
Lecture 1

1 Examples of symmetries in ODE

y
′′

= w(x, y, y
′
)

A solution is invariant under y−shift y(x) =⇒ y(x) + c iff w = w(x, y
′
). In that case we can

reduce it to a first order ODE by z = y
′
, so

z
′
= w(x, z)

A solution is invariant under x−shift y(x) =⇒ y(x + c) iff w = w(y, y
′
). We can transform

to x = x(y) so x
′
= 1/y

′
, x

′′
(y)(y

′
)2 + x

′
y
′′

= 0 so y
′′

= −x
′′
/(x

′
)3 so

d2x

dy2
= −

(
dx

dy

)3

w

(
y,

(
dx

dy

)−1
)

and can be reduced to first order z = x
′
,

z
′
= −z3w

(
y, z−1

)
.

In some cases we cannot see any symmetry directly:

y
′′

= (x− y)(y
′
)3

but a systematic study show a rich structure of symmetries. This hints that this is a special
equation. Indeed x = x(y) implies

x
′′

= y − x

is a linear equation!
The object is to study a systematic way to discover the symmetries of ODE’s and PDE’s,

and how to exploit them to establish explicit solutions, whenever possible. This way we may
sometime uncover hidden structures (such as linearity), ect.

Another application: If a system of symmetries is known (from, say, geometrical or phys-
ical reasons), then we may discover the general form of equation subjected to this symmetry.

2 Pre-requisite

Elementary courses in ODE and PDE, basic notions in algebra (axioms of a group). We shall
try to avoid the notion of a differentiable manifold, since a symmetry is, in our case, a local
property.
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3 A Lie group is a connected subset

G ⊂ Rm and a function G × G → G which is continuous (in the induced topology) and
satisfies the group axioms.

Examples:

• Rm (+)

• The general linear group GL(n,R)- invertible n×n matrices under multiplications (open
subset of Rn2

).

• SL(n) given by det(A) = 1.

• Special Orthogonal group SO(n) ⊂ SL(n) given by AAT = I. Example: SO(2) is the
rotation in the plane:

G =
{(

cos θ − sin θ
sin θ cos θ

)
, 0 ≤ θ ≤ 2π

}

identified with the unit circle S1 w {eiθ}.
• The affine group

A ∈ GL(n + 1,R) ;A :=
(

A a
0 1

)
, A ∈ GL(n,R), a ∈ Rn

also satisfies (A, a) · (B, b) = (AB, a + Ab).

• The Euclidian group is a subgroup of the affine group where A ∈ SO(n). Example, n =
2. We can identify (x, y) with z = x + iy ∈ C and set G = {(eiθ, z) ; θ ∈ [0, 2π), z ∈ C
with the multiplication (eiθ1 , z1) · (eiθ2 , z2) =

(
ei(θ1+θ2), z1 + eiθ1z2

)
.

• If n = 2r even and

J :=
(

0 Ir

−Ir 0

)

then
Sp(2r) := {A ∈ GL(2r,R); AT JA = J

is the Symplectic group.

4 Action of Lie groups

G on M ⊂ Rd is given by a function Ψ(G×M) → M such that

i) If (h, x) ∈ G×M then Ψ(g, Ψ(h, x)) = Ψ(g · h, x).

ii) For all x ∈ M Ψ(e, x) = x.

iii) Ψ(g−1, Ψ(g, x)) = x.
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Examples of action of (R,+) (m = 1)

• Ψ(t, x) = x + ta for x, a ∈ Rd, t ∈ R.

• Scaling transformations Ψ(λ, x) = (eα1tx1, . . . e
αnxd) where αi ∈ R and x ∈ Rd.

• Ψ(t, (x, y)) =
(

x
1−tx , y

1−tx

)

• Ψ(t, x, y, z) = (x cos t + y sin t,−y cos t + x sin t, z + t).

Examples of other group actions

1. GL(R,m) acts on Rm.

2. Same group acting on PRn−1. For A :=
(

α β
γ δ

)
∈ GL(R, 2)

p → A(p) :=
αp + β

γp + δ

where PR1 is identified with R+ ∪ {∞}.
3. The affine group acting on Rm via

(A, a)(x) := Ax + a

4. Left Lg(h) = g−1 · h, right Rg(h) = h · g and adjoint Adg(h) = g−1 · h · g actions of a
group GL(n,R) on itself.

5 Vector fields

On open domain M ⊂ Rm: A directional derivative for functions on:

X =
m∑

1

ξi∂xi , ξi ∈ C∞(M)

X : C∞(M) → C∞(M) : φ → X(φ) :=
m∑

1

ξi
∂φ

∂xi
.

Theorem 1. If L : C∞(M) → C∞(M) is linear and satisfies Libnitz rule

L(φ1φ2) = φ1L(φ2) + φ2L(φ1)

then L(φ) = X(φ) for some v-f X.
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The v-f X generate the action:

d

dt
Ψ(t, x) = X (Ψ(x, t)) , Ψ(x, 0) = x .

We also denote Ψ(t, x) := exp(tX) ◦ x.

X(φ) =
d

dt
φ (exp(tX))t=0

We also have
φ

(
exp(tX)(x)

)
= φ(x) + X(φ)(x) +

1
2
X2φ(x) + . . .

