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Kernels:

Coagulation Kernel:

Kc (n,m) : m, n =⇒ m + n

Fragmentation Kernel:

Kf (n,m) : n =⇒ n − m,m

Density of clusters of size n is given by f (n, t). The evolution equation:

∂f (n, t)

∂t
=

∫ n

0
Kc(n − m,m)f (m, t)dm − f (n, t)

∫ ∞

n

Kc(n,m)dm

+

∫ ∞

0
Kf (n + m,m)f (m + n, t)dm − f (n, t)

∫ n

0
Kf (n,m)dm (1)
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Consider a swarm of N particles of masses mi whose orbits are given by
xi(t). The initial (at t = 0) positions and velocities of the particles are
prescribed

xi (0) := x
(0)
i ; ẋi(0) = v

(0)
i .

If there are no external forces, then, at least until two (or more) particles
collide, the orbits of the particles are given by

xi (t) = x
(0)
i + tv

(0)
i .

In the limit

ρ(x , 0) = lim
N→∞

N−1
N

∑

miδx (0)
i

(ρ~u) (x , 0) = lim
N→∞

N−1
N

∑

miv
(0)
i δ

x
(0)
i

,

the density and velocity fields satisfies, formally, the system of
conservation law (zero-pressure dynamics)

∂ρ

∂t
+ ∇x · (ρ~u) = 0 ;

∂(ρ~u)

∂t
+ ∇x · (ρ~u ⊗ ~u) = 0 .

Gershon Wolansky (Technion) Quasi-rigid deformations Ben Gurion University, 2007 4 / 26



This system can be viewed as an initial value problem, subjected to

ρ(x , 0) = ρ0(x) ≥ 0 , ~u(x , 0) = ~u0(x) .

As long as the solution is classical (namely, continuously differentiable),
the momentum equation can be written as the Burger’s equation

∂~u

∂t
+ ~u · ∇x~u = 0 .
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This system can be viewed as an initial value problem, subjected to

ρ(x , 0) = ρ0(x) ≥ 0 , ~u(x , 0) = ~u0(x) .

As long as the solution is classical (namely, continuously differentiable),
the momentum equation can be written as the Burger’s equation

∂~u

∂t
+ ~u · ∇x~u = 0 .

Zero pressure and dynamics of adhesive particles

Zeldovich (1970): Sticky particle model.

Existence: E, Rykov and Sinai (1996) Brenier and Grenier (1998), ect.

Uniqueness: Bouchut and James (1999)
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Some observations

Fundamental principles of physics are time reversible. (It is us, the
observers, who are, unfortunately, not reversible!)

Energy is lost in the inelastic collision. Hence, the sticking particle
dynamics is not reversible.

As a result, the solutions of the zero-pressure gas dynamics
corresponding to sticking particle are (generalized) entropy solutions:
(no refractive shocks, no spontaneous emergence of refractive waves).

Hence, there are no fragmentation waves!

The process of fragmentation is currently described by
phenomenological kernels. It is based on ad hoc probabilistic
assumptions which have nothing to do with the fundamental principle
of physics!

In physics, reversible processes are usually derived from an action
principle.
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For an orbit ~x(t) = (x1(t), . . . xN(t)) 0 ≤ t ≤ T , the action is
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The action principle of a free dynamics
For an orbit ~x(t) = (x1(t), . . . xN(t)) 0 ≤ t ≤ T , the action is

A(~x ;T ) :=

∫ T

0
L (m1ẋ1, . . .mN ẋN) dt

where

L(p1, . . . pN) :=
N

∑

1

|pi |
2

2mi

and
A(~x(0), ~x(1);T ) :=

min
~x(·)

{

A(~x ;T ) ; ~x(0) = ~x(0) , ~x(T ) = ~x(1)
}

.

Note that here the masses mi of the particles are constants.
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A(~x ;T ) :=

∫ T

0
L (m1ẋ1, . . .mN ẋN) dt

where

L(p1, . . . pN) :=
N

∑

1

|pi |
2

2mi

and
A(~x(0), ~x(1);T ) :=

min
~x(·)

{

A(~x ;T ) ; ~x(0) = ~x(0) , ~x(T ) = ~x(1)
}

.

