Dynamics of adhesive particles and optimal transportation of mass

Gershon Wolansky

Department of Mathematics, Technion
32000 Haifa, ISRAEL
E-mail: gershonw@math.technion.ac.il

Overview

Overview

- Fragmentation and Coagulation

Overview

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations

Overview

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations
- Reversible dynamics and action principle

Overview

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations
- Reversible dynamics and action principle
- Implementation of reversible dynamics:

Overview

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations
- Reversible dynamics and action principle
- Implementation of reversible dynamics:
(I) Inner energy

Overview

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations
- Reversible dynamics and action principle
- Implementation of reversible dynamics:
(I) Inner energy
(II) Extended Lagrangian systems

Kernels:

Coagulation Kernel:

Kernels:

Coagulation Kernel:

$$
K_{c}(n, m): m, n \Longrightarrow m+n
$$

Kernels:

Coagulation Kernel:

$$
K_{c}(n, m): m, n \Longrightarrow m+n
$$

Fragmentation Kernel:

$$
K_{f}(n, m): n \Longrightarrow n-m, m
$$

Kernels:

Coagulation Kernel:

$$
K_{c}(n, m): m, n \Longrightarrow m+n
$$

Fragmentation Kernel:

$$
K_{f}(n, m): n \Longrightarrow n-m, m
$$

Density of clusters of size n is given by $f(n, t)$. The evolution equation:

$$
\begin{align*}
& \frac{\partial f(n, t)}{\partial t}= \\
& \quad \int_{0}^{n} K_{c}(n-m, m) f(m, t) d m-f(n, t) \int_{n}^{\infty} K_{c}(n, m) d m \\
& \quad+\int_{0}^{\infty} K_{f}(n+m, m) f(m+n, t) d m-f(n, t) \int_{0}^{n} K_{f}(n, m) d m \tag{1}
\end{align*}
$$

Consider a swarm of N particles of masses m_{i} whose orbits are given by $x_{i}(t)$. The initial (at $t=0$) positions and velocities of the particles are prescribed

$$
x_{i}(0):=x_{i}^{(0)} ; \quad \dot{x}_{i}(0)=v_{i}^{(0)}
$$

If there are no external forces, then, at least until two (or more) particles collide, the orbits of the particles are given by

$$
x_{i}(t)=x_{i}^{(0)}+t v_{i}^{(0)}
$$

In the limit

$$
\begin{aligned}
\rho(x, 0) & =\lim _{N \rightarrow \infty} N^{-1} \sum^{N} m_{i} \delta_{x_{i}^{(0)}} \\
(\rho \vec{u})(x, 0) & =\lim _{N \rightarrow \infty} N^{-1} \sum^{N} m_{i} v_{i}^{(0)} \delta_{x_{i}^{(0)}}
\end{aligned}
$$

the density and velocity fields satisfies, formally, the system of conservation law (zero-pressure dynamics)

$$
\frac{\partial \rho}{\partial t}+\nabla_{x} \cdot(\rho \vec{u})=0 \quad ; \quad \frac{\partial(\rho \vec{u})}{\partial t}+\nabla_{x} \cdot(\rho \vec{u} \otimes \vec{u})=0
$$

This system can be viewed as an initial value problem, subjected to

$$
\rho(x, 0)=\rho_{0}(x) \geq 0 \quad, \quad \vec{u}(x, 0)=\vec{u}_{0}(x) .
$$

As long as the solution is classical (namely, continuously differentiable), the momentum equation can be written as the Burger's equation

$$
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla_{x} \vec{u}=0 .
$$

This system can be viewed as an initial value problem, subjected to

$$
\rho(x, 0)=\rho_{0}(x) \geq 0 \quad, \quad \vec{u}(x, 0)=\vec{u}_{0}(x) .
$$

As long as the solution is classical (namely, continuously differentiable), the momentum equation can be written as the Burger's equation

$$
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla_{x} \vec{u}=0 .
$$

Zero pressure and dynamics of adhesive particles

- Zeldovich (1970): Sticky particle model.
- Existence: E, Rykov and Sinai (1996) Brenier and Grenier (1998), ect.
- Uniqueness: Bouchut and James (1999)

Some observations

Some observations

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)

Some observations

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.

Some observations

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.
- As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous emergence of refractive waves).

Some observations

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.
- As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous emergence of refractive waves).
- Hence, there are no fragmentation waves!

Some observations

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.
- As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous emergence of refractive waves).
- Hence, there are no fragmentation waves!
- The process of fragmentation is currently described by phenomenological kernels. It is based on ad hoc probabilistic assumptions which have nothing to do with the fundamental principle of physics!

Some observations

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.
- As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous emergence of refractive waves).
- Hence, there are no fragmentation waves!
- The process of fragmentation is currently described by phenomenological kernels. It is based on ad hoc probabilistic assumptions which have nothing to do with the fundamental principle of physics!
- In physics, reversible processes are usually derived from an action principle.

The action principle of a free dynamics
For an orbit $\vec{x}(t)=\left(x_{1}(t), \ldots x_{N}(t)\right) 0 \leq t \leq T$, the action is

The action principle of a free dynamics
For an orbit $\vec{x}(t)=\left(x_{1}(t), \ldots x_{N}(t)\right) 0 \leq t \leq T$, the action is

$$
A(\vec{x} ; T):=\int_{0}^{T} L\left(m_{1} \dot{x}_{1}, \ldots m_{N} \dot{x}_{N}\right) d t
$$

where

$$
L\left(p_{1}, \ldots p_{N}\right):=\sum_{1}^{N} \frac{\left|p_{i}\right|^{2}}{2 m_{i}}
$$

and

$$
\begin{gathered}
\underline{A}\left(\vec{x}^{(0)}, \vec{x}^{(1)} ; T\right):= \\
\min _{\vec{x}(\cdot)}\left\{A(\vec{x} ; T) ; \vec{x}(0)=\vec{x}^{(0)}, \vec{x}(T)=\vec{x}^{(1)}\right\} .
\end{gathered}
$$

Note that here the masses m_{i} of the particles are constants.

