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Abstract

The problem of optimal transportation was proposed my Monge in 1781. It became very popular in the last decades,

since the pioneering monograph of Yan Brenier in 1987 on vector rearrangements. Since then, a long list of authors found

beautiful connections between this concept and various fields in mathematics, such as PDE, probability, fluid dynamics,

geometry and functional analysis. In this talk I’ll consider optimal transportation as an extended Lagrangian formalism

and discuss some aspects of dynamics which are naturally related to this point of view.



Overview

• Some fundamental problems in a nutshell

• The Monge problem and Kantorovich relaxation

• Dual formulation

• Extended Lagrangians

• Applications:

(I) Circle maps and rotation numbers

(II) Steady flow, optimal networks

(III) Dynamics of adhesive particles



Let ρ(x, t) be a density of a cloud in a domain Ω,

∫

Ω

ρ(x, t)dx = 1 .

Can we identify the particle’s velocities?

Look for a velocity field ~v(x, t) so that

∂ρ

∂t
+∇ · (ρ~v) = 0 .

Can ~v be determined? Is it unique?

If ~v0 is determined and ~ζ is a free divergence vector field supported on Ω, then

~v(x, t) = ~v0(x, t) +
~ζ(x, t)

ρ(x, t)

is also a transporting field.

Helhmoltz Decomposition: If ρ > 0 on a compact manifold Ω, then any field ~v on Ω can

be decomposed as

~v = ∇φ +
~ζ

ρ
; ∇ · ~ζ = 0 .



Does φ exists? Attempt to solve the equation for φ

∇ · (ρ∇φ) = −∂ρ
∂t

for any t on Ω.

This is elliptic equation (and solvable) only if ρ > 0 and smooth enough on Ω.

Can we identify a unique velocity field ~v if the density ρ(x, t) is extended to an orbit of

measures µ(t)(dx), such as

µ(t)(dx) =
∑

mi(t)δXi(t)

where
∑

mi(t) = 1 and Xi(·) : R → Ω are continuous orbits?

To avoid problems at infinity, we assume that Ω is a compact manifold. For example,

the flat torus in R
k.



. A fundamental problem:

Given a density field ρ(x, t) of a cloud on Ω× [0, 1], which assumptions would guarantee

a unique velocity field ~v which transports ρ so that

∂ρ

∂t
+∇ · (ρ~v) = 0 .

Also, what is the pressure field acting on the cloud:

∇P =
∂~v

∂t
+ ~v · ∇~v ?

”Inverse” problem

Given a pair of densities ρ0(x), ρ1(x) and a prescribed pressure field P = P (x, t), is it

possible to find a unique pair ρ(x, t), ~v(x, t) verifying

∂ρ

∂t
+∇ · (ρ~v) = 0 ;

∂~v

∂t
+ ~v · ∇~v = ∇P

subjected to the end conditions

ρ(x, 0) = ρ0(x) ; ρ(x, 1) = ρ1(x) ?



The Monge problem(1781)

Given µ0, µ1 a pair of probability Borel measure on Ω (metric space).

A Borel map T push forward µ0 to µ1:

T#µ0 = µ1 ⇐⇒ µ0
(

T−1(A)
)

= µ1(A) ∀A ∈ σ(Ω) .

Equivalently,
∫

Ω

φ(T (x))µ0(dx) =

∫

Ω

φ(x)µ1(dx) ∀φ ∈ C0(Ω) .

Given a cost function c : Ω× Ω→ R, the Monge problem is

M := min
T#µ0=µ1

∫

Ω

c(x, T (x))µ0(dx) . (M)

Remark: If µ0 contains an atom, then there is, in general, no mapping T which pushes

µ0 to µ1.



Kantorovich relaxation (1942)

K := inf
λ

∫ ∫

c(x, y)λ(dx, dy) ; π
(0)
# λ = µ0 , π

(1)
# λ = µ1 (K)

Here π(i), i = 0, 1 are the natural projections of Ω× Ω on its factors.

Compactness of C∗ implies the existence of a minimizer of (K).

The condition π
(0)
# λ = µ0 , π

(1)
# λ = µ1 is equivalent to

∫

Ω

∫

Ω

(φ(x)− ψ(y))λ(dxdy) =

∫

Ω

φ(x)µ0(dx)−
∫

Ω

ψ(x)µ1(dx) .

