Dynamics of adhesive particles and optimal transportation of mass

Gershon Wolansky

Department of Mathematics, Technion 32000 Haifa, ISRAEL

E-mail: gershonw@math.technion.ac.il

- 2

イロン イヨン イヨン イヨン

• Fragmentation and Coagulation

A B F A B F

3

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations

3

A B < A B </p>

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations
- Reversible dynamics and action principle

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations
- Reversible dynamics and action principle
- Implementation of reversible dynamics:

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations
- Reversible dynamics and action principle
- Implementation of reversible dynamics:

(I) Inner energy

- Fragmentation and Coagulation
- Zero-pressure gas dynamics and shock waves as models of coagulations
- Reversible dynamics and action principle
- Implementation of reversible dynamics:
 - (I) Inner energy(II) Extended Lagrangian systems

Coagulation Kernel:

3

<ロ> (日) (日) (日) (日) (日)

Coagulation Kernel:

 $K_c(n,m):m,n \Longrightarrow m+n$

3

- 4 同 ト 4 三 ト 4 三 ト

Coagulation Kernel:

 $K_c(n,m): m,n \Longrightarrow m+n$

Fragmentation Kernel:

 $K_f(n,m): n \Longrightarrow n-m, m$

• • = • • = •

3

Coagulation Kernel:

 $K_c(n,m):m,n \Longrightarrow m+n$

Fragmentation Kernel:

 $K_f(n,m): n \Longrightarrow n-m,m$

Density of clusters of size *n* is given by f(n, t). The evolution equation:

$$\frac{\partial f(n,t)}{\partial t} = \int_0^n K_c(n-m,m)f(m,t)dm - f(n,t)\int_n^\infty K_c(n,m)dm + \int_0^\infty K_f(n+m,m)f(m+n,t)dm - f(n,t)\int_0^n K_f(n,m)dm \quad (1)$$

向下 イヨト イヨト ニヨ

Consider a swarm of N particles of masses m_i whose orbits are given by $x_i(t)$. The initial (at t = 0) positions and velocities of the particles are prescribed

$$x_i(0) := x_i^{(0)}$$
; $\dot{x}_i(0) = v_i^{(0)}$.

If there are no external forces, then, at least until two (or more) particles collide, the orbits of the particles are given by

$$x_i(t) = x_i^{(0)} + t v_i^{(0)}$$

In the limit

$$\rho(x,0) = \lim_{N \to \infty} N^{-1} \sum_{i}^{N} m_i \delta_{x_i^{(0)}}$$
$$(\rho \vec{u}) (x,0) = \lim_{N \to \infty} N^{-1} \sum_{i}^{N} m_i v_i^{(0)} \delta_{x_i^{(0)}} ,$$

the density and velocity fields satisfies, formally, the system of conservation law (*zero-pressure dynamics*)

$$rac{\partial
ho}{\partial t} +
abla_{ imes} \cdot (
ho ec u) = 0 \quad ; \quad rac{\partial (
ho ec u)}{\partial t} +
abla_{ imes} \cdot (
ho ec u \otimes ec u) = 0 \; .$$

This system can be viewed as an initial value problem, subjected to

 $\rho(x,0) = \rho_0(x) \ge 0 \quad , \quad \vec{u}(x,0) = \vec{u}_0(x) \ .$

As long as the solution is *classical* (namely, continuously differentiable), the momentum equation can be written as the Burger's equation

 $\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla_{\mathsf{x}} \vec{u} = 0 \; .$

This system can be viewed as an initial value problem, subjected to

 $\rho(x,0) = \rho_0(x) \ge 0 \quad , \quad \vec{u}(x,0) = \vec{u}_0(x) \ .$

As long as the solution is *classical* (namely, continuously differentiable), the momentum equation can be written as the Burger's equation

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla_{\mathsf{x}} \vec{u} = 0 \; .$$

Zero pressure and dynamics of adhesive particles

- Zeldovich (1970): Sticky particle model.
- Existence: E, Rykov and Sinai (1996) Brenier and Grenier (1998), ect.
- Uniqueness: Bouchut and James (1999)

Gershon Wolansky (Technion)

3

• Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.
- As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous emergence of refractive waves).

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.
- As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous emergence of refractive waves).
- Hence, there are no fragmentation waves!

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.
- As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous emergence of refractive waves).
- Hence, there are no fragmentation waves!
- The process of fragmentation is currently described by phenomenological kernels. It is based on ad hoc probabilistic assumptions which have nothing to do with the fundamental principle of physics!

通 ト イヨト イヨト

- Fundamental principles of physics are time reversible. (It is us, the observers, who are, unfortunately, not reversible!)
- Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not reversible.
- As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous emergence of refractive waves).
- Hence, there are no fragmentation waves!
- The process of fragmentation is currently described by phenomenological kernels. It is based on ad hoc probabilistic assumptions which have nothing to do with the fundamental principle of physics!
- In physics, reversible processes are usually derived from an action principle.

The action principle of a free dynamics For an orbit $\vec{x}(t) = (x_1(t), \dots x_N(t)) \ 0 \le t \le T$, the action is

3

- 4 同 6 4 日 6 4 日 6

The action principle of a free dynamics For an orbit $\vec{x}(t) = (x_1(t), \dots, x_N(t)) \ 0 \le t \le T$, the action is $A(\vec{x}; T) := \int_0^T L(m_1 \dot{x}_1, \dots, m_N \dot{x}_N) dt$

where

$$L(p_1,\ldots p_N):=\sum_1^N \frac{|p_i|^2}{2m_i}$$

and

$$\underline{A}(\vec{x}^{(0)}, \vec{x}^{(1)}; T) :=$$

$$\min_{\vec{x}(\cdot)} \left\{ A(\vec{x}; T) ; \ \vec{x}(0) = \vec{x}^{(0)} , \vec{x}(T) = \vec{x}^{(1)} \right\}$$

Note that here the masses m_i of the particles are constants.