The action principle of a free dynamics For an orbit $\vec{x}(t)=\left(x_{1}(t), \ldots x_{N}(t)\right) 0 \leq t \leq T$, the action is

$$
A(\vec{x} ; T):=\int_{0}^{T} L\left(m_{1} \dot{x}_{1}, \ldots m_{N} \dot{x}_{N}\right) d t
$$

where

$$
L\left(p_{1}, \ldots p_{N}\right):=\sum_{1}^{N} \frac{\left|p_{i}\right|^{2}}{2 m_{i}}
$$

and

$$
\begin{gathered}
\underline{A}\left(\vec{x}^{(0)}, \vec{x}^{(1)} ; T\right):= \\
\min _{\vec{x}(\cdot)}\left\{A(\vec{x} ; T) ; \vec{x}(0)=\vec{x}^{(0)}, \vec{x}(T)=\vec{x}^{(1)}\right\} .
\end{gathered}
$$

Note that here the masses m_{i} of the particles are constants.

In order to implement collisions into an action principle, we must introduce inner energy, and allow particles to exchange mass.

System of finite number of particles

State space: Γ is the set of N orbits $\left(x_{i}(t), m_{i}(t)\right)$ so that

System of finite number of particles

State space: Γ is the set of N orbits $\left(x_{i}(t), m_{i}(t)\right)$ so that
a) $x_{i} \in C([0, T] ; \Omega), 1 \leq i \leq N$.

System of finite number of particles

State space: Γ is the set of N orbits $\left(x_{i}(t), m_{i}(t)\right)$ so that
a) $x_{i} \in C([0, T] ; \Omega), 1 \leq i \leq N$.
b) m_{i} are sequentially constants, so $d m_{i} / d t=0$ if $x_{i}(t) \neq x_{j}(t)$ for any $i \neq j$.

System of finite number of particles

State space: Γ is the set of N orbits $\left(x_{i}(t), m_{i}(t)\right)$ so that
a) $x_{i} \in C([0, T] ; \Omega), 1 \leq i \leq N$.
b) m_{i} are sequentially constants, so $d m_{i} / d t=0$ if $x_{i}(t) \neq x_{j}(t)$ for any $i \neq j$.
c) If for $\tau \in(0, T)$ there exists a subset $I \subset\{1, \ldots N\}$ for which $x_{i}(\tau)=x_{j}(\tau) \equiv x$ for all $i, j \in I$ while $x_{l}(\tau) \neq x$ for $I \notin I$, then

$$
\sum_{i \in I} m_{i}\left(t^{-}\right)=\sum_{i \in I} m_{i}\left(t^{+}\right)
$$

Inner energy

There is a function $\xi=\xi(m)$, called the inner energy of a particle of mass m, such that

$$
\begin{gathered}
\xi \in C\left(\mathbb{R}^{+}\right), \xi(0)=0, \quad \forall m_{1}, m_{2}>0 \\
\Longrightarrow \xi\left(m_{1}\right)+\xi\left(m_{2}\right)<\xi\left(m_{1}+m_{2}\right)
\end{gathered}
$$

Note that it is satisfied by any convex function on \mathbb{R}^{+}for which $\xi(0)=0$.

Inner energy

There is a function $\xi=\xi(m)$, called the inner energy of a particle of mass m, such that

$$
\begin{gathered}
\xi \in C\left(\mathbb{R}^{+}\right), \xi(0)=0, \quad \forall m_{1}, m_{2}>0 \\
\Longrightarrow \xi\left(m_{1}\right)+\xi\left(m_{2}\right)<\xi\left(m_{1}+m_{2}\right)
\end{gathered}
$$

Note that it is satisfied by any convex function on \mathbb{R}^{+}for which $\xi(0)=0$. For example:

$$
\xi(m)=-m^{\sigma} \text { if } 0<\sigma<1, \text { or } \xi(m)=m^{\sigma} \text { if } \sigma>1
$$

Inner energy

There is a function $\xi=\xi(m)$, called the inner energy of a particle of mass m, such that

$$
\begin{gathered}
\xi \in C\left(\mathbb{R}^{+}\right), \xi(0)=0, \quad \forall m_{1}, m_{2}>0 \\
\Longrightarrow \xi\left(m_{1}\right)+\xi\left(m_{2}\right)<\xi\left(m_{1}+m_{2}\right)
\end{gathered}
$$

Note that it is satisfied by any convex function on \mathbb{R}^{+}for which $\xi(0)=0$. For example:

$$
\xi(m)=-m^{\sigma} \text { if } 0<\sigma<1, \text { or } \xi(m)=m^{\sigma} \text { if } \sigma>1
$$

The dynamics of this system is obtained by the action: $A: \Gamma \rightarrow \mathbb{R}$ defined for $\gamma:=\left(x_{1}, m_{1} \ldots x_{N}, m_{M}\right)$ by

$$
A(\gamma ; T):=\sum_{1}^{N} \int_{0}^{T}\left[\frac{1}{2} m_{i}(t)\left|\dot{x}_{i}\right|^{2}-\xi\left(m_{i}(t)\right)\right] d t
$$

Theorem

If γ is a minimizer of the action A within the set Γ subjected to the end conditions $\gamma(0)=\left(x_{1}^{(0)}, m_{1}^{(0)} \ldots x_{N}^{(0)}, m_{N}^{(0)}\right)$,
$\gamma(T)=\left(x_{1}^{(T)}, m_{1}^{(T)} \ldots x_{N}^{(T)}, m_{N}^{(T)}\right)$, then γ preserves both the linear momentum

$$
\mathbf{P}:=\sum_{1}^{N} m_{i}(t) \dot{x}_{i}(t)
$$

and energy

$$
\mathbf{E}:=\frac{1}{2} \sum_{1}^{N} m_{i}(t)\left|\dot{x}_{i}(t)\right|^{2}+\sum_{1}^{N} \xi\left(m_{i}(t)\right) .
$$