(K) is reduced to (M) if the minimizer is attained at

λ = δy−T (x)µ0(dx) .

Therefore

K ≤M .

Surprising result: If µ0 has no atoms, then K = M (Ambrosio)



Examples: Discrete cases

Let x1, . . . xN ∈ Ω, y1, . . . yN ∈ Ω. Let Ci,j := c(xi, yj). For

µ0 =
1

N

N
∑

1

δxi
, µ1 =

1

N

N
∑

1

δyi

we get the marriage problem:

M = min
T∈SN

N
∑

i=1

Ci,T (i) .

Kanterovich: If

µ0 =

N
∑

1

αiδxi
, µ1 =

N
∑

1

βiδyi

where α1, βi > 0,
∑N

1 αi =
∑N

1 βi = 1 then

K(µ0, µ1) = inf
λ∈Γ







N
∑

i=1

N
∑

j=1

λi,jCi,j ; Γ := (λ)i,j ≥ 0 ,
∑

i

λi,j = βj,
∑

j

λi,j = αi .







Birkhoff Theorem: If αi = βi = 1/N for 1 ≤ i ≤ N then all the extreme points of

Γ are permutation matrices.

Conclusion: In the case of the marriage problem M = K.



Dual formulation

Given

Γ: = {φ, ψ ∈ Lip(Ω) ; φ(x)− ψ(y) ≤ c(x, y) ∀x, y ∈ Ω}

The dual formulation is:

E = max
φ,ψ∈Γ∗

∫

Ω

φ(x)µ0(dx)− ψ(x)µ1(dx) (E) .

So:
∫

Ω

φ(x)µ0(dx)− ψ(x)µ1(dx) =

∫

Ω

∫

Ω

(φ(x)− ψ(y))λ(dxdy)

≤
∫

Ω

∫

Ω

c(x, y)λ(dxdy) .

In particular

E ≤ K ≤M .

If µ0 has no atoms there is an equality E = M .



In particular, φ(x)− ψ(y) = c(x, y) in the support of the optimal measure and

φ(x)− ψ(T (x)) = c(x, T (x)) ≤ c(x, y) ∀ y ∈ Ω , x ∈ Supp(µ0) . So

∇ψ ◦ T = −∇yc(x, T (x)) ; ∇φ = ∇xc(x, T (x)) .

Special case: Quadratic cost c(x, y) = |x− y|2/2. Then the optimal map satisfies

T (x) = x−∇φ(x) = ∇
(

x2

2
− φ(x)

)

≡ ∇Φ(x) .

Φ is a convex function. Indeed, the optimal pair satisfies

φ(x) = min
y
{ψ(y) + c(x, y)} =

x2

2
+ min

y

{

ψ(y) +
y2

2
− x · y

}

; .

=
x2

2
− Ψ∗(x)

where Ψ(y) = y2

2 + ψ(y).

Brenier: Any mapping T : Ω → Ω has a convex representation. There exists convex Φ

and a map S#µ0 = µ0 so that T = ∇Φ ◦ S. The only optimal map is T = ∇Φ.

This result is generalized for any convex, homogeneous cost c(x, y) = c(|x− y|).



Another aspect: McCann interpolation

µt = T
(t)
# µ0

where

T (t)(x) = (1− t)x + t∇Φ .

Orbits of McCann interpolation never intersect!

T (t)(x) = T (t)(y) =⇒ ∇Φ(x)−∇Φ(y) = −1− t

t
(x−y) =⇒ (∇Φ(x)−∇Φ(y))·(x−y) < 0 .

T (t) is an optimal map for the quadratic transport from µ0 to µt:

T (t)(x) = ∇
(

(1− t)x2

2
+ tΦ(x)

)

and M(µ0, µt) :=
∫

Ω |T (t)(x)− x|2µ0(dx) = t
∫

Ω |∇φ(x)|2µ0(dx).



Extended Lagrangian formulation

Assume that the distribution of particles at time t is given by a positive measure µ(t) on

Ω. We usually denote a trajectory of probability measures µ(t), 0 ≤ t ≤ T by µ. We

denote the set H2[0, T ] as all such trajectories for which

‖µ‖22,T := inf
~E

∫ T

0

∣

∣

∣

∣

∣

d ~E(t)

dµ(t)

∣

∣

∣

∣

∣

2

µ(t)(dx)dt <∞ (∗)

∂µ

∂t
+∇x · ~E(t) = 0

in the sense of distributions.