The action principle of a free dynamics For an orbit $\vec{x}(t) = (x_1(t), \dots x_N(t)) \ 0 \le t \le T$, the action is $A(\vec{x}; T) := \int_0^T L(m_1 \dot{x}_1, \dots m_N \dot{x}_N) dt$

where

$$L(p_1,\ldots p_N):=\sum_1^N \frac{|p_i|^2}{2m_i}$$

and

$$\underline{A}(\vec{x}^{(0)}, \vec{x}^{(1)}; T) :=$$

$$\min_{\vec{x}(\cdot)} \left\{ A(\vec{x}; T) ; \ \vec{x}(0) = \vec{x}^{(0)} , \vec{x}(T) = \vec{x}^{(1)} \right\} .$$

Note that here the masses m_i of the particles are constants.

In order to implement collisions into an action principle, we must introduce inner energy, and allow particles to exchange mass $\rightarrow e^{2} \rightarrow e^$

Gershon Wolansky (Technion)

Quasi-rigid deformations

State space: Γ is the set of N orbits $(x_i(t), m_i(t))$ so that

3

State space: Γ is the set of N orbits $(x_i(t), m_i(t))$ so that a) $x_i \in C([0, T]; \Omega), 1 \le i \le N.$

3

A B A A B A

State space: Γ is the set of N orbits $(x_i(t), m_i(t))$ so that

a) $x_i \in C([0, T]; \Omega), 1 \le i \le N.$

b) m_i are sequentially constants, so $dm_i/dt = 0$ if $x_i(t) \neq x_j(t)$ for any $i \neq j$.

A B K A B K

State space: Γ is the set of N orbits $(x_i(t), m_i(t))$ so that

a) $x_i \in C([0, T]; \Omega), 1 \le i \le N.$

b) m_i are sequentially constants, so $dm_i/dt = 0$ if $x_i(t) \neq x_j(t)$ for any $i \neq j$.

c) If for $\tau \in (0, T)$ there exists a subset $I \subset \{1, ..., N\}$ for which $x_i(\tau) = x_j(\tau) \equiv x$ for all $i, j \in I$ while $x_l(\tau) \neq x$ for $l \notin I$, then

$$\sum_{i\in I}m_i(t^-)=\sum_{i\in I}m_i(t^+).$$

8 / 26

Inner energy

There is a function $\xi = \xi(m)$, called the inner energy of a particle of mass m, such that

$$egin{array}{lll} \xi\in {\mathcal C}({\mathbb R}^+) &, \ \xi(0)=0, & orall m_1,m_2>0 \ \Longrightarrow \xi(m_1)+\xi(m_2)<\xi(m_1+m_2) \ . \end{array}$$

Note that it is satisfied by any convex function on \mathbb{R}^+ for which $\xi(0) = 0$.

3

- 4 同 6 4 日 6 4 日 6

Inner energy

There is a function $\xi = \xi(m)$, called the inner energy of a particle of mass m, such that

 $\xi \in C(\mathbb{R}^+)$, $\xi(0) = 0$, $\forall m_1, m_2 > 0$ $\implies \xi(m_1) + \xi(m_2) < \xi(m_1 + m_2)$.

Note that it is satisfied by any convex function on \mathbb{R}^+ for which $\xi(0) = 0$. For example:

 $\xi(m) = -m^{\sigma} ext{ if } 0 < \sigma < 1 ext{ , or } \xi(m) = m^{\sigma} ext{ if } \sigma > 1 ext{ .}$

- 3

• • = • • = •

Inner energy

There is a function $\xi = \xi(m)$, called the inner energy of a particle of mass m, such that

 $\xi \in C(\mathbb{R}^+)$, $\xi(0) = 0$, $\forall m_1, m_2 > 0$ $\implies \xi(m_1) + \xi(m_2) < \xi(m_1 + m_2)$.

Note that it is satisfied by any convex function on \mathbb{R}^+ for which $\xi(0) = 0$. For example:

 $\xi(m) = -m^{\sigma}$ if $0 < \sigma < 1$, or $\xi(m) = m^{\sigma}$ if $\sigma > 1$.

The dynamics of this system is obtained by the action: $A : \Gamma \to \mathbb{R}$ defined for $\gamma := (x_1, m_1 \dots x_N, m_M)$ by

$$A(\gamma; T) := \sum_{1}^{N} \int_{0}^{T} \left[\frac{1}{2} m_{i}(t) |\dot{x}_{i}|^{2} - \xi(m_{i}(t)) \right] dt$$

- 本語 医 本 医 医 一 医

Theorem

If γ is a minimizer of the action A within the set Γ subjected to the end conditions $\gamma(0) = \left(x_1^{(0)}, m_1^{(0)} \dots x_N^{(0)}, m_N^{(0)}\right)$, $\gamma(T) = \left(x_1^{(T)}, m_1^{(T)} \dots x_N^{(T)}, m_N^{(T)}\right)$, then γ preserves both the linear momentum

$$\mathbf{P} := \sum_{1}^{N} m_i(t) \dot{x}_i(t)$$

and energy

$$\mathbf{E} := rac{1}{2} \sum_{1}^{N} m_i(t) \, |\dot{x}_i(t)|^2 + \sum_{1}^{N} \xi(m_i(t)) \; .$$