Extended Lagrangian formulation

Assume that the distribution of particles at time t is given by a positive measure $\mu_{(t)}$ on Ω. We usually denote a trajectory of probability measures $\mu_{(t)}, 0 \leq t \leq T$ by μ. We denote the set $\mathbf{H}_{2}[0, T]$ as all such trajectories for which

$$
\begin{gathered}
\|\mu\|_{2, T}^{2}:=\inf _{\vec{E}} \int_{0}^{T}\left|\frac{d \vec{E}_{(t)}}{d \mu_{(t)}}\right|^{2} \mu_{(t)}(d x) d t<\infty \\
\frac{\partial \mu}{\partial t}+\nabla_{x} \cdot \vec{E}_{(t)}=0
\end{gathered}
$$

in the sense of distributions.

Extended Lagrangian formulation

Assume that the distribution of particles at time t is given by a positive measure $\mu_{(t)}$ on Ω. We usually denote a trajectory of probability measures $\mu_{(t)}, 0 \leq t \leq T$ by μ. We denote the set $\mathbf{H}_{2}[0, T]$ as all such trajectories for which

$$
\begin{gathered}
\|\mu\|_{2, T}^{2}:=\inf _{\vec{E}} \int_{0}^{T}\left|\frac{d \vec{E}_{(t)}}{d \mu_{(t)}}\right|^{2} \mu_{(t)}(d x) d t<\infty \\
\frac{\partial \mu}{\partial t}+\nabla_{x} \cdot \vec{E}_{(t)}=0
\end{gathered}
$$

in the sense of distributions. For a given pair of probability measures μ_{0}, μ_{1}, the extended action principle is defined by

$$
\begin{gathered}
\underline{A}\left(\mu_{0}, \mu_{1}\right):=\min _{\mu} \frac{1}{2}\|\mu\|_{2, T}^{2} \\
\mu_{(0)}=\mu_{0}, \mu_{(T)}=\mu_{1}
\end{gathered}
$$

The minimization problem is a special case of McCann interpolation

$$
\mu_{(t)}=\left[\frac{T-t}{T} \mathbf{I d}+\frac{t}{T} \mathbf{S}\right]_{\#} \mu_{0}
$$

where \mathbf{S} is the map which realizes the optimal transportation of μ_{0} to μ_{1} under quadratic cost:

$$
\inf _{\mathbf{s}_{\#} \mu_{0}=\mu_{1}} \int_{\Omega}|x-\mathbf{S}(x)|^{2} \mu_{0}(d x)
$$

The minimization problem is a special case of McCann interpolation

$$
\mu_{(t)}=\left[\frac{T-t}{T} \mathbf{I d}+\frac{t}{T} \mathbf{S}\right]_{\#} \mu_{0}
$$

where \mathbf{S} is the map which realizes the optimal transportation of μ_{0} to μ_{1} under quadratic cost:

$$
\inf _{\mathbf{s}_{\#} \mu_{0}=\mu_{1}} \int_{\Omega}|x-\mathbf{S}(x)|^{2} \mu_{0}(d x)
$$

In case of discrete measure (D) The "Graph orbit" Γ is a special case of admissible μ :

$$
\mu=\sum_{1}^{N} m_{i}(t) \delta_{x_{i}(t)}
$$

$$
\inf _{\Lambda} \sum_{1}^{N} \sum_{1}^{N} \Lambda_{i, j}\left|x_{i}-y_{j}\right|^{2}
$$

where $\sum_{i} \Lambda_{i, j}=m_{j}(T), \sum_{j} \Lambda_{i, j}=m_{i}(0)$.

Extended action subjected to a prescribed pressure

 The extended Lagrangian with a pressure$$
A_{P}(\mu)=\frac{1}{2}\|\mu\|_{2}^{2}-\int_{0}^{T} P(x, t) \mu_{(t)}(d x) d t
$$

The associated Hamilton-Jacobi equation

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2}\left|\nabla_{x} \phi\right|^{2}+P=0 \quad ; \quad(x, t) \in \Omega \times(0, T)
$$

and the continuity equation

$$
\frac{\partial \mu_{(t)}}{\partial t}+\nabla_{x} \cdot\left(\mu_{(t)} \nabla_{x} \phi\right)=0
$$

The end conditions:

$$
\mu_{(0)}=\mu_{0} \quad ; \quad \mu_{(T)}=\mu_{1}
$$

Extended action subjected to a prescribed pressure

 The extended Lagrangian with a pressure$$
A_{P}(\mu)=\frac{1}{2}\|\mu\|_{2}^{2}-\int_{0}^{T} P(x, t) \mu_{(t)}(d x) d t
$$

The associated Hamilton-Jacobi equation

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2}\left|\nabla_{x} \phi\right|^{2}+P=0 \quad ; \quad(x, t) \in \Omega \times(0, T)
$$

and the continuity equation

$$
\frac{\partial \mu_{(t)}}{\partial t}+\nabla_{x} \cdot\left(\mu_{(t)} \nabla_{x} \phi\right)=0
$$

The end conditions:

$$
\mu_{(0)}=\mu_{0} \quad ; \quad \mu_{(T)}=\mu_{1}
$$

Theorem

For any pair of end conditions μ_{0}, μ_{1} there exists an orbit $\mu \in \mathbf{H}_{2}([0, T])$ which realizes the infimum of A_{P}.