Some properties of H2:

Proposition: If µ ∈ H2 then t→ µ(t) is Holder 1/2 in the C∗ topology equipped with

the norm

d(µ1, µ2) := sup
|∇φ|≤1

∫

Ω

φ(x) (µ1(dx)− µ2(dx)) .

The Kantorovich problem (quadratic cost):

K(µ0, µ1) = T−1 inf
{

‖µ‖22,T ; µ ∈ H2,T , µ(0) = µ0, µ(T ) = µ1 .
}



Examples:

• If µ(t) have a density ρ = ρ(x, t) then d ~E(t)/dµ(t) := ~u(x, t) is a velocity field and

∂ρ

∂t
+∇ · (ρ~u) = 0 , ‖µ‖22,T =

∫ T

0

∫

Ω

ρ(x, t)|~u|2(x, t)dxdt .

• If µ(t) = δX(t) where X ∈ C1 then

~E(t) = Ẋ(t)δX(t) , ‖µ‖22,T =

∫ T

0

|Ẋ|2dt .

• If µ(t) =
∑

imi(t)δXi(t) where Xi ∈ C1, mi(t) ≥ 0,
∑

imi(t) = 1, then µ ∈

H2,T if ṁi(t) = 0 whenever mi(t) 6= mj(t) for any i 6= j. In this case ‖µ‖22,T =

∑

i

∫ T

0 mi(t)|Ẋ(t)|2dt.



Application to circle maps:

Let Ω = S
1 and µ(t) := µ(t+1). Identify S

1 with Rmod1. If there exists a velocity field

u(x, t) on S
1 × S

1, let

ẋ = u(x, t) .

The rotation number is defined by r = limt→∞
x(t)
t .

Theorem: If µ ∈ H2 is a circle map, then the rotation number exists. It is also possible to

define a strong topology on µ ∈ H2 for which the rotation number is Lipshitz continuous.

Examples:

• µ(t)(dx) = δX(t) where X(t) ∈ C1(S1). X(t + 1) = X(t) + d ∀t ∈ R where

d := Deg(X) ∈ Z. Then r = d.

• Mixture: µ(t) =
∑N

1 βiδXi(t),
∑

βi = 1. Then r =
∑

βiDeg(Xi).

• Rigid orbits: µ(t)(dx) = g(x−X(t))dx. r = Deg(X)
(

1− 1
∫

S1 g−1dx

)

.



For a given pair of probability measures µ0, µ1, the extended action principle is defined

by

A(µ0, µ1) := min
µ

1

2
‖µ‖22,T ; µ(0) = µ0, µ(T ) = µ1 .

Benamou and Brenir

If µ0 = ρ0dx, µ1 = ρ1dx are ”smooth enough” then A(µ0, µ1) is the the Monge optimal

for the transport µ0 → µ1 for quadratic cost. Moreover, the velocity field ~u verifying

∂ρ

∂t
+∇ · (ρ~u) = 0

defines the optimal map:

ẋ = ~u(x, t) , x(0) = x =⇒ T (x) = x(T ) .



Extended action subjected to a prescribed pressure:

The extended Lagrangian with a prescribed pressure P and end conditions:

AP,T (µ0, µ1) = inf
µ(·)∈Γ(µ0,µ1)

[

1

2
‖µ‖22,T −

∫ T

0

∫

Ω

P (x, t)µ(t)(dx)dt

]

.

where

Γ(µ0, µ1) :=
{

µ(·) ∈ H2, , µ(0) = µ0 ; µ(T ) = µ1 .
}

The associated Hamilton-Jacobi equation

∂φ

∂t
+

1

2
|∇xφ|2 + P = 0 ; (x, t) ∈ Ω× (0, T ) ,

and the continuity equation

∂µ(t)
∂t

+∇x ·
(

µ(t)∇xφ
)

= 0 .

Theorem: For any pair of end conditions µ0, µ1 there exists an orbit µ ∈ H2([0, T ])

which realizes the infimum of AP,T .