Note that here the masses mi of the particles are constants.

In order to implement collisions into an action principle, we must introduce
inner energy, and allow particles to exchange mass.
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System of finite number of particles

State space: Γ is the set of N orbits (xi (t),mi (t)) so that
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State space: Γ is the set of N orbits (xi (t),mi (t)) so that

a) xi ∈ C ([0,T ]; Ω), 1 ≤ i ≤ N .

b) mi are sequentially constants, so dmi/dt = 0 if
xi(t) 6= xj(t) for any i 6= j .
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System of finite number of particles

State space: Γ is the set of N orbits (xi (t),mi (t)) so that

a) xi ∈ C ([0,T ]; Ω), 1 ≤ i ≤ N .

b) mi are sequentially constants, so dmi/dt = 0 if
xi(t) 6= xj(t) for any i 6= j .

c) If for τ ∈ (0,T ) there exists a subset I ⊂ {1, . . .N} for
which xi (τ) = xj(τ) ≡ x for all i , j ∈ I while xl(τ) 6= x for
l 6∈ I , then

∑

i∈I

mi (t
−) =

∑

i∈I

mi (t
+) .
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Inner energy

There is a function ξ = ξ(m), called the inner energy of a particle of mass
m, such that

ξ ∈ C (R+) , ξ(0) = 0, ∀m1,m2 > 0

=⇒ ξ(m1) + ξ(m2) < ξ(m1 + m2) .

Note that it is satisfied by any convex function on R
+ for which

ξ(0) = 0.
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Inner energy

There is a function ξ = ξ(m), called the inner energy of a particle of mass
m, such that

ξ ∈ C (R+) , ξ(0) = 0, ∀m1,m2 > 0

=⇒ ξ(m1) + ξ(m2) < ξ(m1 + m2) .

Note that it is satisfied by any convex function on R
+ for which

ξ(0) = 0. For example:

ξ(m) = −mσ if 0 < σ < 1 , or ξ(m) = mσ if σ > 1 .

The dynamics of this system is obtained by the action: A : Γ → R defined
for γ := (x1,m1 . . . xN ,mM) by

A(γ;T ) :=

N
∑

1

∫ T

0

[

1

2
mi(t) |ẋi |

2 − ξ(mi (t))

]

dt
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Theorem

If γ is a minimizer of the action A within the set Γ subjected to the end

conditions γ(0) =
(

x
(0)
1 ,m

(0)
1 . . . x

(0)
N ,m

(0)
N

)

,

γ(T ) =
(

x
(T )
1 ,m

(T )
1 . . . x

(T )
N ,m

(T )
N

)

, then γ preserves both the linear
momentum

P :=
N

∑

1

mi (t)ẋi (t)

and energy

E :=
1

2

N
∑

1

mi(t) |ẋi(t)|
2 +

N
∑

1

ξ(mi (t)) .

Gershon Wolansky (Technion) Quasi-rigid deformations Ben Gurion University, 2007 10 / 26



Extended Lagrangian formulation

Assume that the distribution of particles at time t is given by a positive
measure µ(t) on Ω. We usually denote a trajectory of probability measures
µ(t), 0 ≤ t ≤ T by µ. We denote the set H2[0,T ] as all such trajectories
for which

‖µ‖2
2,T := inf

~E

∫ T

0

∣

∣

∣

∣

∣

d~E(t)

dµ(t)

∣

∣

∣

∣

∣

2

µ(t)(dx)dt <∞

∂µ

∂t
+ ∇x · ~E(t) = 0

in the sense of distributions.
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measure µ(t) on Ω. We usually denote a trajectory of probability measures
µ(t), 0 ≤ t ≤ T by µ. We denote the set H2[0,T ] as all such trajectories
for which

‖µ‖2
2,T := inf

~E

∫ T

0

∣

∣

∣

∣

∣

d~E(t)

dµ(t)

∣

∣

∣

∣

∣

2

µ(t)(dx)dt <∞

∂µ

∂t
+ ∇x · ~E(t) = 0

in the sense of distributions. For a given pair of probability measures
µ0, µ1, the extended action principle is defined by