Extended Lagrangian formulation

Assume that the distribution of particles at time t is given by a positive measure $\mu_{(t)}$ on Ω . We usually denote a trajectory of probability measures $\mu_{(t)}$, $0 \le t \le T$ by μ . We denote the set $\mathbf{H}_2[0, T]$ as all such trajectories for which

$$\begin{split} \|\mu\|_{2,T}^{2} &:= \inf_{\vec{E}} \int_{0}^{T} \left| \frac{d\vec{E}_{(t)}}{d\mu_{(t)}} \right|^{2} \mu_{(t)}(dx) dt < \infty \\ &\frac{\partial \mu}{\partial t} + \nabla_{x} \cdot \vec{E}_{(t)} = 0 \end{split}$$

in the sense of distributions.

Extended Lagrangian formulation

Assume that the distribution of particles at time t is given by a positive measure $\mu_{(t)}$ on Ω . We usually denote a trajectory of probability measures $\mu_{(t)}$, $0 \le t \le T$ by μ . We denote the set $\mathbf{H}_2[0, T]$ as all such trajectories for which

$$\|\mu\|_{2,T}^{2} := \inf_{\vec{E}} \int_{0}^{T} \left| \frac{d\vec{E}_{(t)}}{d\mu_{(t)}} \right|^{2} \mu_{(t)}(dx) dt < \infty$$
$$\frac{\partial \mu}{\partial t} + \nabla_{x} \cdot \vec{E}_{(t)} = 0$$

in the sense of distributions. For a given pair of probability measures μ_0, μ_1 , the extended action principle is defined by

$$\underline{A}(\mu_0,\mu_1) := \min_{\mu} \frac{1}{2} \|\mu\|_{2,T}^2$$

$$\mu_{(0)} = \mu_0, \ \mu_{(T)} = \mu_1$$
.

The minimization problem is a special case of McCann interpolation

$$\mu_{(t)} = \left[\frac{T-t}{T}\mathsf{Id} + \frac{t}{T}\mathsf{S}\right]_{\#}\mu_{0}$$

where **S** is the map which realizes the optimal transportation of μ_0 to μ_1 under quadratic cost:

$$\inf_{\mathbf{S}_{\#}\mu_{0}=\mu_{1}}\int_{\Omega}|x-\mathbf{S}(x)|^{2}\,\mu_{0}(dx)$$

過 ト イヨ ト イヨト
The minimization problem is a special case of McCann interpolation

$$\mu_{(t)} = \left[\frac{T-t}{T}\mathsf{Id} + \frac{t}{T}\mathsf{S}\right]_{\#}\mu_{0}$$

where **S** is the map which realizes the optimal transportation of μ_0 to μ_1 under quadratic cost:

$$\inf_{\mathbf{S}_{\#}\mu_{0}=\mu_{1}}\int_{\Omega}|x-\mathbf{S}(x)|^{2}\,\mu_{0}(dx)$$

In case of discrete measure (D) The "Graph orbit" Γ is a special case of admissible μ :

$$\mu = \sum_{1}^{N} m_i(t) \delta_{x_i(t)}$$

$$\inf_{\Lambda} \sum_{1}^{N} \sum_{1}^{N} \Lambda_{i,j} |x_i - y_j|^2 ,$$

where $\sum_{i} \Lambda_{i,j} = m_j(T), \ \sum_{j} \Lambda_{i,j} = m_i(0).$

Extended action subjected to a prescribed pressure

The extended Lagrangian with a pressure

$$A_P(\mu) = \frac{1}{2} \|\mu\|_2^2 - \int_0^T P(x,t) \mu_{(t)}(dx) dt \; .$$

The associated Hamilton-Jacobi equation

$$rac{\partial \phi}{\partial t} + rac{1}{2} |
abla_x \phi|^2 + P = 0 \quad ; \quad (x,t) \in \Omega imes (0,T) \; ,$$

and the continuity equation

$$\frac{\partial \mu_{(t)}}{\partial t} + \nabla_{\mathsf{x}} \cdot \left(\mu_{(t)} \nabla_{\mathsf{x}} \phi \right) = \mathbf{0} \; .$$

The end conditions:

$$\mu_{(0)} = \mu_0$$
 ; $\mu_{(T)} = \mu_1$.

Extended action subjected to a prescribed pressure

The extended Lagrangian with a pressure

$$A_P(\mu) = \frac{1}{2} \|\mu\|_2^2 - \int_0^T P(x,t) \mu_{(t)}(dx) dt \; .$$

The associated Hamilton-Jacobi equation

$$rac{\partial \phi}{\partial t} + rac{1}{2} |
abla_x \phi|^2 + P = 0 \quad ; \quad (x,t) \in \Omega imes (0,T) \; ,$$

and the continuity equation

$$\frac{\partial \mu_{(t)}}{\partial t} + \nabla_{\mathsf{x}} \cdot \left(\mu_{(t)} \nabla_{\mathsf{x}} \phi \right) = \mathbf{0} \; .$$

The end conditions:

$$\mu_{(0)} = \mu_0$$
 ; $\mu_{(T)} = \mu_1$.

Theorem

For any pair of end conditions μ_0, μ_1 there exists an orbit $\mu \in H_2([0, T])$ which realizes the infimum of A_P .