Some definitions:

The cost function:

CP (x, y, τ, t) := min

{∫ t

τ

(|ẋ|2
2

+ P (x(s), s)

)

ds ; x : [τ, t]→ Ω

}

where x(τ ) = y, x(t) = x. In particular, if P = 0: C0(x, y, τ, t) :=
|x−y|2
2(t−τ) .

i) A forward (res. backward) solution is defined, for t ∈ [0, T ], by

φ(x, t) := miny {CP (y, x, 0, t) + φ(y, 0)} , res. φ(x, t) := supy {−CP (x, y, t, T ) + φ(y, T )}.

ii) If φ(·, 0) and φ(·, T ) are Lipschitz on Ω then both φ and φ are Lipschitz on Ω× [0, T ].

iv) (φ, φ) is called a reversible pair if φ = φ on Ω for t = 0 and t = T . In this case,

φ(x, t) ≥ φ(x, t) on Ω× [0, T ].

v) If (φ, φ) is a reversible pair, then the reversibility set is defined by K0(φ, φ) :=
{

(x, t) ∈ Ω× (0, T ) ; φ(x, t) = φ(x, t) := ψ(x, t)
}

. ∇xψ(x, t) = ∇xφ = ∇xφ is

Lipschitz on the reversibility set. We call ψ a reversible solution.



Theorem: [W] If φ0, φ1 maximizes
∫

Ω

(φ1µ1(dx)− φ0µ0(dx))

subjected φ1(x)− φ0(y) ≤ CP (x, y, 0, T ) for any x, y ∈ Ω, then {φ0, φ1} is a reversible

pair. The reversibility function ψ verifies the Hamilton-Jacobi equation, and the optimal

solution of AP is supported in K0(φ0, φ1) and verifies the continuity equation subjected

∇φ = ∇ψ. Moreover, the flow

dT(t,s)

dt
= ∇ψ

(

T
(t)
(x), t

)

; T(t,t) := Id

transports this orbit T
(t,s)
# µ(s) = µ(t). The limit limt→T,s→0T

(s,t) := T if exists as a Borel

map, verifies

• The particles of the optimal flow subjected to a prescribed pressure do not collide

(and, in particular, do not stick).

• There are no shock waves for the Hamilton-Jacobi equation. Indeed, ψ is a reversible

solution, as claimed.



Steady flows under prescribed sources and sinks

Let Σ be distributed measure of sources and sinks on Ω.

Σ = Σ+ − Σ− ,

∫

Ω

Σ+(dx) =

∫

Ω

Σ−(dx)

For example:

Σ± =

N
∑

1

λ±i δx±i
,

N
∑

1

λ+i =

N
∑

1

λ−i := Λ , λ±i > 0 .

Define

‖µ‖22,T,Σ := inf
~E

∫ T

0

∫

Ω

∣

∣

∣

∣

∣

d ~E

dµ(t)

∣

∣

∣

∣

∣

2

µ(t)(dx)dt ; ∂tµ +∇x ·
−→
E = Σ .

Consider

AP,T,Σ(µ0, µ1) := inf
µ(·)∈Γ(µ0,µ1)

[

1

2
‖µ‖22,T,Σ −

∫ T

0

∫

Ω

P (x, t)µ(t)(dx)dt

]

.

AP,Σ := lim
T→∞

T−1AP,T,Σ(µ0, µ1) .



In this limit, the end conditions µ0, µ1 are ”forgotten” and

AP,Σ = inf
~E,µ

∫

Ω





1

2

∣

∣

∣

∣

∣

d ~E

dµ

∣

∣

∣

∣

∣

2

− P



µ(dx) ; ∇x ·
−→
E = Σ .

Dual formulation

A = inf
µ

sup
φ∈C1

b

[

−
∫

Ω

[

P +
1

2
|∇φ|2

]

µ(dx) +

∫

Ω

φΣ(dx)

]



P := sup
Ω
P .

For any E ≥ P the Riemannian (semi-)metric associated with the Maupertuis’ action

principle

dσE =
√

E − P (x)d|x| , E > P .

The geodesic distance is DE(·, ·). A geodesic arc connecting two point x, y coincides with

ẍ +∇xP (x(t)) = 0 x(0) = x0, x(T ) = x1 ,

corresponding to the energy level |ẋ|2/2 + P (x) = E. Here T = Tx0,x1(E) is the time of

flight from x0 to x1 (which is, of course, a function of E as well).

KE(Σ+,Σ−) :=
N
∑

i=1

N
∑

j=1

AE
i,jDE(x

+
i , x

−
j ) := min

A∈Q

N
∑

i=1

N
∑

j=1

Ai,jDE(xi, xj) ,

Q :=







(A)i,j ≥ 0 ;

N
∑

i=1

Ai,j = λ−j ,

N
∑

j=1

Ai,j = λ+i .