A(µ0, µ1) := min
µ

1

2
‖µ‖2

2,T

µ(0) = µ0, µ(T ) = µ1 .
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The minimization problem is a special case of McCann interpolation

µ(t) =

[

T − t

T
Id +

t

T
S

]

#

µ0

where S is the map which realizes the optimal transportation of µ0 to µ1

under quadratic cost:

inf
S#µ0=µ1

∫

Ω
|x − S(x)|2 µ0(dx)
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The minimization problem is a special case of McCann interpolation

µ(t) =

[

T − t

T
Id +

t

T
S

]

#

µ0

where S is the map which realizes the optimal transportation of µ0 to µ1

under quadratic cost:

inf
S#µ0=µ1

∫

Ω
|x − S(x)|2 µ0(dx)

In case of discrete measure (D) The ”Graph orbit” Γ is a special case of
admissible µ:

µ =

N
∑

1

mi (t)δxi (t)

inf
Λ

N
∑

1

N
∑

1

Λi ,j |xi − yj |
2 ,

where
∑

i Λi ,j = mj(T ),
∑

j Λi ,j = mi (0).
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Extended action subjected to a prescribed pressure
The extended Lagrangian with a pressure

AP(µ) =
1

2
‖µ‖2

2 −

∫ T

0
P(x , t)µ(t)(dx)dt .

The associated Hamilton-Jacobi equation

∂φ

∂t
+

1

2
|∇xφ|

2 + P = 0 ; (x , t) ∈ Ω × (0,T ) ,

and the continuity equation

∂µ(t)

∂t
+ ∇x ·

(

µ(t)∇xφ
)

= 0 .

The end conditions:

µ(0) = µ0 ; µ(T ) = µ1 .
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Extended action subjected to a prescribed pressure
The extended Lagrangian with a pressure

AP(µ) =
1

2
‖µ‖2

2 −

∫ T

0
P(x , t)µ(t)(dx)dt .

The associated Hamilton-Jacobi equation

∂φ

∂t
+

1

2
|∇xφ|

2 + P = 0 ; (x , t) ∈ Ω × (0,T ) ,

and the continuity equation

∂µ(t)

∂t
+ ∇x ·

(

µ(t)∇xφ
)

= 0 .

The end conditions:

µ(0) = µ0 ; µ(T ) = µ1 .

Theorem

For any pair of end conditions µ0, µ1 there exists an orbit µ ∈ H2([0,T ])
which realizes the infimum of AP .
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Some definitions

The cost function:

CP(x , y , τ, t) :=

min

{∫ t

τ

(

|ẋ |2

2
+ P(x(s), s)

)

ds ; x : [τ, t] → Ω

}

(2)

where x(τ) = y , x(t) = x .
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Some definitions

The cost function:

CP(x , y , τ, t) :=

min

{∫ t

τ

(

|ẋ |2

2
+ P(x(s), s)

)

ds ; x : [τ, t] → Ω

}

(2)

where x(τ) = y , x(t) = x . In particular, if P = 0:

C0(x , y , τ, t) :=
|x − y |2

2(t − τ)
.

Gershon Wolansky (Technion) Quasi-rigid deformations Ben Gurion University, 2007 14 / 26



Some definitions

Gershon Wolansky (Technion) Quasi-rigid deformations Ben Gurion University, 2007 15 / 26



Some definitions

i) A forward (res. backward) solution is defined, for
t ∈ [0,T ], by
φ(x , t) := miny {CP(y , x , 0, t) + φ(y , 0)} , res.
φ(x , t) := supy {−CP(x , y , t,T ) + φ(y ,T )}.
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Some definitions

i) A forward (res. backward) solution is defined, for
t ∈ [0,T ], by
φ(x , t) := miny {CP(y , x , 0, t) + φ(y , 0)} , res.
φ(x , t) := supy {−CP(x , y , t,T ) + φ(y ,T )}.

ii) If φ(·, 0) and φ(·,T ) are Lipschitz on Ω then both φ and
φ are Lipschitz on Ω × [0,T ].

iii) (φ, φ) is called a reversible pair if φ = φ on Ω for t = 0

and t = T . In this case, φ(x , t) ≥ φ(x , t) on Ω × [0,T ] .