Gershon Wolansky (Technion)

Quasi-rigid deformations

13 / 26

The cost function:

$$C_{P}(x, y, \tau, t) := \min\left\{\int_{\tau}^{t} \left(\frac{|\bar{x}|^{2}}{2} + P(\bar{x}(s), s)\right) ds \quad ; \quad \bar{x} : [\tau, t] \to \Omega\right\}$$
(2)

where $\overline{x}(\tau) = y$, $\overline{x}(t) = x$.

The cost function:

$$C_{P}(x, y, \tau, t) := \min\left\{\int_{\tau}^{t} \left(\frac{|\overline{x}|^{2}}{2} + P(\overline{x}(s), s)\right) ds \quad ; \quad \overline{x} : [\tau, t] \to \Omega\right\}$$
(2)

where $\overline{x}(\tau) = y$, $\overline{x}(t) = x$. In particular, if P = 0:

$$C_0(x,y, au,t) := rac{|x-y|^2}{2(t- au)} \; .$$

Gershon Wolansky (Technion)

3

伺下 イヨト イヨト

Gershon Wolansky (Technion)

3

イロト イヨト イヨト イヨト

i) A forward (res. backward) solution is defined, for $t \in [0, T]$, by $\overline{\phi}(x, t) := \min_{y} \{C_{P}(y, x, 0, t) + \phi(y, 0)\}$, res. $\underline{\phi}(x, t) := \sup_{y} \{-C_{P}(x, y, t, T) + \phi(y, T)\}.$

3

• • = • • = •

i) A forward (res. backward) solution is defined, for $t \in [0, T]$, by $\overline{\phi}(x, t) := \min_{y} \{C_{P}(y, x, 0, t) + \phi(y, 0)\}$, res. $\underline{\phi}(x, t) := \sup_{y} \{-C_{P}(x, y, t, T) + \phi(y, T)\}.$ ii) If $\phi(\cdot, 0)$ and $\phi(\cdot, T)$ are Lipschitz on Ω then both $\overline{\phi}$ and ϕ are Lipschitz on $\Omega \times [0, T].$

i) A forward (res. backward) solution is defined, for $t \in [0, T]$, by $\overline{\phi}(x, t) := \min_{y} \{ C_{P}(y, x, 0, t) + \phi(y, 0) \}$, res. $\underline{\phi}(x, t) := \sup_{y} \{ -C_{P}(x, y, t, T) + \phi(y, T) \}.$

ii) If $\phi(\cdot, 0)$ and $\phi(\cdot, T)$ are Lipschitz on Ω then both $\overline{\phi}$ and $\underline{\phi}$ are Lipschitz on $\Omega \times [0, T]$.

iii) $(\overline{\phi}, \underline{\phi})$ is called a reversible pair if $\overline{\phi} = \underline{\phi}$ on Ω for t = 0and t = T. In this case, $\overline{\phi}(x, t) \ge \underline{\phi}(x, t)$ on $\Omega \times [0, T]$.

i) A forward (res. backward) solution is defined, for $t \in [0, T]$, by $\overline{\phi}(x, t) := \min_{y} \{C_{P}(y, x, 0, t) + \phi(y, 0)\}$, res. $\underline{\phi}(x, t) := \sup_{y} \{-C_{P}(x, y, t, T) + \phi(y, T)\}.$

ii) If $\phi(\cdot, 0)$ and $\phi(\cdot, T)$ are Lipschitz on Ω then both $\overline{\phi}$ and $\underline{\phi}$ are Lipschitz on $\Omega \times [0, T]$.

iii) $(\overline{\phi}, \underline{\phi})$ is called a reversible pair if $\overline{\phi} = \underline{\phi}$ on Ω for t = 0and t = T. In this case, $\overline{\phi}(x, t) \ge \underline{\phi}(x, t)$ on $\Omega \times [0, T]$. iv) If $(\overline{\phi}, \overline{\phi})$ is a reversible pair, then the reversibility set is defined by

 $(\overline{\phi}, \underline{\phi})$ is a reversible pair, then the reversibility set is defined by $\mathcal{K}_0(\overline{\phi}, \underline{\phi}) := \{(x, t) \in \Omega \times (0, T) ; \overline{\phi}(x, t) = \underline{\phi}(x, t) := \psi(x, t)\}$ $\nabla_x \psi(x, t) = \nabla_x \overline{\phi} = \nabla_x \underline{\phi}$ is Lipschitz on the reversibility set. We call ψ a reversible solution.

If ϕ_0, ϕ_1 maximizes $\int_{\Omega} (\phi_1 \mu_1(dx) - \phi_0 \mu_0(dx))$ subjected $\phi_1(x) - \phi_0(y) \leq C_P(x, y, 0, T)$ for any $x, y \in \Omega$, then $\{\phi_0, \phi_1\}$ is a reversible pair. The reversibility function ψ verifies the Hamilton-Jacobi equation, and the optimal solution of A_P is supported in $K_0(\phi_0, \phi_1)$ and verifies the continuity equation subjected $\nabla \phi = \nabla \psi$. Moreover, the flow

$$\frac{d\mathbf{S}^{(t,s)}}{dt} = \nabla\psi\left(\mathbf{S}_{(x)}^{(t)}, t\right) \quad ; \quad \mathbf{T}^{(t,t)} := \mathbf{I}_{\mathbf{d}}$$

transports this orbit $S_{\#}^{(t,s)}\mu_{(s)} = \mu_{(t)}$.