Theorem: The minimum of the steady action is

A = max
E≥P

[√
2KE (Σ−,Σ+)− E

]

.

The optimal µ = µ(dx) is supported on the bi-graph GE0 = ∪AE
i,j>0

LE(i, j) of geodesic

curves LE(i, j) connecting x
+
i to x−j w.r to dσE,

Case a: E > P . Then there exists an action minimizer supported on the bi-graph GE

so that µ (LE(i, j)) > 0 only if AE
i,j > 0. To wit:

µ (LE(i, j)) = AE
i,jTi,j(E) ,

where Ti,j(E) = Txi,xj
(E).



Case b: Somewhere over the rainbow: If E = P is the maximizer of A then the

following holds: Let µ0 be the measure supported on GP . Then there exists β ∈ [0, 1) so

that
N
∑

i=1

N
∑

j=1

AE
i,jTi,j(E) = 1− β ≤ 1 .

µ = µ0 + βδx0 , P (x0) = P .

In both cases (a) and (b), the following claim is valid:

Time/Flux duality: The expectation of the inverse flow time, Eµ

(

T−1
)

equals the

total in(out) flux Λ :=
∑N

i=1 λi = −
∑N

j=1 λj:

Eµ(T
−1) :=

N
∑

i=1

N
∑

j=1

µ (LE0(i, j))T
−1
i,j (E) = Λ .



Adhesive particles and optimal mass transportation

(zero-pressure dynamics)

∂ρ

∂t
+∇x · (ρ~u) = 0 ;

∂(ρ~u)

∂t
+∇x · (ρ~u⊗ ~u) = 0 .

This system can be viewed as an initial value problem, subjected to

ρ(x, 0) = ρ0(x) ≥ 0 , ~u(x, 0) = ~u0(x) .

As long as the solution is classical (namely, continuously differentiable), the momentum

equation can be written as the Burger’s equation

∂~u

∂t
+ ~u · ∇x~u = 0 .



Zero pressure and dynamics of adhesive particles

• Zeldovich (1970): Sticky particle model.

• Existence: E, Rykov and Sinai (1996) Brenier and Grenier (1998), ect.

• Uniqueness: Bouchut and James (1999)

Non-reversible dynamics (entropy solutions) and singular shock waves.

A shock wave can be created out of smooth initial data. Two (or more) shock waves

may collide to create a stronger shock. This is COAGULATION.

The arrow of time leads to smaller number of stronger shocks. Colliding particles will

never sepatare!

How to model FRAGMENTATION?



Some observations

• Fundamental principles of physics are time reversible. (It is us, the observers, who

are, unfortunately, not reversible!)

• Energy is lost in the inelastic collision. Hence, the sticking particle dynamics is not

reversible.

• As a result, the solutions of the zero-pressure gas dynamics corresponding to sticking

particle are (generalized) entropy solutions: (no refractive shocks, no spontaneous

emergence of refractive waves).

• Hence, there are no fragmentation waves!

• The process of fragmentation is currently described by phenomenological kernels. It

is based on ad hoc probabilistic assumptions which have nothing to do with the

fundamental principle of physics!

• In physics, reversible processes are usually derived from an action principle.



. Resolution of coagulating and fragmenting orbits:

A very strong and short range repulsive force acting when the density is very high.



System of finite number of particles

For an orbit ~x(t) = (x1(t), . . . xN(t)) 0 ≤ t ≤ T , the action is

A(~x;T ) :=

∫ T

0

L (m1ẋ1, . . .mN ẋN) dt

where

L(p1, . . . pN) :=

N
∑

1

|pi|2
2mi

and

A(~x(0), ~x(1);T ) :=

min
~x(·)

{

A(~x;T ) ; ~x(0) = ~x(0) , ~x(T ) = ~x(1)
}

.

Note that here the masses mi of the particles are constants.

In order to implement collisions into an action principle, we must introduce inner energy,

and allow particles to exchange mass.



State space: Γ is the set of N orbits (xi(t),mi(t)) so that

a) xi ∈ C([0, T ]; Ω), 1 ≤ i ≤ N .

b) mi are sequentially constants, so dmi/dt = 0 if xi(t) 6= xj(t) for any i 6= j.

c) If for τ ∈ (0, T ) there exists a subset I ⊂ {1, . . . N} for which xi(τ ) = xj(τ ) ≡ x for

all i, j ∈ I while xl(τ ) 6= x for l 6∈ I , then
∑

i∈I
mi(t

−) =
∑

i∈I
mi(t

+) .

