η · u = 0 on ∂ΩT ,

∫

ΩT

J · η = −

∫

ΩT

[ǫ2△u∇ · (M(u)η) + (Mf ′)(u)∇u · η].

Moreover, defining E := 1
2|Ω|

∫
Ω{

∫ u f(s) ds + |∇u|2} dx, then for a.e. t1 < t2,

t1, t2 ∈ [0, T ],

7. E(t2) − E(t1) ≤ −
∫ t2

t1

∫
Ω

1
M(u)

|J|2 dx.
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Coarsening

Long time behavior of the Cahn-Hilliard equation:

ut = ∇ · (1 − u2)∇

[
Θ

2
{ln(1 + u) − ln(1 − u)} − αu − ǫ2△u

]
,

is marked by coarsening. During coarsening, phase separated domains in which
u(x, t) ≈ u±, the "equilibrium phases," grow in overall size. Rigorous upper bounds for
coarsening rates, such as t1/3 and t1/4, were given by Kohn & Otto in 2002.

We extend their approach, taking into account temperature and mean concentration

dependence, and treating general convex domains. We demonstrate that time and

temperature and mean concentration transitions may occur.
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Upper bounds for coarsening

Kohn & Otto (2002), assuming periodic boundary conditions and ū := 1
Ω

∫
Ω u0(x) dx = 0,

obtained the upper bound l(t) ∝ t1/3 for the dominant length scale, l(t), during coarsening
for the "shallow quench limit:"





ut + △[2(1 − u2)u + △u] = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ Ω,
(11)

and the upper bound l(t) ∝ t1/4 for the "deep quench limit,"





ut + ∇ · (1 − u2)∇[u + △u] = 0, (x, t) ∈ ΩT ,

u(x, 0) = u0(x), x ∈ Ω.
(12)
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Upper bounds . . .

They defined two length scales,

1) E−1, where E is a scaled free energy

2) and L, where L is the (W 1, ∞)∗ norm of u,

and proved that there exist constants, Cα, such that

1

T

∫ T

0
EθrL−(1−θ)r dt ≥ CαT− r

3 ,(13)

where r < 3 + α, θr > 1, (1 − θ)r < 2, if L3(0) ≫ 1 ≫ E(0) and T ≫ L3(0), where α = 0

for (11) and α = 1 for (12).

Similar analyzes have appeared for phase field models, epitaxial growth, Oswald ripening,
and more.
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Three lemmas:

Their analysis relied on three lemmas which, generalized to hold for (1), may be stated as

follows:

Lemma 1 If 0 < θ < 1 and u− < ū < u+, then for t ≥ 0,

1 ≤ A + min{B1,B2},

where

A =
25/2

(u2
± − ū2)





 (5/u+)

[θ( 1
6

+ hmin)]1/2
E(t) + 3

|∂Ω|

|Ω|


L(t)




1/2

,

and

B1 =
1

(u2
± − ū2)


 2E(t)

θ( 1
6

+ hmin)




1/2

, B2 =
2

(u2
± − ū2)

[E(t) + θ ln 2],

where hmin = hmin(u±).
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Three lemmas...

Lemma 2 If u(x, t) is a solution of (CH), and 0 < θ < 1 and |ū| < 1, then for t ≥ 0,

|L̇|2 ≤ −(1 − u2
±)Ė − (u2

± − ū2) min{B1,B2}Ė.(14)

Lemma 3 Suppose that |L̇|2 ≤ −AEαĖ, 0 ≤ t ≤ T, α = 0, 1
2
, or 1.

i) If, moreover, LE ≥ B 0 ≤ t ≤ T, then

1

T




∫ T

0
E rϕL−(1−ϕ) r dt + L(0)(3+α)−r


 ≥ ϑ1T

− r
(3+α) .

ii) If, moreover, E ≥ C 0 ≤ t ≤ T, then

1

T




∫ T

0
E ϕrL−(1−ϕ) r dt + L(0)2−(1−ϕ)r


 ≥ ϑ2T−

(1−ϕ)r

2 ,

where ϑ1 = ϑ1(A, B, α, r, ϕ), ϑ2 = ϑ2(A, C, α, r, ϕ).
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The predictions of the Lemmas

Identifying min{B1, B2} determines the tighter bounds in Lemmas 1 and 2. For simplicity,
assume boundary contributions to be negligible.