iv) If
(φ, φ) is a reversible pair, then the reversibility set is defined by

K0(φ, φ) :=
{

(x , t) ∈ Ω × (0,T ) ; φ(x , t) = φ(x , t) := ψ(x , t)
}

∇xψ(x , t) = ∇xφ = ∇xφ is Lipschitz on the reversibility set.
We call ψ a reversible solution.
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Theorem

If φ0, φ1 maximizes
∫

Ω (φ1µ1(dx) − φ0µ0(dx)) subjected
φ1(x) − φ0(y) ≤ CP(x , y , 0,T ) for any x , y ∈ Ω, then {φ0, φ1} is a
reversible pair. The reversibility function ψ verifies the Hamilton-Jacobi
equation, and the optimal solution of AP is supported in K0(φ0, φ1) and
verifies the continuity equation subjected ∇φ = ∇ψ. Moreover, the flow

dS(t,s)

dt
= ∇ψ

(

S
(t)
(x), t

)

; T(t,t) := Id

transports this orbit S
(t,s)
# µ(s) = µ(t).
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verifies the continuity equation subjected ∇φ = ∇ψ. Moreover, the flow
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dt
= ∇ψ

(

S
(t)
(x), t

)

; T(t,t) := Id

transports this orbit S
(t,s)
# µ(s) = µ(t).

The particles of the optimal flow subjected to a prescribed pressure do
not collide (and, in particular, do not stick).
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Theorem

If φ0, φ1 maximizes
∫

Ω (φ1µ1(dx) − φ0µ0(dx)) subjected
φ1(x) − φ0(y) ≤ CP(x , y , 0,T ) for any x , y ∈ Ω, then {φ0, φ1} is a
reversible pair. The reversibility function ψ verifies the Hamilton-Jacobi
equation, and the optimal solution of AP is supported in K0(φ0, φ1) and
verifies the continuity equation subjected ∇φ = ∇ψ. Moreover, the flow

dS(t,s)

dt
= ∇ψ

(

S
(t)
(x), t

)

; T(t,t) := Id

transports this orbit S
(t,s)
# µ(s) = µ(t).

The particles of the optimal flow subjected to a prescribed pressure do
not collide (and, in particular, do not stick).

There are no shock waves for the Hamilton-Jacobi equation. Indeed,
ψ is a reversible solution, as claimed.
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Implementation of the Inner energy
We now wish to extend the action principle to orbits composed of (Borel)
measures in Ω. Let M be the set of such probability Borel measures. For
any µ ∈ M set µ = µpp + µ̃ to be its unique decomposition into its atomic
and non-atomic parts. For each µ ∈ M we define the inner energy Ξ(µ) as

Ξ(µ) := Ξ(µpp) =
∑

x ;µ({x})>0

ξ (µ({x})) .
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measures in Ω. Let M be the set of such probability Borel measures. For
any µ ∈ M set µ = µpp + µ̃ to be its unique decomposition into its atomic
and non-atomic parts. For each µ ∈ M we define the inner energy Ξ(µ) as

Ξ(µ) := Ξ(µpp) =
∑

x ;µ({x})>0

ξ (µ({x})) .

For any µ ∈ H2([0,T ]) define the action as:

AΞ(µ;T ) :=
1

2
‖µ‖2

2,T −

∫ T

0
Ξ(µ(t))dt .
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Implementation of the Inner energy
We now wish to extend the action principle to orbits composed of (Borel)
measures in Ω. Let M be the set of such probability Borel measures. For
any µ ∈ M set µ = µpp + µ̃ to be its unique decomposition into its atomic
and non-atomic parts. For each µ ∈ M we define the inner energy Ξ(µ) as

Ξ(µ) := Ξ(µpp) =
∑

x ;µ({x})>0

ξ (µ({x})) .

For any µ ∈ H2([0,T ]) define the action as:

AΞ(µ;T ) :=
1

2
‖µ‖2

2,T −

∫ T

0
Ξ(µ(t))dt .