Inner energy: There is a function ξ = ξ(m), called the inner energy of a particle of

mass m, such that

ξ ∈ C(R+) , ξ(0) = 0, ∀m1,m2 > 0

=⇒ ξ(m1) + ξ(m2) < ξ(m1 +m2) .

Note that it is satisfied by any convex function on R
+ for which



ξ(0) = 0. For example:

ξ(m) = −mσ if 0 < σ < 1 , or ξ(m) = mσ if σ > 1 .

The dynamics of this system is obtained by the action: A : Γ → R defined for γ :=

(x1,m1 . . . xN ,mM) by

A(γ;T ) :=
N
∑

1

∫ T

0

[

1

2
mi(t) |ẋi|2 − ξ(mi(t))

]

dt

Theorem If γ is a minimizer of the action A within the set Γ subjected to the end

conditions γ(0) =
(

x
(0)
1 ,m

(0)
1 . . . x

(0)
N ,m

(0)
N

)

, γ(T ) =
(

x
(T )
1 ,m

(T )
1 . . . x

(T )
N ,m

(T )
N

)

, then γ

preserves both the linear momentum

P :=

N
∑

1

mi(t)ẋi(t)

and energy

E :=
1

2

N
∑

1

mi(t) |ẋi(t)|2 +
N
∑

1

ξ(mi(t)) .



Implementation of the Inner energy

We now wish to extend the action principle to orbits composed of (Borel) measures in Ω.

LetM be the set of such probability Borel measures. For any µ ∈M set µ = µpp+ µ̃ to

be its unique decomposition into its atomic and non-atomic parts. For each µ ∈ M we

define the inner energy Ξ(µ) as

Ξ(µ) := Ξ(µpp) =
∑

x;µ({x})>0
ξ (µ({x})) .

For any µ ∈ H2([0, T ]) define the action as:

AΞ(µ;T ) :=
1

2
‖µ‖22,T −

∫ T

0

Ξ(µ(t))dt .

We now pose the following assumptions on ξ:

ξ : R
+ → R

+ , lim
m→0

ξ(m)

m
= 0 (∗∗)

Remark: The assumption ξ(m) = mσ for σ > 1 verifies (**).



Lemma: Suppose the inner energy function ξ satisfies (**) Then the action AΞ(·, T ) is

lower-semi-continues (l.s.c) with respect to

C ([0, T ];C∗(Ω)).

Theorem: Given µ0, µ1 ∈M, there exists an action minimizer

µ ∈ H2[0, T ] for

A(µ0, µ1;T ) := min
µ
AΞ(µ, T )

subjected to µ(0) = µ0 , µ(T ) = µ1 .

Remark: We cannot expect a unique minimizer. Even though ‖ ·‖2 is a convex function

on H2, the functional −
∫ T

0 Ξ
(

µ(t)
)

dt is not convex!

What is the Euler Lagrange equation associated with the action AΞ ?



Relaxation:

We first consider a relaxation of the inner energy functional as follows: Definition: Let

J : R
+ → R

+ be a convex function satisfying J(0) = J
′
(0) = 0. Let θ ∈ C∞0 (Ω;R+)

such that θ(0) = 1 ≥ θ(x) for all x ∈ Ω. For each ε > 0, the inner energy function ξ

corresponding to J is defined by

ξ(m) :=

∫

Ω

J(mθ(x))dx ; m ≥ 0 .

Let θε(x) := θ(x/ε) and

Ξε(µ) := ε−1
∫

Ω

J

(∫

Ω

θε(x− y)µ(dx)

)

dy .

The following is evident:

Lemma: For each ε > 0, µ → −
∫ T

0 Ξε
(

µ(t)
)

dt is continuous in the weak topology of

H2[0, T ].



Let now

Aε
Ξ(µ;T ) =

1

2
‖µ‖22,T −

∫ T

0

Ξε
(

µ(t)
)

dt .

Theorem Given µ0, µ1 ∈M, there exists an action minimizer for

Aε
Ξ(µ0, µ1;T ) := min

µ
Aε
Ξ(µ;T ) .