(本間) (本語) (本語) (二語)

If ϕ_0, ϕ_1 maximizes $\int_{\Omega} (\phi_1 \mu_1(dx) - \phi_0 \mu_0(dx))$ subjected $\phi_1(x) - \phi_0(y) \leq C_P(x, y, 0, T)$ for any $x, y \in \Omega$, then $\{\phi_0, \phi_1\}$ is a reversible pair. The reversibility function ψ verifies the Hamilton-Jacobi equation, and the optimal solution of A_P is supported in $K_0(\phi_0, \phi_1)$ and verifies the continuity equation subjected $\nabla \phi = \nabla \psi$. Moreover, the flow

$$\frac{d\mathbf{S}^{(t,s)}}{dt} = \nabla\psi\left(\mathbf{S}_{(x)}^{(t)}, t\right) \quad ; \quad \mathbf{T}^{(t,t)} := \mathbf{I}_{\mathbf{d}}$$

transports this orbit $\mathbf{S}_{\#}^{(\mathbf{t},\mathbf{s})}\mu_{(\mathbf{s})} = \mu_{(\mathbf{t})}$.

• The particles of the optimal flow subjected to a prescribed pressure do not collide (and, in particular, do not stick).

イロト 不得下 イヨト イヨト 二日

If ϕ_0, ϕ_1 maximizes $\int_{\Omega} (\phi_1 \mu_1(dx) - \phi_0 \mu_0(dx))$ subjected $\phi_1(x) - \phi_0(y) \leq C_P(x, y, 0, T)$ for any $x, y \in \Omega$, then $\{\phi_0, \phi_1\}$ is a reversible pair. The reversibility function ψ verifies the Hamilton-Jacobi equation, and the optimal solution of A_P is supported in $K_0(\phi_0, \phi_1)$ and verifies the continuity equation subjected $\nabla \phi = \nabla \psi$. Moreover, the flow

$$\frac{d\mathbf{S}^{(t,s)}}{dt} = \nabla\psi\left(\mathbf{S}_{(x)}^{(t)}, t\right) \quad ; \quad \mathbf{T}^{(t,t)} := \mathbf{I}_{\mathbf{d}}$$

transports this orbit $S_{\#}^{(t,s)}\mu_{(s)} = \mu_{(t)}$.

- The particles of the optimal flow subjected to a prescribed pressure do not collide (and, in particular, do not stick).
- There are no shock waves for the Hamilton-Jacobi equation. Indeed, ψ is a reversible solution, as claimed.

イロト 不得下 イヨト イヨト 二日

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω . Let $\overline{\mathcal{M}}$ be the set of such probability Borel measures. For any $\mu \in \overline{\mathcal{M}}$ set $\mu = \mu^{pp} + \tilde{\mu}$ to be its *unique* decomposition into its atomic and non-atomic parts. For each $\mu \in \overline{\mathcal{M}}$ we define the inner energy $\Xi(\mu)$ as

$$\Xi(\mu) := \Xi(\mu^{pp}) = \sum_{x; \mu(\{x\}) > 0} \xi(\mu(\{x\})) \; .$$

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω . Let $\overline{\mathcal{M}}$ be the set of such probability Borel measures. For any $\mu \in \overline{\mathcal{M}}$ set $\mu = \mu^{pp} + \tilde{\mu}$ to be its *unique* decomposition into its atomic and non-atomic parts. For each $\mu \in \overline{\mathcal{M}}$ we define the inner energy $\Xi(\mu)$ as

$$\Xi(\mu) := \Xi(\mu^{pp}) = \sum_{x; \mu(\{x\}) > 0} \xi(\mu(\{x\})) \; .$$

For any $\mu \in H_2([0, T])$ define the action as:

$$\mathcal{A}_{\Xi}(\mu;T) := rac{1}{2} \|\mu\|_{2,T}^2 - \int_0^T \Xi(\mu_{(t)}) dt \; .$$

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω . Let $\overline{\mathcal{M}}$ be the set of such probability Borel measures. For any $\mu \in \overline{\mathcal{M}}$ set $\mu = \mu^{pp} + \tilde{\mu}$ to be its *unique* decomposition into its atomic and non-atomic parts. For each $\mu \in \overline{\mathcal{M}}$ we define the inner energy $\Xi(\mu)$ as

$$\Xi(\mu) := \Xi(\mu^{pp}) = \sum_{x; \mu(\{x\}) > 0} \xi(\mu(\{x\})) \; .$$

For any $\mu \in H_2([0, T])$ define the action as:

$$\mathcal{A}_{\Xi}(\mu;T) := rac{1}{2} \|\mu\|_{2,T}^2 - \int_0^T \Xi(\mu_{(t)}) dt \; .$$

We now pose the following assumptions on ξ :

$$\xi: \mathbb{R}^+ \to \mathbb{R}^+ , \quad \lim_{m \to 0} \frac{\xi(m)}{m} = 0$$

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω . Let $\overline{\mathcal{M}}$ be the set of such probability Borel measures. For any $\mu \in \overline{\mathcal{M}}$ set $\mu = \mu^{pp} + \tilde{\mu}$ to be its *unique* decomposition into its atomic and non-atomic parts. For each $\mu \in \overline{\mathcal{M}}$ we define the inner energy $\Xi(\mu)$ as

$$\Xi(\mu) := \Xi(\mu^{pp}) = \sum_{x; \mu(\{x\}) > 0} \xi(\mu(\{x\})) .$$

For any $\mu \in H_2([0, T])$ define the action as:

$$\mathcal{A}_{\Xi}(\mu;T) := rac{1}{2} \|\mu\|_{2,T}^2 - \int_0^T \Xi(\mu_{(t)}) dt \; .$$

We now pose the following assumptions on ξ :

$$\xi: \mathbb{R}^+ \to \mathbb{R}^+$$
, $\lim_{m \to 0} \frac{\xi(m)}{m} = 0$

Remark: The assumption $\xi(m) = m^{\sigma}$ for $\sigma > 1$ verifies verifies this condition.