Examples

• ∑
ai∂xi .

• ∑
αixi∂xi .

• v = x2∂x + xy∂y.

• y∂x − x∂y + ∂z.

Properties of v-f: Linearity X(f + g) = X(f) + X(g) and Leibniz’ rule X(fg) =
gX(f) + fX(g).
Transformation law: A mapping F : M → M

′
implies a mapping from the vectorfields on

M to vectorfields on M
′

as follows: For φ ∈ C∞(M
′
) we have φ ◦ F ∈ C∞(M) and for a

vectorfield X on M we define

F∗[X](φ)(F (x)) ≡ X(φ ◦ F )(x)

In coordinates form (we shall use Einstein convention) xi′ = xi′(xi) → ∂xi = ∂xi
′

∂xi ∂xi′ :

X → X′ = bi′∂i′ , bi′ =
∂xi

′

∂xi
bi

A practical way to do it:

Xxn = bi∂xixn = bn, Xxn′ = bn′

so
X = (Xxi)∂xi = (Xxi′)∂xi′

Example X = x∂x + y∂y under u = y/x, v = xy:

Xu = 0 , Xv = 2xy

so X
′
= 2v∂v.

Another example: Rotation X = −y∂x + x∂y, r = (x2 + y2)1/2, φ = arctan(y/x).
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Lemma 5.1. Given a vectorfield X on M consider exp(tX) ◦ x as a mapping from M × R
to M . Then

exp(tX)∗(X) = exp(tX)∗(∂t) = X

Theorem 2. There are local coordinates s1, . . . , sm transforming X into ∂s1.

To prove we have to solve

Xs1 = 1, Xsj = 0 , j = 2, . . . n .

which is a set of n independent PDE. Geometrical intuition...
Lie brackets [X,Y](φ) = XYφ−YXφ.

Explicit writing:

X =
∑

ξi∂i,Y =
∑

ηi∂i, [X,Y] =
∑

i

∑

j

(ξj∂jηi − ηj∂jξi) ∂i

Example: X = y∂x,Y = x2∂x + xy∂y,

[X,Y] = xy∂x + y2∂y

Properties: Bilinearity, Skew-symmetry and Jaconi-identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0

Proof: We may assume X = ∂xi . Then [X,Y] =
∑

j (∂iηj) ∂j and the rest is Libnitz.
Invariance under transformation of coordinates: [X,Y]

′
= [X

′
,Y

′
]. If y = F (x) then

[X,Y]
′
(φ)(y) = [X,Y](φ ◦ F )(x) = X (Y(φ ◦ F ))− ... = X

(
Y
′
(φ) ◦ F

)
(x)

= X
′
Y
′
(φ)(y) − ...

Theorem 3. Let

Ψ(t, x) = exp(−
√

tW) exp(−
√

tV) exp(
√

tV) exp(
√

tW)

Then
[V,W] =

d

dt
Ψ(x, t)t=0 .

Proof. Let y = exp(
√

tV)x, z = exp(
√

tW)y, u = exp(−√tV)z hence

Ψ(t, x) = exp(−
√

tW)u

so
φ(Ψ(t, u)) = φ(u)−

√
tWφ(u) +

t

2
W2φ(u) + O(t3/2)

φ(u) = φ(z)−
√

tVφ(z) +
t

2
Z2φ(z) + O(t3/2)

so

φ(Ψ(t, u)) = φ(z)−
√

t (Wφ(z) + Vφ(z)) +
t

2
(
W2φ(z) + V2φ(z) + 2VWφ(z)

)
+ O(t3/2)
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Next
φ(z) = φ(y) +

√
tWφ(y) +

t

2
W2φ(y) + O(t3/2)

so

φ(Ψ(t, u)) = φ(y)−
√

tVφ(y) +
t

2
(
V2φ(y) + 2VWφ(y)− 2WVφ(y)

)
+ O(t3/2)

Next
φ(y) = φ(z) +

√
tVφ(x) +

t

2
V2φ(x) + O(t3/2)

so

φ(Ψ(t, u)) = φ(x) + t (VWφ(x)−WVφ(x)) + O(t3/2) = φ(x) + t[V,W]φ(x) + O(t3/2)

Theorem 4. [X,Y] = 0 iff

exp(tX) exp(tY) = exp(tY) exp(tX)

for any x, t.

Proof. Suppose X = ∂x1 . Then exp(tX)(x1, . . . xn) = (x1 + t, x2, . . . , xm). For Y =
∑

ηi∂xi

it follows that [X,Y] =
∑

(∂x1ηi) ∂xi = 0, so ηi = ηi(x2, . . . xm) for all i. Then the system of
equations

dxi/dt = ηi(x2, . . . , xm) 1 ≤ i ≤ n

defines exp(tY). In particular x1(t) = x1 +
∫ t
0 η1(x2(t), . . . xn(t)) under exp(tY). It follows

that

exp(tY) exp(tX)(x1, . . . xn) =
(

x1 + t +
∫ t

0
η1(x2(τ), . . . xn(τ))dτ, x2(t), . . . xn(t)

)

= exp(tX) exp(tY)(x1, . . . xn)
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