Let µε a minimizer of Aε
Ξ. Since the set µε, 0 < ε < 1, is pre-compact in H2[0, T ], we

can look for a limit point of a subsequence of µε as ε→ 0.



Consider now the pair of equations

∂µ

∂t
+∇ · (µ∇xψ) = 0

∂ψ

∂t
+

1

2
|∇xψ|2 − Pε = 0 ,

where

Pε = −Ξ
′
ε(µ(t))(x,t) := ε−1

∫

Ω

J
′
(∫

Ω

θε(z − y)µ(t)(dz)

)

θε(x− y)dy . (1)



Theorem: If µ(ε) is a maximizer of the action Aε
Ξ then there exists a reversible-pair

solution (φ
(ε)
, φ)(ε) where Pε given by (1). The reversibility set K0(φ

(ε)
, φ(ε)) contains the

support of µ(ε) in Ω× (0, T ). In addition, the reversibility set is invariant under the flow

generated by the reversible solution

dT(ε)
(s,t)(x)

dt
= ∇ψ(ε)

(

T
(s,t)
(ε) (x), t

)

. (∗ ∗ ∗)

As ε→ 0, the particles’ orbits T
(s,t)
(ε) converge to a set-valued mapping T(s,t) : Ω→ B(Ω)

so that limε→0T
(s,t)
(ε) (x) ∈ T(s,t)(x) .



Suppose now an optimal transport is presented by the pair µ, φ where

µ(t)(dx) = ρ(x, t)dx +
∑

mi(t)δxi(t)dx ,
∫

Ω

ρ(x, t)dx +
∑

mi(t) = 1 . (2)

where xi(t) are smooth trajectories and mi(t) > 0 are smooth for t ∈ [0, T ].

The continuity equation takes the form

∂ρ

∂t
+∇x · (ρ∇xψ) +

∑

ṁi(t)δxi(t) = 0 .

and the momentum equation

∂ψ

∂t
+

1

2
|∇xψ|2 +

∑

ξ
′
(mi(t))1(xi(t)− x) = 0 ,

where 1(x) = 0 if x 6= 0, 1(1) = 1.



.

Reversible solution in the limit ε = 0

The limit action function

C(y, x, τ, t;µ) := inf
x







∫ t

τ





1

2
|ẋ(s)|2 −

∑

µ(s)({x})>0
ξ
′
(µ(s)({x}))1(x(s),s)



 ds







where the infimum is taken on the set of orbits x : [τ, t] → Ω satisfying x(τ ) = y,

x(t) = x.

Fragmentation:

ψ(x, t) = inf
y∈Ω

[C(y, x, 0, t;µ) + φ0(y)] ≤ φ(x, t) := inf
y∈Ω

[|x− y|2
2t

+ φ0(y)

]

(3)

Coagulation:

φ(x, t) := sup
y∈Ω

[

− |x− y|2
2(T − t)

+ φ1(y)

]

≤ sup
y∈Ω

[C(x, y, t, T ;µ) + φ1(y)] = ψ(x, t) (4)



t=T

t=0

Fragmentation
 orbit (type I)

Coagulation
 orbit (type II)

A representation of a reversible solution. Bold curves: particle orbits. Bold dots: observers positions at time t. Light

curves: the characteristic curves for forward (res. backward) solution in the vicinity of type (I) (res. type (II)) orbit.

Dashed light lines: the characteristic curves for forward (res. backward) solution in the vicinity of type (II) (res. type

(I)) orbit.

.



. Representation of the solution:

ψ(x, t) = ψ0(x, t) +
∑

i

αi|x− xi(t)| , ψ0 ∈ C1 .

ρi(t) :=
1

2

[

ρ(x−i (t), t) + ρ(x−i (t), t)
]

.

Then

|αi|2(t)
8

− ξ
′
(mi(t)) = 0 ,

and

Coagulation :
dmi

dt
= ρi(t)

√

8ξ
′
i(mi) .

Fragmentation :
dmi

dt
= −ρi(t)

√

8ξ
′
i(mi) , .

while the particle’s orbit satisfies the Rankine-Hugoniot condition:

ẋi =
1

2

[

ψx(x
+
i (t), t) + ψx(x

−
i (t), t)

]

:=
∂

∂x
ψ0(xi(t), t) +

∑

j 6=i
αj(t)

xi(t)− xj(t)

|xi(t)− xj(t)|
. (5)