Some definitions

The cost function:

$$
\begin{align*}
C_{P}(x, y, \tau, t) & := \\
& \min \left\{\int_{\tau}^{t}\left(\frac{|\dot{\bar{x}}|^{2}}{2}+P(\bar{x}(s), s)\right) d s \quad ; \quad \bar{x}:[\tau, t] \rightarrow \Omega\right\} \tag{2}
\end{align*}
$$

where $\bar{x}(\tau)=y, \bar{x}(t)=x$.

Some definitions

The cost function:

$$
\begin{align*}
C_{P}(x, y, \tau, t) & := \\
& \min \left\{\int_{\tau}^{t}\left(\frac{|\dot{\bar{x}}|^{2}}{2}+P(\bar{x}(s), s)\right) d s \quad ; \quad \bar{x}:[\tau, t] \rightarrow \Omega\right\} \tag{2}
\end{align*}
$$

where $\bar{x}(\tau)=y, \bar{x}(t)=x$. In particular, if $P=0$:

$$
C_{0}(x, y, \tau, t):=\frac{|x-y|^{2}}{2(t-\tau)}
$$

Some definitions

Some definitions

i) A forward (res. backward) solution is defined, for

$$
\underline{t} \in[0, T], \text { by }
$$

$$
\bar{\phi}(x, t):=\min _{y}\left\{C_{P}(y, x, 0, t)+\phi(y, 0)\right\}, \text { res. }
$$

$$
\underline{\phi}(x, t):=\sup _{y}\left\{-C_{P}(x, y, t, T)+\phi(y, T)\right\}
$$

Some definitions

i) A forward (res. backward) solution is defined, for $t \in[0, T]$, by
$\bar{\phi}(x, t):=\min _{y}\left\{C_{P}(y, x, 0, t)+\phi(y, 0)\right\} \quad$, res.
$\phi(x, t):=\sup _{y}\left\{-C_{P}(x, y, t, T)+\phi(y, T)\right\}$.
ii) If $\phi(\cdot, 0)$ and $\phi(\cdot, T)$ are Lipschitz on Ω then both $\bar{\phi}$ and $\underline{\phi}$ are Lipschitz on $\Omega \times[0, T]$.

Some definitions

i) A forward (res. backward) solution is defined, for $t \in[0, T]$, by
$\bar{\phi}(x, t):=\min _{y}\left\{C_{P}(y, x, 0, t)+\phi(y, 0)\right\}$, res. $\phi(x, t):=\sup _{y}\left\{-C_{P}(x, y, t, T)+\phi(y, T)\right\}$.
ii) If $\phi(\cdot, 0)$ and $\phi(\cdot, T)$ are Lipschitz on Ω then both $\bar{\phi}$ and ϕ are Lipschitz on $\Omega \times[0, T]$.
iii) $(\bar{\phi}, \underline{\phi})$ is called a reversible pair if $\bar{\phi}=\underline{\phi}$ on Ω for $t=0$ and $t=T$. In this case, $\bar{\phi}(x, t) \geq \underline{\phi}(x, t)$ on $\Omega \times[0, T]$.

Some definitions

i) A forward (res. backward) solution is defined, for $t \in[0, T]$, by
$\bar{\phi}(x, t):=\min _{y}\left\{C_{P}(y, x, 0, t)+\phi(y, 0)\right\}$, res. $\phi(x, t):=\sup _{y}\left\{-C_{P}(x, y, t, T)+\phi(y, T)\right\}$.
ii) If $\phi(\cdot, 0)$ and $\phi(\cdot, T)$ are Lipschitz on Ω then both $\bar{\phi}$ and $\underline{\phi}$ are Lipschitz on $\Omega \times[0, T]$.
iii) $(\bar{\phi}, \underline{\phi})$ is called a reversible pair if $\bar{\phi}=\underline{\phi}$ on Ω for $t=0$ and $t=T$. In this case, $\bar{\phi}(x, t) \geq \underline{\phi}(x, t)$ on $\Omega \times[0, T]$. iv) If
$(\bar{\phi}, \phi)$ is a reversible pair, then the reversibility set is defined by $K_{0}(\overline{\bar{\phi}}, \underline{\phi}):=\{(x, t) \in \Omega \times(0, T) ; \bar{\phi}(x, t)=\underline{\phi}(x, t):=\psi(x, t)\}$ $\nabla_{x} \psi(x, t)=\nabla_{x} \bar{\phi}=\nabla_{x} \underline{\phi}$ is Lipschitz on the reversibility set.
We call ψ a reversible solution.

Theorem

If ϕ_{0}, ϕ_{1} maximizes $\int_{\Omega}\left(\phi_{1} \mu_{1}(d x)-\phi_{0} \mu_{0}(d x)\right)$ subjected
$\phi_{1}(x)-\phi_{0}(y) \leq C_{P}(x, y, 0, T)$ for any $x, y \in \Omega$, then $\left\{\phi_{0}, \phi_{1}\right\}$ is a reversible pair. The reversibility function ψ verifies the Hamilton-Jacobi equation, and the optimal solution of A_{P} is supported in $K_{0}\left(\phi_{0}, \phi_{1}\right)$ and verifies the continuity equation subjected $\nabla \phi=\nabla \psi$. Moreover, the flow

$$
\frac{d \mathbf{S}^{(t, s)}}{d t}=\nabla \psi\left(\mathbf{S}_{(x)}^{(t)}, t\right) \quad ; \quad \mathbf{T}^{(t, t)}:=\mathbf{I}_{\mathbf{d}}
$$

transports this orbit $\mathbf{S}_{\#}^{(\mathbf{t}, \mathbf{s})} \mu_{(\mathbf{s})}=\mu_{(\mathbf{t})}$.