Suppose that B1 = min{B1, B2}.

If

B1 < 1/2,(15)

Lemma 1 implies a bound of the form EL ≥ B, and if B1 > 1/2, a bound of the form E ≥ C

is implied.

If, moreover,

(u2
± − ū2)B1 < (1 − u2

±),(16)

Lemma 2 provides an estimate of the form (14) with α = 0 and if (16) holds with the opposite

sign, an estimate of the form (14) is obtained with α = 1/2.
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Obtaining coarsening rates...

Suppose B2 = min{B1, B2}.

If

B2 < 1/2,(17)

then Lemma 1 implies a bound of the form EL ≥ B,

and if (17) holds with the opposite sign, then a bound of the form E ≥ C is attained.

If, moreover,

2E < (1 − u2
±) + 2θ ln 2,(18)

then Lemma 2 implies an estimate of the form (14) with α = 0 and if (18) holds with the

opposite sign, then an estimate of the form (14) is obtained with α = 1.
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Obtaining coarsening rates...

Since for any t ≥ 0, E(t), L(t) are defined, min{B1, B2} is given by B1 or B2, and (15)-(18)
hold with one sign or the other, Lemma 3 and the autonomy of (14) imply

Theorem 2 Let u(x, t) be a solution to (CH) such that u− < ū < u+ and 0 < θ < 1, then neglecting

boundary effects, at any given time t ≥ 0, upper bounds of the form

1

t − T1




∫ t

T1

E rϕL−(1−ϕ) r dt + L(T1)(3+α)−r


 ≥ ϑ1(t − T1)

− r
(3+α) ,(19)

or

1

t − T2




∫ t

T2

E ϕrL−(1−ϕ) r dt + L(T2)
2−(1−ϕ)r


 ≥ ϑ2(t − T2)−

(1−ϕ)r

2 ,(20)

hold for appropriate values of the parameters.
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Implications

To understand the implications of Lemmas 1-3, we distinguish various parameter regions.
It is easy to check that

(a) min{B1,B2} = B1 when 0 < E < E− or E > E+,
(b) min{B1,B2} = B2 when E− < E < E+,

where E± = ([1 − (4 ln 2)θΨ ±
√

1 − (8 ln 2)θΨ])/(4Ψ), Ψ := θ[ 1
6

+ hmin]. Note that θ, Ψ,
E± can all be expressed as functions of u±.

In case (a), (15) holds iff E < E11 := 1
8
u4
±Ψ(1 − β2)2,the criterion for the α = 1/2 rather

than α = 0 in (14) when E > E12 := 1
2
Ψ(1 − u2

±)2.

In case (b), then (17) holds iff E < E21 :=
u2
±

4
(1 − β2) − θ ln 2, where β2 := ū2/u2

± < 1,

and α = 1 rather than α = 0 in (14) when E > E22 := 1
2
(1 − u2

±) + θ ln 2.

While the bounds and estimates which have been outlined are all quite rigorous, a complete
analysis is quite involved ...

In the meantime, some diagrams of energy levels and the implied upper bounds (M. Gruzd &
J. Rashed)
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1. Energy levels and upper bounds ...

Figure 4:
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2. Energy levels and upper bounds ...

Figure 5:
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3. Energy levels and upper bounds ...

Figure 6:
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Some further questions ....

Are upper bounds implied for all t > 0? Do some temporal gaps occur in the upper
bounds?

Is there some waiting time for the upper bounds to hold?

Can the coefficients for the upper bounds be calculated?

Can the transition times be calculated or predicted?

Is E(0) readily calculable and predictable?

Can the predictions be correlated with numerical calculations and experiment?

Various answers and partial answers have been given within the context of the deep quench
obstacle problem, and the results carry over readily to the Cahn-Hilliard context [6].

Various numerical calculations checking the predictions are planned or in progress [1].
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Thank you for your interest!
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