Gershon Wolansky (Technion)

17 / 26

Lemma

The action $A_{\Xi}(\cdot, T)$ is lower-semi-continues (l.s.c) with respect to $C([0, T]; C^*(\Omega))$.

3

伺い イヨト イヨト

Lemma

The action $A_{\Xi}(\cdot, T)$ is lower-semi-continues (l.s.c) with respect to $C([0, T]; C^*(\Omega))$.

Theorem

Given $\mu_0, \mu_1 \in \overline{\mathcal{M}}$, there exists an action minimizer $\mu \in \mathbf{H}_2[0, T]$ for $\underline{A}(\mu_0, \mu_1; T) := \min_{\mu} A_{\Xi}(\mu, T)$

subjected to $\mu_{(0)}=\mu_0$, $\mu_{(\mathcal{T})}=\mu_1$

We first consider a relaxation of the inner energy functional as follows:

3

A D A D A D A

We first consider a relaxation of the inner energy functional as follows:

Definition

Let $J : \mathbb{R}^+ \to \mathbb{R}^+$ be a convex function satisfying J(0) = J'(0) = 0. Let $\theta \in C_0^{\infty}(\Omega; \mathbb{R}^+)$ such that $\theta(0) = 1 \ge \theta(x)$ for all $x \in \Omega$. For each $\epsilon > 0$, the inner energy function ξ corresponding to J is defined by

$$\xi(m):=\int_\Omega J(m heta(x))dx$$
 ; $m\geq 0$.

過 ト イヨ ト イヨト

We first consider a relaxation of the inner energy functional as follows:

Definition

Let $J : \mathbb{R}^+ \to \mathbb{R}^+$ be a convex function satisfying J(0) = J'(0) = 0. Let $\theta \in C_0^{\infty}(\Omega; \mathbb{R}^+)$ such that $\theta(0) = 1 \ge \theta(x)$ for all $x \in \Omega$. For each $\epsilon > 0$, the inner energy function ξ corresponding to J is defined by

$$\xi(m):=\int_\Omega J(m heta(x))dx$$
 ; $m\geq 0$.

Let $\theta_{\epsilon}(x) := \theta(x/\epsilon)$ and

$$\Xi_{\epsilon}(\mu) := \epsilon^{-1} \int_{\Omega} J\left(\int_{\Omega} heta_{\epsilon}(x-y)\mu(dx)
ight) dy \; .$$

通 と く ヨ と く ヨ と

We first consider a relaxation of the inner energy functional as follows:

Definition

Let $J : \mathbb{R}^+ \to \mathbb{R}^+$ be a convex function satisfying J(0) = J'(0) = 0. Let $\theta \in C_0^{\infty}(\Omega; \mathbb{R}^+)$ such that $\theta(0) = 1 \ge \theta(x)$ for all $x \in \Omega$. For each $\epsilon > 0$, the inner energy function ξ corresponding to J is defined by

$$\xi(m):=\int_\Omega J(m heta(x))dx$$
 ; $m\geq 0$.

Let $\theta_{\epsilon}(x) := \theta(x/\epsilon)$ and

$$\Xi_{\epsilon}(\mu) := \epsilon^{-1} \int_{\Omega} J\left(\int_{\Omega} heta_{\epsilon}(x-y)\mu(dx)
ight) dy \; .$$

Lemma

For each $\epsilon > 0$, $\mu \to -\int_0^T \Xi_{\epsilon} (\mu_{(t)}) dt$ is continuous in the weak topology of $\mathbf{H}_2[0, T]$.

Gershon Wolansky (Technion)

Let now

$$egin{aligned} &\mathcal{A}^\epsilon_{\Xi}(\mu;\,\mathcal{T}) = rac{1}{2} \|\mu\|^2_{2,\,\mathcal{T}} - \int_0^{\mathcal{T}} \Xi_\epsilon\left(\mu_{(t)}
ight) \, dt \; . \end{aligned}$$

3

< ロ > < 圖 > < 画 > < 画 > <

Let now

$$\mathcal{A}^{\epsilon}_{\Xi}(\mu;T) = rac{1}{2} \|\mu\|^2_{2,T} - \int_0^T \Xi_{\epsilon}\left(\mu_{(t)}
ight) dt \; .$$

Theorem

Given $\mu_0, \mu_1 \in \overline{\mathcal{M}}$, there exists an action minimizer for $\underline{A}_{\Xi}^{\epsilon}(\mu_0, \mu_1; T) := \min_{\mu} A_{\Xi}^{\epsilon}(\mu; T)$

3

伺下 イヨト イヨト

Let now

$$\mathcal{A}^\epsilon_{\Xi}(\mu;T) = rac{1}{2} \|\mu\|^2_{2,T} - \int_0^T \Xi_\epsilon\left(\mu_{(t)}
ight) dt \; .$$

Theorem

Given $\mu_0, \mu_1 \in \overline{\mathcal{M}}$, there exists an action minimizer for

$$\underline{A}_{\underline{\Xi}}^{\epsilon}(\mu_0,\mu_1;T) := \min_{\mu} A_{\underline{\Xi}}^{\epsilon}(\mu;T)$$