Theorem

If ϕ_{0}, ϕ_{1} maximizes $\int_{\Omega}\left(\phi_{1} \mu_{1}(d x)-\phi_{0} \mu_{0}(d x)\right)$ subjected
$\phi_{1}(x)-\phi_{0}(y) \leq C_{P}(x, y, 0, T)$ for any $x, y \in \Omega$, then $\left\{\phi_{0}, \phi_{1}\right\}$ is a reversible pair. The reversibility function ψ verifies the Hamilton-Jacobi equation, and the optimal solution of A_{P} is supported in $K_{0}\left(\phi_{0}, \phi_{1}\right)$ and verifies the continuity equation subjected $\nabla \phi=\nabla \psi$. Moreover, the flow

$$
\frac{d \mathbf{S}^{(t, s)}}{d t}=\nabla \psi\left(\mathbf{S}_{(x)}^{(t)}, t\right) \quad ; \quad \mathbf{T}^{(t, t)}:=\mathbf{I}_{\mathbf{d}}
$$

transports this orbit $\mathbf{S}_{\#}^{(\mathbf{t}, \mathbf{s})} \mu_{(\mathbf{s})}=\mu_{(\mathbf{t})}$.

- The particles of the optimal flow subjected to a prescribed pressure do not collide (and, in particular, do not stick).

Theorem

If ϕ_{0}, ϕ_{1} maximizes $\int_{\Omega}\left(\phi_{1} \mu_{1}(d x)-\phi_{0} \mu_{0}(d x)\right)$ subjected
$\phi_{1}(x)-\phi_{0}(y) \leq C_{P}(x, y, 0, T)$ for any $x, y \in \Omega$, then $\left\{\phi_{0}, \phi_{1}\right\}$ is a reversible pair. The reversibility function ψ verifies the Hamilton-Jacobi equation, and the optimal solution of A_{P} is supported in $K_{0}\left(\phi_{0}, \phi_{1}\right)$ and verifies the continuity equation subjected $\nabla \phi=\nabla \psi$. Moreover, the flow

$$
\frac{d \mathbf{S}^{(t, s)}}{d t}=\nabla \psi\left(\mathbf{S}_{(x)}^{(t)}, t\right) \quad ; \quad \mathbf{T}^{(t, t)}:=\mathbf{I}_{\mathbf{d}}
$$

transports this orbit $\mathbf{S}_{\#}^{(\mathbf{t}, \mathbf{s})} \mu_{(\mathbf{s})}=\mu_{(\mathbf{t})}$.

- The particles of the optimal flow subjected to a prescribed pressure do not collide (and, in particular, do not stick).
- There are no shock waves for the Hamilton-Jacobi equation. Indeed, ψ is a reversible solution, as claimed.

Implementation of the Inner energy

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω. Let $\overline{\mathcal{M}}$ be the set of such probability Borel measures. For any $\mu \in \overline{\mathcal{M}}$ set $\mu=\mu^{p p}+\tilde{\mu}$ to be its unique decomposition into its atomic and non-atomic parts. For each $\mu \in \overline{\mathcal{M}}$ we define the inner energy $\bar{\equiv}(\mu)$ as

$$
\equiv(\mu):=\equiv\left(\mu^{p p}\right)=\sum_{x ; \mu(\{x\})>0} \xi(\mu(\{x\})) .
$$

Implementation of the Inner energy

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω. Let $\overline{\mathcal{M}}$ be the set of such probability Borel measures. For any $\mu \in \overline{\mathcal{M}}$ set $\mu=\mu^{p p}+\tilde{\mu}$ to be its unique decomposition into its atomic and non-atomic parts. For each $\mu \in \overline{\mathcal{M}}$ we define the inner energy $\bar{\equiv}(\mu)$ as

$$
\equiv(\mu):=\equiv\left(\mu^{p p}\right)=\sum_{x ; \mu(\{x\})>0} \xi(\mu(\{x\})) \text {. }
$$

For any $\mu \in \mathbf{H}_{2}([0, T])$ define the action as:

$$
A \equiv(\mu ; T):=\frac{1}{2}\|\mu\|_{2, T}^{2}-\int_{0}^{T} \equiv\left(\mu_{(t)}\right) d t
$$

Implementation of the Inner energy

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω. Let $\overline{\mathcal{M}}$ be the set of such probability Borel measures. For any $\mu \in \overline{\mathcal{M}}$ set $\mu=\mu^{p p}+\tilde{\mu}$ to be its unique decomposition into its atomic and non-atomic parts. For each $\mu \in \overline{\mathcal{M}}$ we define the inner energy $\bar{\equiv}(\mu)$ as

$$
\equiv(\mu):=\equiv\left(\mu^{p p}\right)=\sum_{x ; \mu(\{x\})>0} \xi(\mu(\{x\})) \text {. }
$$

For any $\mu \in \mathbf{H}_{2}([0, T])$ define the action as:

$$
A \equiv(\mu ; T):=\frac{1}{2}\|\mu\|_{2, T}^{2}-\int_{0}^{T} \equiv\left(\mu_{(t)}\right) d t
$$

We now pose the following assumptions on ξ :

$$
\xi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, \quad \lim _{m \rightarrow 0} \frac{\xi(m)}{m}=0
$$

Implementation of the Inner energy

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω. Let $\overline{\mathcal{M}}$ be the set of such probability Borel measures. For any $\mu \in \overline{\mathcal{M}}$ set $\mu=\mu^{p p}+\tilde{\mu}$ to be its unique decomposition into its atomic and non-atomic parts. For each $\mu \in \overline{\mathcal{M}}$ we define the inner energy $\bar{\Xi}(\mu)$ as

$$
\equiv(\mu):=\equiv\left(\mu^{p p}\right)=\sum_{x ; \mu(\{x\})>0} \xi(\mu(\{x\})) .
$$

For any $\mu \in \mathbf{H}_{2}([0, T])$ define the action as:

$$
A \equiv(\mu ; T):=\frac{1}{2}\|\mu\|_{2, T}^{2}-\int_{0}^{T} \equiv\left(\mu_{(t)}\right) d t
$$

We now pose the following assumptions on ξ :

$$
\xi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, \quad \lim _{m \rightarrow 0} \frac{\xi(m)}{m}=0
$$

Remark: The assumption $\xi(m)=m^{\sigma}$ for $\sigma>1$ verifies verifies this condition.