We now pose the following assumptions on ξ:

ξ : R
+ → R

+ , lim
m→0

ξ(m)

m
= 0
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any µ ∈ M set µ = µpp + µ̃ to be its unique decomposition into its atomic
and non-atomic parts. For each µ ∈ M we define the inner energy Ξ(µ) as

Ξ(µ) := Ξ(µpp) =
∑

x ;µ({x})>0

ξ (µ({x})) .

For any µ ∈ H2([0,T ]) define the action as:

AΞ(µ;T ) :=
1

2
‖µ‖2

2,T −

∫ T

0
Ξ(µ(t))dt .

We now pose the following assumptions on ξ:

ξ : R
+ → R

+ , lim
m→0

ξ(m)

m
= 0

Remark: The assumption ξ(m) = mσ for σ > 1 verifies verifies this
condition.
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Lemma

The action AΞ(·,T ) is lower-semi-continues (l.s.c) with respect to
C ([0,T ];C ∗(Ω)).
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Lemma

The action AΞ(·,T ) is lower-semi-continues (l.s.c) with respect to
C ([0,T ];C ∗(Ω)).

Theorem

Given µ0, µ1 ∈ M, there exists an action minimizer µ ∈ H2[0,T ] for

A(µ0, µ1;T ) := min
µ

AΞ(µ,T )

subjected to µ(0) = µ0 , µ(T ) = µ1
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Relaxation:
We first consider a relaxation of the inner energy functional as follows:
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Relaxation:
We first consider a relaxation of the inner energy functional as follows:

Definition

Let J : R
+ → R

+ be a convex function satisfying J(0) = J
′

(0) = 0. Let
θ ∈ C∞

0 (Ω; R+) such that θ(0) = 1 ≥ θ(x) for all x ∈ Ω. For each ǫ > 0,
the inner energy function ξ corresponding to J is defined by

ξ(m) :=

∫

Ω
J(mθ(x))dx ; m ≥ 0 .
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Relaxation:
We first consider a relaxation of the inner energy functional as follows:

Definition

Let J : R
+ → R

+ be a convex function satisfying J(0) = J
′

(0) = 0. Let
θ ∈ C∞

0 (Ω; R+) such that θ(0) = 1 ≥ θ(x) for all x ∈ Ω. For each ǫ > 0,
the inner energy function ξ corresponding to J is defined by

ξ(m) :=

∫

Ω
J(mθ(x))dx ; m ≥ 0 .

Let θǫ(x) := θ(x/ǫ) and

Ξǫ(µ) := ǫ−1

∫

Ω
J

(∫

Ω
θǫ(x − y)µ(dx)

)

dy .
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Relaxation:
We first consider a relaxation of the inner energy functional as follows:

Definition

Let J : R
+ → R

+ be a convex function satisfying J(0) = J
′

(0) = 0. Let
θ ∈ C∞

0 (Ω; R+) such that θ(0) = 1 ≥ θ(x) for all x ∈ Ω. For each ǫ > 0,
the inner energy function ξ corresponding to J is defined by

ξ(m) :=

∫

Ω
J(mθ(x))dx ; m ≥ 0 .

Let θǫ(x) := θ(x/ǫ) and

Ξǫ(µ) := ǫ−1

∫

Ω
J

(∫

Ω
θǫ(x − y)µ(dx)

)

dy .

Lemma

For each ǫ > 0, µ→ −
∫ T

0 Ξǫ

(

µ(t)

)

dt is continuous in the weak topology
of H2[0,T ].
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Let now

Aǫ
Ξ(µ;T ) =

1

2
‖µ‖2

2,T −

∫ T

0
Ξǫ

(

µ(t)

)

dt .

Gershon Wolansky (Technion) Quasi-rigid deformations Ben Gurion University, 2007 20 / 26



Let now

Aǫ
Ξ(µ;T ) =

1

2
‖µ‖2

2,T −

∫ T

0
Ξǫ

(

µ(t)

)

dt .

Theorem

Given µ0, µ1 ∈ M, there exists an action minimizer for

Aǫ
Ξ(µ0, µ1;T ) := min

µ
Aǫ

Ξ(µ;T )
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Let now

Aǫ
Ξ(µ;T ) =

1

2
‖µ‖2

2,T −

∫ T

0
Ξǫ

(

µ(t)

)

dt .