Let μ_{ϵ} a minimizer of A_{Ξ}^{ϵ} . Since the set μ_{ϵ} , $0 < \epsilon < 1$, is pre-compact in $H_2[0, T]$, we can look for a limit point of a subsequence of μ_{ϵ} as $\epsilon \to 0$

Consider now the pair of equations

$$rac{\partial \mu}{\partial t} +
abla \cdot (\mu
abla_x \psi) = 0$$

 $rac{\partial \psi}{\partial t} + rac{1}{2} |
abla_x \psi|^2 - P_\epsilon = 0 ,$

where

$$P_{\epsilon}(x,t) = -\Xi'_{\epsilon}(\mu_{(t)})_{(x,t)} := \epsilon^{-1} \int_{\Omega} J'\left(\int_{\Omega} \theta_{\epsilon}(z-y)\mu_{(t)}(dz)\right) \theta_{\epsilon}(x-y)dy .$$
(3)

A ►

Consider now the pair of equations

$$\frac{\partial \mu}{\partial t} + \nabla \cdot (\mu \nabla_x \psi) = 0$$
$$\frac{\partial \psi}{\partial t} + \frac{1}{2} |\nabla_x \psi|^2 - P_{\epsilon} = 0 ,$$

where

$$P_{\epsilon}(x,t) = -\Xi_{\epsilon}'(\mu_{(t)})_{(x,t)} := \epsilon^{-1} \int_{\Omega} J'\left(\int_{\Omega} \theta_{\epsilon}(z-y)\mu_{(t)}(dz)\right) \theta_{\epsilon}(x-y)dy .$$
(3)

Example

: if $\mu = \sum m_i \delta_{x_i}$ then

$$P_{\epsilon}(x,t) \approx J'\left(\sum_{j} m_{j}\theta\left(\frac{x_{j}-x}{\epsilon}\right)\right)$$

Very strong and very short range repelling force!

Gershon Wolansky (Technion)

Quasi-rigid deformations

If $\overline{\mu}^{(\epsilon)}$ is a maximizer of the action A_{Ξ}^{ϵ} then there exists a reversible-pair solution $(\overline{\phi}^{(\epsilon)}, \underline{\phi})^{(\epsilon)}$. The reversibility set $K_0(\overline{\phi}^{(\epsilon)}, \underline{\phi}^{(\epsilon)})$ contains the support of $\overline{\mu}^{(\epsilon)}$ in $\Omega \times (0, T)$. In addition, the reversibility set is invariant under the flow generated by the reversible solution

$$rac{d {f S}_{(\epsilon)}{}^{(s,t)}(x)}{dt} =
abla \psi^{(\epsilon)} \left({f S}_{(\epsilon)}^{(s,t)}(x),t
ight) \; .$$

As $\epsilon \to 0$, the particles' orbits $\mathbf{S}_{(\epsilon)}^{(s,t)}$ converge to a set-valued mapping $\mathbf{S}^{(s,t)}: \Omega \to \mathcal{B}(\Omega)$ so that $\lim_{\epsilon \to 0} \mathbf{S}_{(\epsilon)}^{(s,t)}(x) \in \mathbf{S}^{(s,t)}(x)$.

Formal evolution equations in 1D

Suppose now an optimal transport is presented by the pair μ, ϕ where

$$\mu_{(t)}(dx) = \rho(x,t)dx + \sum m_i(t)\delta_{x_i(t)}dx ,$$

$$\int_{\Omega} \rho(x,t)dx + \sum m_i(t) = 1 . \quad (4)$$

where $x_i(t)$ are smooth trajectories and $m_i(t) > 0$ are smooth for $t \in [0, T]$.

Formal evolution equations in 1D

Suppose now an optimal transport is presented by the pair μ,ϕ where

$$\mu_{(t)}(dx) = \rho(x,t)dx + \sum m_i(t)\delta_{x_i(t)}dx ,$$

$$\int_{\Omega} \rho(x,t)dx + \sum m_i(t) = 1 . \quad (4)$$

where $x_i(t)$ are smooth trajectories and $m_i(t) > 0$ are smooth for $t \in [0, T]$.

The continuity equation takes the form

$$rac{\partial
ho}{\partial t} +
abla_{ imes} \cdot (
ho
abla_{ imes} \psi) + \sum \dot{m}_i(t) \delta_{ imes_i(t)} = 0 \; .$$

and the momentum equation

$$rac{\partial \psi}{\partial t} + rac{1}{2} |
abla_x \psi|^2 + \sum \xi^{'}\left(m_i(t)\right) \mathbf{1}(x_i(t) - x) = 0 \;,$$

where 1(x) = 0 if $x \neq 0$, 1(1) = 1.

Reversible solution in the limit $\epsilon = 0$

The limit action function

$$C(y,x,\tau,t;\mu) := \inf_{\overline{x}} \left\{ \int_{\tau}^{t} \left(\frac{1}{2} |\dot{\overline{x}}(s)|^2 - \sum_{\mu_{(s)}(\{x\}) > 0} \xi'(\mu_{(s)}(\{x\})) \mathbf{1}_{(\overline{x}(s),s)} \right) ds \right\}$$

where the infimum is taken on the set of orbits $\overline{x} : [\tau, t] \to \Omega$ satisfying $\overline{x}(\tau) = y, \, \overline{x}(t) = x.$