Lemma
The action $A_{\equiv}(\cdot, T)$ is lower-semi-continues (I.s.c) with respect to $C\left([0, T] ; C^{*}(\Omega)\right)$.

Lemma

The action $A_{\equiv(\cdot, T)}$ is lower-semi-continues (I.s.c) with respect to $C\left([0, T] ; C^{*}(\Omega)\right)$.

Theorem

Given $\mu_{0}, \mu_{1} \in \overline{\mathcal{M}}$, there exists an action minimizer $\mu \in \mathbf{H}_{2}[0, T]$ for

$$
\underline{A}\left(\mu_{0}, \mu_{1} ; T\right):=\min _{\mu} A_{\equiv}(\mu, T)
$$

subjected to $\mu_{(0)}=\mu_{0} \quad, \quad \mu_{(T)}=\mu_{1}$

Relaxation:

We first consider a relaxation of the inner energy functional as follows:

Relaxation:

We first consider a relaxation of the inner energy functional as follows:

Definition

Let $J: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function satisfying $J(0)=J^{\prime}(0)=0$. Let $\theta \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{+}\right)$such that $\theta(0)=1 \geq \theta(x)$ for all $x \in \Omega$. For each $\epsilon>0$, the inner energy function ξ corresponding to J is defined by

$$
\xi(m):=\int_{\Omega} J(m \theta(x)) d x ; m \geq 0 .
$$

Relaxation:

We first consider a relaxation of the inner energy functional as follows:

Definition

Let $J: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function satisfying $J(0)=J^{\prime}(0)=0$. Let $\theta \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{+}\right)$such that $\theta(0)=1 \geq \theta(x)$ for all $x \in \Omega$. For each $\epsilon>0$, the inner energy function ξ corresponding to J is defined by

$$
\xi(m):=\int_{\Omega} J(m \theta(x)) d x ; m \geq 0 .
$$

Let $\theta_{\epsilon}(x):=\theta(x / \epsilon)$ and

$$
\bar{\Xi}_{\epsilon}(\mu):=\epsilon^{-1} \int_{\Omega} J\left(\int_{\Omega} \theta_{\epsilon}(x-y) \mu(d x)\right) d y .
$$

Relaxation:

We first consider a relaxation of the inner energy functional as follows:

Definition

Let $J: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a convex function satisfying $J(0)=J^{\prime}(0)=0$. Let $\theta \in C_{0}^{\infty}\left(\Omega ; \mathbb{R}^{+}\right)$such that $\theta(0)=1 \geq \theta(x)$ for all $x \in \Omega$. For each $\epsilon>0$, the inner energy function ξ corresponding to J is defined by

$$
\xi(m):=\int_{\Omega} J(m \theta(x)) d x ; m \geq 0 .
$$

Let $\theta_{\epsilon}(x):=\theta(x / \epsilon)$ and

$$
\bar{\Xi}_{\epsilon}(\mu):=\epsilon^{-1} \int_{\Omega} J\left(\int_{\Omega} \theta_{\epsilon}(x-y) \mu(d x)\right) d y .
$$

Lemma

For each $\epsilon>0, \mu \rightarrow-\int_{0}^{T} \Xi_{\epsilon}\left(\mu_{(t)}\right) d t$ is continuous in the weak topology of $\mathbf{H}_{2}[0, T]$.

Let now

$$
A \equiv(\mu ; T)=\frac{1}{2}\|\mu\|_{2, T}^{2}-\int_{0}^{T} \Xi_{\epsilon}(\mu(t)) d t
$$

Let now

$$
A_{\Xi}^{\epsilon}(\mu ; T)=\frac{1}{2}\|\mu\|_{2, T}^{2}-\int_{0}^{T} \Xi_{\epsilon}\left(\mu_{(t)}\right) d t
$$

Theorem

Given $\mu_{0}, \mu_{1} \in \overline{\mathcal{M}}$, there exists an action minimizer for

$$
\underline{A}_{\Xi}^{\epsilon}\left(\mu_{0}, \mu_{1} ; T\right):=\min _{\mu} A_{\Xi}^{\epsilon}(\mu ; T)
$$

Let now

$$
A_{\Xi}^{\epsilon}(\mu ; T)=\frac{1}{2}\|\mu\|_{2, T}^{2}-\int_{0}^{T} \Xi_{\epsilon}\left(\mu_{(t)}\right) d t .
$$

Theorem

Given $\mu_{0}, \mu_{1} \in \overline{\mathcal{M}}$, there exists an action minimizer for

$$
\underline{A}_{\Xi}^{\epsilon}\left(\mu_{0}, \mu_{1} ; T\right):=\min _{\mu} A_{\Xi}^{\epsilon}(\mu ; T)
$$

Let μ_{ϵ} a minimizer of A_{Ξ}^{ϵ}. Since the set $\mu_{\epsilon}, 0<\epsilon<1$, is pre-compact in $\mathbf{H}_{2}[0, T]$, we can look for a limit point of a subsequence of μ_{ϵ} as $\epsilon \rightarrow 0$

Consider now the pair of equations

$$
\begin{gathered}
\frac{\partial \mu}{\partial t}+\nabla \cdot\left(\mu \nabla_{x} \psi\right)=0 \\
\frac{\partial \psi}{\partial t}+\frac{1}{2}\left|\nabla_{x} \psi\right|^{2}-P_{\epsilon}=0
\end{gathered}
$$

where

$$
\begin{align*}
P_{\epsilon}(x, t)=-\bar{Z}_{\epsilon}^{\prime}(\mu(t))_{(x, t)} & := \\
& \epsilon^{-1} \int_{\Omega} J^{\prime}\left(\int_{\Omega} \theta_{\epsilon}(z-y) \mu_{(t)}(d z)\right) \theta_{\epsilon}(x-y) d y . \tag{3}
\end{align*}
$$