Theorem

Given µ0, µ1 ∈ M, there exists an action minimizer for

Aǫ
Ξ(µ0, µ1;T ) := min

µ
Aǫ

Ξ(µ;T )

Let µǫ a minimizer of Aǫ
Ξ. Since the set µǫ, 0 < ǫ < 1, is pre-compact in

H2[0,T ], we can look for a limit point of a subsequence of µǫ as ǫ→ 0
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Consider now the pair of equations

∂µ

∂t
+ ∇ · (µ∇xψ) = 0

∂ψ

∂t
+

1

2
|∇xψ|

2 − Pǫ = 0 ,

where

Pǫ(x , t) = −Ξ
′

ǫ(µ(t))(x ,t) :=

ǫ−1

∫

Ω
J

′

(∫

Ω
θǫ(z − y)µ(t)(dz)

)

θǫ(x − y)dy . (3)
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Consider now the pair of equations

∂µ

∂t
+ ∇ · (µ∇xψ) = 0

∂ψ

∂t
+

1

2
|∇xψ|

2 − Pǫ = 0 ,

where

Pǫ(x , t) = −Ξ
′

ǫ(µ(t))(x ,t) :=

ǫ−1

∫

Ω
J

′

(∫

Ω
θǫ(z − y)µ(t)(dz)

)

θǫ(x − y)dy . (3)

Example

: if µ =
∑

miδxi
then

Pǫ(x , t) ≈ J
′





∑

j

mjθ

(

xj − x

ǫ

)



 .

Very strong and very short range repelling force!
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Theorem

If µ(ǫ) is a maximizer of the action Aǫ
Ξ then there exists a reversible-pair

solution (φ
(ǫ)
, φ)(ǫ) The reversibility set K0(φ

(ǫ)
, φ(ǫ)) contains the support

of µ(ǫ) in Ω × (0,T ). In addition, the reversibility set is invariant under
the flow generated by the reversible solution

dS(ǫ)
(s,t)(x)

dt
= ∇ψ(ǫ)

(

S
(s,t)
(ǫ) (x), t

)

.

As ǫ→ 0, the particles’ orbits S
(s,t)
(ǫ) converge to a set-valued mapping

S(s,t) : Ω → B(Ω) so that limǫ→0 S
(s,t)
(ǫ)

(x) ∈ S(s,t)(x) .
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Formal evolution equations in 1D
Suppose now an optimal transport is presented by the pair µ, φ where

µ(t)(dx) = ρ(x , t)dx +
∑

mi(t)δxi (t)dx ,
∫

Ω
ρ(x , t)dx +

∑

mi (t) = 1 . (4)

where xi (t) are smooth trajectories and mi (t) > 0 are smooth for
t ∈ [0,T ].
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Formal evolution equations in 1D
Suppose now an optimal transport is presented by the pair µ, φ where

µ(t)(dx) = ρ(x , t)dx +
∑

mi(t)δxi (t)dx ,
∫

Ω
ρ(x , t)dx +

∑

mi (t) = 1 . (4)

where xi (t) are smooth trajectories and mi (t) > 0 are smooth for
t ∈ [0,T ].
The continuity equation takes the form

∂ρ

∂t
+ ∇x · (ρ∇xψ) +

∑

ṁi(t)δxi (t) = 0 .

and the momentum equation

∂ψ

∂t
+

1

2
|∇xψ|

2 +
∑

ξ
′

(mi(t)) 1(xi (t) − x) = 0 ,

where 1(x) = 0 if x 6= 0, 1(1) = 1.
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Reversible solution in the limit ǫ = 0
The limit action function

C (y , x , τ, t;µ) := inf
x







∫ t

τ





1

2
|ẋ(s)|2 −

∑

µ(s)({x})>0

ξ
′

(µ(s)({x}))1(x (s),s)



 ds







where the infimum is taken on the set of orbits x : [τ, t] → Ω satisfying
x(τ) = y , x(t) = x .
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Reversible solution in the limit ǫ = 0
The limit action function

C (y , x , τ, t;µ) := inf
x







∫ t

τ





1

2
|ẋ(s)|2 −

∑

µ(s)({x})>0

ξ
′

(µ(s)({x}))1(x (s),s)



 ds







where the infimum is taken on the set of orbits x : [τ, t] → Ω satisfying
x(τ) = y , x(t) = x .
Fragmentation:

ψ(x , t) = inf
y∈Ω

[C (y , x , 0, t;µ) + φ0(y)] ≤ φ(x , t) := inf
y∈Ω

[

|x − y |2

2t
+ φ0(y)

]

(5)
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Reversible solution in the limit ǫ = 0
The limit action function

C (y , x , τ, t;µ) := inf
x







∫ t

τ





1

2
|ẋ(s)|2 −

∑

µ(s)({x})>0

ξ
′

(µ(s)({x}))1(x (s),s)



 ds







where the infimum is taken on the set of orbits x : [τ, t] → Ω satisfying
x(τ) = y , x(t) = x .
Fragmentation:

ψ(x , t) = inf
y∈Ω

[C (y , x , 0, t;µ) + φ0(y)] ≤ φ(x , t) := inf
y∈Ω

[

|x − y |2

2t
+ φ0(y)

]

(5)
Coagulation:

φ(x , t) :=

sup
y∈Ω

[

−
|x − y |2

2(T − t)
+ φ1(y)

]

≤ sup
y∈Ω

[C (x , y , t,T ;µ) + φ1(y)] = ψ(x , t) (6)
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Representation of the solution
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Representation of the solution

ψ(x , t) = ψ0(x , t) +
∑

i

αi |x − xi(t)| , ψ0 ∈ C 1 .
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Representation of the solution

ψ(x , t) = ψ0(x , t) +
∑

i

αi |x − xi(t)| , ψ0 ∈ C 1 .

ρi (t) :=
1

2

[

ρ(x−
i (t), t) + ρ(x−

i (t), t)
]

.
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Representation of the solution

ψ(x , t) = ψ0(x , t) +
∑

i

αi |x − xi(t)| , ψ0 ∈ C 1 .

ρi (t) :=
1

2

[

ρ(x−
i (t), t) + ρ(x−

i (t), t)
]

.

Then
|αi |

2(t)

8
− ξ

′

(mi (t)) = 0 ,

and
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Representation of the solution

ψ(x , t) = ψ0(x , t) +
∑

i

αi |x − xi(t)| , ψ0 ∈ C 1 .

ρi (t) :=
1

2

[

ρ(x−
i (t), t) + ρ(x−

i (t), t)
]

.

Then
|αi |

2(t)

8
− ξ

′

(mi (t)) = 0 ,

and

Coagulation :
dmi

dt
= ρi (t)

√

8ξ
′

i (mi ) .

Gershon Wolansky (Technion) Quasi-rigid deformations Ben Gurion University, 2007 25 / 26



Representation of the solution

ψ(x , t) = ψ0(x , t) +
∑

i

αi |x − xi(t)| , ψ0 ∈ C 1 .

ρi (t) :=
1

2

[

ρ(x−
i (t), t) + ρ(x−

i (t), t)
]

.

Then
|αi |

2(t)

8
− ξ

′

(mi (t)) = 0 ,

and

Coagulation :
dmi

dt
= ρi (t)

√

8ξ
′

i (mi ) .

Fragmentation :
dmi

dt
= −ρi (t)

√

8ξ
′

i (mi ) , .
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while the particle’s orbit satisfies the Rankine-Hugoniot condition:

ẋi =
1

2

[

ψx(x
+
i (t), t) + ψx(x

−
i (t), t)

]

:=
∂

∂x
ψ0(xi (t), t) +

∑

j 6=i

αj (t)
xi(t) − xj(t)

|xi(t) − xj(t)|
. (7)
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t=T

t=0

Fragmentation
 orbit (type I)

Coagulation
 orbit (type II)

Figure: A representation of a reversible solution. Bold curves: particle orbits.
Bold dots: observers positions at time t. Light curves: the characteristic curves
for forward (res. backward) solution in the vicinity of type (I) (res. type (II))
orbit. Dashed light lines: the characteristic curves for forward (res. backward)
solution in the vicinity of type (II) (res. type (I)) orbit.
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Figure: Same as in Fig. ??, where the relaxation is emphasized in the magnifying
lens.
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