Reversible solution in the limit $\epsilon = 0$

The limit action function

$$C(y,x,\tau,t;\mu) := \inf_{\overline{x}} \left\{ \int_{\tau}^{t} \left(\frac{1}{2} |\dot{\overline{x}}(s)|^2 - \sum_{\mu_{(s)}(\{x\}) > 0} \xi'(\mu_{(s)}(\{x\})) \mathbf{1}_{(\overline{x}(s),s)} \right) ds \right\}$$

where the infimum is taken on the set of orbits $\overline{x} : [\tau, t] \to \Omega$ satisfying $\overline{x}(\tau) = y, \ \overline{x}(t) = x.$ Fragmentation:

$$\psi(x,t) = \inf_{y \in \Omega} \left[C(y,x,0,t;\mu) + \phi_0(y) \right] \le \overline{\phi}(x,t) := \inf_{y \in \Omega} \left[\frac{|x-y|^2}{2t} + \phi_0(y) \right]$$
(5)

Reversible solution in the limit $\epsilon = 0$

The limit action function

$$C(y,x,\tau,t;\mu) := \inf_{\overline{x}} \left\{ \int_{\tau}^{t} \left(\frac{1}{2} |\dot{\overline{x}}(s)|^2 - \sum_{\mu_{(s)}(\{x\}) > 0} \xi'(\mu_{(s)}(\{x\})) \mathbb{1}_{(\overline{x}(s),s)} \right) ds \right\}$$

where the infimum is taken on the set of orbits $\overline{x} : [\tau, t] \to \Omega$ satisfying $\overline{x}(\tau) = y, \overline{x}(t) = x$. Fragmentation:

$$\psi(x,t) = \inf_{y \in \Omega} \left[C(y,x,0,t;\mu) + \phi_0(y) \right] \le \overline{\phi}(x,t) := \inf_{y \in \Omega} \left[\frac{|x-y|^2}{2t} + \phi_0(y) \right]$$
(5)

Coagulation:

$$\underline{\phi}(x,t) := \sup_{\substack{y \in \Omega}} \left[-\frac{|x-y|^2}{2(T-t)} + \phi_1(y) \right] \le \sup_{\substack{y \in \Omega}} \left[C(x,y,t,T;\mu) + \phi_1(y) \right] = \psi(x,t) \quad (6)$$
Gershon Wolansky (Technion) Quasi-rigid deformations Ben Gurion University, 2007 24 / 26

Representation of the solution

Representation of the solution

$$\psi(x,t) = \psi_0(x,t) + \sum_i \alpha_i |x - x_i(t)| \ , \ \psi_0 \in C^1 \ .$$
3

$$\psi(x,t) = \psi_0(x,t) + \sum_i \alpha_i |x - x_i(t)| \ , \ \psi_0 \in C^1$$

 $\overline{
ho}_i(t) := rac{1}{2} \left[
ho(x_i^-(t),t) +
ho(x_i^-(t),t)
ight] \ .$
 $rac{|lpha_i|^2(t)}{8} - \xi'(m_i(t)) = 0 \ ,$

and

Then

3

э

$$\begin{split} \psi(x,t) &= \psi_0(x,t) + \sum_i \alpha_i |x - x_i(t)| \quad , \quad \psi_0 \in C^1 \\ \overline{\rho}_i(t) &:= \frac{1}{2} \left[\rho(x_i^-(t),t) + \rho(x_i^-(t),t) \right] \quad . \end{split}$$
Then
$$\frac{|\alpha_i|^2(t)}{8} - \xi'(m_i(t)) = 0 \quad , \end{aligned}$$
and
$$\begin{aligned} \text{Coagulation} : \quad \frac{dm_i}{dt} = \overline{\rho}_i(t) \sqrt{8\xi'_i(m_i)} \quad . \end{split}$$

э

•

$$\begin{split} \psi(x,t) &= \psi_0(x,t) + \sum_i \alpha_i |x - x_i(t)| \quad , \quad \psi_0 \in C^1 \ .\\ \overline{\rho}_i(t) &:= \frac{1}{2} \left[\rho(x_i^-(t),t) + \rho(x_i^-(t),t) \right] \ .\\ \end{split}$$
Then
$$\frac{|\alpha_i|^2(t)}{8} - \xi'(m_i(t)) = 0 \ , \\ \end{split}$$
and
$$\begin{aligned} &\text{Coagulation} : \quad \frac{dm_i}{dt} = \overline{\rho}_i(t) \sqrt{8\xi'_i(m_i)} \ .\\ \end{aligned}$$
Fragmentation : \quad \frac{dm_i}{dt} = -\overline{\rho}_i(t) \sqrt{8\xi'_i(m_i)} \ , \ . \end{split}

Gershon Wolansky (Technion)

Т

Ben Gurion University, 2007 25 / 26

3

while the particle's orbit satisfies the Rankine-Hugoniot condition:

$$\dot{x}_{i} = \frac{1}{2} \left[\psi_{x}(x_{i}^{+}(t), t) + \psi_{x}(x_{i}^{-}(t), t) \right]$$
$$:= \frac{\partial}{\partial x} \psi_{0}(x_{i}(t), t) + \sum_{j \neq i} \alpha_{j}(t) \frac{x_{i}(t) - x_{j}(t)}{|x_{i}(t) - x_{j}(t)|} .$$
(7)

3

Figure: A representation of a reversible solution. Bold curves: particle orbits. Bold dots: observers positions at time t. Light curves: the characteristic curves for forward (res. backward) solution in the vicinity of type (I) (res. type (II)) orbit. Dashed light lines: the characteristic curves for forward (res. backward) solution in the vicinity of type (II) (res. type (I)) orbit.

Figure: Same as in Fig. **??**, where the relaxation is emphasized in the magnifying lens.

3

• • = • • = •