Consider now the pair of equations

$$
\begin{gathered}
\frac{\partial \mu}{\partial t}+\nabla \cdot\left(\mu \nabla_{x} \psi\right)=0 \\
\frac{\partial \psi}{\partial t}+\frac{1}{2}\left|\nabla_{x} \psi\right|^{2}-P_{\epsilon}=0
\end{gathered}
$$

where

$$
\begin{align*}
P_{\epsilon}(x, t)=-\bar{\Xi}_{\epsilon}^{\prime}\left(\mu_{(t)}\right)_{(x, t)} & := \\
& \epsilon^{-1} \int_{\Omega} J^{\prime}\left(\int_{\Omega} \theta_{\epsilon}(z-y) \mu_{(t)}(d z)\right) \theta_{\epsilon}(x-y) d y . \tag{3}
\end{align*}
$$

Example

: if $\mu=\sum m_{i} \delta_{x_{i}}$ then

$$
P_{\epsilon}(x, t) \approx J^{\prime}\left(\sum_{j} m_{j} \theta\left(\frac{x_{j}-x}{\epsilon}\right)\right)
$$

Very strong and very short range repelling force!

Theorem

If $\bar{\mu}^{(\epsilon)}$ is a maximizer of the action A_{\equiv}^{ϵ} then there exists a reversible-pair solution $\left(\bar{\phi}^{(\epsilon)}, \underline{\phi}\right)^{(\epsilon)}$ The reversibility set $K_{0}\left(\bar{\phi}^{(\epsilon)}, \underline{\phi}^{(\epsilon)}\right)$ contains the support of $\bar{\mu}^{(\epsilon)}$ in $\Omega \times(0, T)$. In addition, the reversibility set is invariant under the flow generated by the reversible solution

$$
\frac{d \mathbf{S}_{(\epsilon)}^{(s, t)}(x)}{d t}=\nabla \psi^{(\epsilon)}\left(\mathbf{S}_{(\epsilon)}^{(s, t)}(x), t\right) .
$$

As $\epsilon \rightarrow 0$, the particles' orbits $\mathbf{S}_{(\epsilon)}^{(s, t)}$ converge to a set-valued mapping $\mathbf{S}^{(s, t)}: \Omega \rightarrow \mathcal{B}(\Omega)$ so that $\lim _{\epsilon \rightarrow 0} \mathbf{S}_{(\epsilon)}^{(s, t)}(x) \in \mathbf{S}^{(s, t)}(x)$.

Formal evolution equations in 1D

Suppose now an optimal transport is presented by the pair μ, ϕ where

$$
\begin{align*}
& \mu_{(t)}(d x)=\rho(x, t) d x+\sum m_{i}(t) \delta_{x_{i}(t)} d x \\
& \int_{\Omega} \rho(x, t) d x+\sum m_{i}(t)=1 \tag{4}
\end{align*}
$$

where $x_{i}(t)$ are smooth trajectories and $m_{i}(t)>0$ are smooth for $t \in[0, T]$.

Formal evolution equations in 1D

Suppose now an optimal transport is presented by the pair μ, ϕ where

$$
\begin{align*}
& \mu_{(t)}(d x)=\rho(x, t) d x+\sum m_{i}(t) \delta_{x_{i}(t)} d x \\
& \int_{\Omega} \rho(x, t) d x+\sum m_{i}(t)=1 \tag{4}
\end{align*}
$$

where $x_{i}(t)$ are smooth trajectories and $m_{i}(t)>0$ are smooth for $t \in[0, T]$.
The continuity equation takes the form

$$
\frac{\partial \rho}{\partial t}+\nabla_{x} \cdot\left(\rho \nabla_{x} \psi\right)+\sum \dot{m}_{i}(t) \delta_{x_{i}(t)}=0 .
$$

and the momentum equation

$$
\frac{\partial \psi}{\partial t}+\frac{1}{2}\left|\nabla_{x} \psi\right|^{2}+\sum \xi^{\prime}\left(m_{i}(t)\right) \mathbf{1}\left(x_{i}(t)-x\right)=0
$$

where $\mathbf{1}(x)=0$ if $x \neq 0, \mathbf{1}(1)=1$.

Reversible solution in the limit $\epsilon=0$

The limit action function
$C(y, x, \tau, t ; \mu):=\inf _{\bar{x}}\left\{\int_{\tau}^{t}\left(\frac{1}{2}|\dot{\bar{x}}(s)|^{2}-\sum_{\mu_{(s)}(\{x\})>0} \xi^{\prime}\left(\mu_{(s)}(\{x\})\right) 1_{(\bar{x}(s), s)}\right) d s\right\}$
where the infimum is taken on the set of orbits $\bar{x}:[\tau, t] \rightarrow \Omega$ satisfying $\bar{x}(\tau)=y, \bar{x}(t)=x$.

Reversible solution in the limit $\epsilon=0$

The limit action function
$C(y, x, \tau, t ; \mu):=\inf _{\bar{x}}\left\{\int_{\tau}^{t}\left(\frac{1}{2}|\dot{\bar{x}}(s)|^{2}-\sum_{\mu_{(s)}(\{x\})>0} \xi^{\prime}\left(\mu_{(s)}(\{x\})\right) 1_{(\bar{x}(s), s)}\right) d s\right\}$
where the infimum is taken on the set of orbits $\bar{x}:[\tau, t] \rightarrow \Omega$ satisfying $\bar{x}(\tau)=y, \bar{x}(t)=x$.
Fragmentation:

$$
\psi(x, t)=\inf _{y \in \Omega}\left[C(y, x, 0, t ; \mu)+\phi_{0}(y)\right] \leq \bar{\phi}(x, t):=\inf _{y \in \Omega}\left[\frac{|x-y|^{2}}{2 t}+\phi_{0}(y)\right]
$$

Reversible solution in the limit $\epsilon=0$

The limit action function

$$
C(y, x, \tau, t ; \mu):=\inf _{\bar{x}}\left\{\int_{\tau}^{t}\left(\frac{1}{2}|\dot{\bar{x}}(s)|^{2}-\sum_{\mu_{(s)}(\{x\})>0} \xi^{\prime}\left(\mu_{(s)}(\{x\})\right) 1_{(\bar{x}(s), s)}\right) d s\right\}
$$

where the infimum is taken on the set of orbits $\bar{x}:[\tau, t] \rightarrow \Omega$ satisfying $\bar{x}(\tau)=y, \bar{x}(t)=x$.
Fragmentation:

$$
\begin{equation*}
\psi(x, t)=\inf _{y \in \Omega}\left[C(y, x, 0, t ; \mu)+\phi_{0}(y)\right] \leq \bar{\phi}(x, t):=\inf _{y \in \Omega}\left[\frac{|x-y|^{2}}{2 t}+\phi_{0}(y)\right] \tag{5}
\end{equation*}
$$

Coagulation:

$$
\begin{align*}
& \underline{\phi}(x, t):= \\
& \sup _{y \in \Omega}\left[-\frac{|x-y|^{2}}{2(T-t)}+\phi_{1}(y)\right] \leq \sup _{y \in \Omega}\left[C(x, y, t, T ; \mu)+\phi_{1}(y)\right]=\psi(x, t) \tag{6}
\end{align*}
$$

Representation of the solution

Representation of the solution

$$
\psi(x, t)=\psi_{0}(x, t)+\sum_{i} \alpha_{i}\left|x-x_{i}(t)\right| \quad, \quad \psi_{0} \in C^{1}
$$

Representation of the solution

$$
\begin{gathered}
\psi(x, t)=\psi_{0}(x, t)+\sum_{i} \alpha_{i}\left|x-x_{i}(t)\right| \quad, \quad \psi_{0} \in C^{1} . \\
\bar{\rho}_{i}(t):=\frac{1}{2}\left[\rho\left(x_{i}^{-}(t), t\right)+\rho\left(x_{i}^{-}(t), t\right)\right] .
\end{gathered}
$$

Representation of the solution

$$
\begin{gathered}
\psi(x, t)=\psi_{0}(x, t)+\sum_{i} \alpha_{i}\left|x-x_{i}(t)\right| \quad, \quad \psi_{0} \in C^{1} \\
\bar{\rho}_{i}(t):=\frac{1}{2}\left[\rho\left(x_{i}^{-}(t), t\right)+\rho\left(x_{i}^{-}(t), t\right)\right] .
\end{gathered}
$$

Then

$$
\frac{\left|\alpha_{i}\right|^{2}(t)}{8}-\xi^{\prime}\left(m_{i}(t)\right)=0
$$

and

Representation of the solution

$$
\begin{gathered}
\psi(x, t)=\psi_{0}(x, t)+\sum_{i} \alpha_{i}\left|x-x_{i}(t)\right| \quad, \quad \psi_{0} \in C^{1} . \\
\bar{\rho}_{i}(t):=\frac{1}{2}\left[\rho\left(x_{i}^{-}(t), t\right)+\rho\left(x_{i}^{-}(t), t\right)\right] .
\end{gathered}
$$

Then

$$
\frac{\left|\alpha_{i}\right|^{2}(t)}{8}-\xi^{\prime}\left(m_{i}(t)\right)=0
$$

and

$$
\text { Coagulation: } \frac{d m_{i}}{d t}=\bar{\rho}_{i}(t) \sqrt{8 \xi_{i}^{\prime}\left(m_{i}\right)} .
$$

Representation of the solution

$$
\begin{gathered}
\psi(x, t)=\psi_{0}(x, t)+\sum_{i} \alpha_{i}\left|x-x_{i}(t)\right| \quad, \quad \psi_{0} \in C^{1} . \\
\bar{\rho}_{i}(t):=\frac{1}{2}\left[\rho\left(x_{i}^{-}(t), t\right)+\rho\left(x_{i}^{-}(t), t\right)\right] .
\end{gathered}
$$

Then

$$
\frac{\left|\alpha_{i}\right|^{2}(t)}{8}-\xi^{\prime}\left(m_{i}(t)\right)=0
$$

and

$$
\begin{gathered}
\text { Coagulation: } \frac{d m_{i}}{d t}=\bar{\rho}_{i}(t) \sqrt{8 \xi_{i}^{\prime}\left(m_{i}\right)} \\
\text { Fragmentation: } \quad \frac{d m_{i}}{d t}=-\bar{\rho}_{i}(t) \sqrt{8 \xi_{i}^{\prime}\left(m_{i}\right)},
\end{gathered}
$$

while the particle's orbit satisfies the Rankine-Hugoniot condition:

$$
\begin{align*}
\dot{x}_{i}=\frac{1}{2}\left[\psi_{x}\left(x_{i}^{+}(t), t\right)\right. & \left.+\psi_{x}\left(x_{i}^{-}(t), t\right)\right] \\
& :=\frac{\partial}{\partial x} \psi_{0}\left(x_{i}(t), t\right)+\sum_{j \neq i} \alpha_{j}(t) \frac{x_{i}(t)-x_{j}(t)}{\left|x_{i}(t)-x_{j}(t)\right|} \tag{7}
\end{align*}
$$

Figure: A representation of a reversible solution. Bold curves: particle orbits. Bold dots: observers positions at time t. Light curves: the characteristic curves for forward (res. backward) solution in the vicinity of type (I) (res. type (II)) orbit. Dashed light lines: the characteristic curves for forward (res. backward) solution in the vicinity of type (II) (res. type (I)) orbit.

Figure: Same as in Fig. ??, where the relaxation is emphasized in the magnifying lens.

