
Lecture 10

1 Applications to PDE

There is a direct generalization of the symmetry methods yo PDE, and even system of PDE’s.
Here the independent variable x = (x1, . . . xq) is a vector in Rq and the dependent variable
u = (u1, . . . up) is in Rp. For a multi-index vector J = (i1, . . . iq), ij ∈ N ∪ {0} we denote the
derivative

∂Ju :=
∂|J |u

∂i1
x1 . . . ∂

iq
xq

where |J | = i1 + . . . + iq.
A system of PDE of order n is an equation of the form

Hk(x, ∂J1u1, . . . ∂Jsuk) = 0 , |J | ≤ n , k = 1 . . . p .

We now generalizes the notion of a symmetry point transformation on such a PDE. It is a
transformation ψ = (ψ(x), ψ(u)) : Rp+q → Rp+q given by

ψ(x) = ψ(x)(x1 . . . xq, u1, . . . up) ∈ Rq, ψ(u) = ψ(u)(x1 . . . xq, u1, . . . up) ∈ Rp

which maps the graph of any solution u = u(x) of the PDE to another solution ũ(x̃) of
the same PDE.

Let now

X =
q∑

1

ξi∂xi +
p∑

1

ηj∂uj

be a v-f on a domain in Rp+q. Its n− prolongation is defined on a domain of dimension

q

(
p + n

n

)
coordinates labeled (x1, . . . xq, . . . u1,(J), . . . up,J) where 0 ≤ |J | ≤ n:

Pr(n)X =
q∑

1

ξi∂xi +
p∑

j=1

ηj∂uj +
p∑

j=1

∑

|J |≤n

ηj,(J)∂uj,J

We now generalize the calculation of the prolongation η(n) from lecture 3 to the coefficient
η(J). Recall that the recursion formula

η(n) =
d

dx
η(n−1) − yn

d

dx
ξ .

This leads to a direct generalization for the case of multiple variables. Suppose, for simplicity,
that p = 1, so we have only one dependent variable. Then

η(j) =
dη

dxj
−

∑

i

ui
dξi

dxj
, η(j,k) =

dη(j)

dxk
−

∑

i

uj,i
dξi

dxk
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and so on... When we write these, apparently innocent expressions in details we get

η(n) = η,n + η,uu,n −
∑

i

ξi,nu,i −
∑

i

ξi,uu,nu,i (1.1)

η(nm) = η,nm + η,nuum + η,muun − ξi,nmu,i + η,uuu,nu,m −
∑

k

(ξk,nuu,m + ξk,muu,n)

−
∑

k

ξk,uuu,nu,mu,k+η,uu,nm−
∑

i

(ξi,nu,mi−ξi,mu,ni)−
∑

k

ξk,u(u,ku,mn+u,nu,mk+u,nku,m)

(1.2)

The condition that a given v-f X generates a symmetry of the PDE H = 0 of order n is

Pr(n)X(H) = 0 mod H = 0

with obvious generalization for a system.
Examples:

1. The heat equation u,11 − u,2 = 0. From (1.1,1.2)

η(2) − η(11) = η,2 + η,uu,2 − ξ1,2u,1 − ξ2,2u,2 − ξ1,uu,2u,1 − ξ2,uu,2u,2−
η,11 − 2η,1uu,1 + ξ1,11u,1 + ξ2,11u,2 − η,uuu2

,1 + 2
∑

k

u,kξk,uu,1

+
∑

k

ξk,uuu2
,1u,k − η,uu,11 + 2

∑

i

ξi,1u,1i − ξ1,uu,1u,11 − 2ξ2,uu,1u,12 + ξ2,uu,2u,11

(1.3)

The coefficient of u1,2 is 2ξ2,1 − ξ2,uu,1. It does not contain a multiple of the equation,
so it must be zero identically, so ξ2,1 = ξ2,u = 0 hence

ξ2 = α(x2) . (1.4)

The coefficient of u,1 is −ξ1,2−2η1,u +ξ1,11 and it must be zero since u1 does not appear
in the equation, so

−ξ1,2 − 2η,1u + ξ1,11 = 0 . (1.5)

The coefficient of u2
,1 is 2ξ1,u − η,uu and it must be zero as well:

2ξ1,u − η,uu = 0 . (1.6)

We now substitute u2 = u11 in (1.3). The coefficient of u2 is 2ξ1,1 − ξ2,2 − 2ξ1,uu,1. It
must be identically zero, so, with (1.6),

2ξ1,1 = ξ2,2 , ξ1,u = ηuu = 0 . (1.7)

Finally, the terms which are free of derivatives of u give, as expected, the heat equation
for η:

η,11 = η,2 . (1.8)
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From (1.4, 1.7) we get ξ1 = x1α
′
(x2)/2 + β(x2), and

ξ1,2 = α
′′
(x2)x1/2 + β

′
(x2) = 2η,1u ,

while η = γ(x1, x2) + uδ(x1, x2).... The symmetry fields are:

X1 = ∂x1 , X2 = ∂x2 , X3 = x1∂x1 + 2x2∂x2 , X4 = x2∂x1 − (1/2)x1u∂u

X5 = x1x2∂x1 + x2
2∂x2 − u(x2/2 + x2

1/4)∂u , X6 = u∂u, X7 = g∂u

where g = g(x1, x2) is a solution of the heat equation. These are, in fact, all the
symmetry generators, so they form an (infinite dimensional) Lie algebra (check!).

Let us now use the symmetries of the heat equation to obtain special solutions. From
X5 we get the transformation

x̃1 =
x1

1− tx2
, x̃2 =

x2

1− tx2
, ũ = u

√
1− tx2e

−tx2
1/4(1−tx2) .

From the trivial solution ũ = 1 we get the family of solutions (setting e.g. t = −1),

u =
e−x2

1/4(1+x2)

√
1 + x2

.

From here we can apply the shift in x2 via X2 to obtain the fundamental solution

u(x1, x2) =
e−x2

1/4x2

√
x2

The ”trivial” field X7 can also generate non-trivial solutions. For, let g1, g2 any two
solutions of the heat equation. Any X,Y vectorfields spanned by X1, . . .X6 we get

[X + g1∂u,Y + g2∂u] = [X,Y] + (X(g2)−Y(g1)) ∂u + g1∂uY − g2∂uX

which must be a symmetry as well. Let us take X = X4 and Y = X5. Since ∂uX4 =
−1/2x2∂u and ∂uX5 = −(x2/2 + x2

1/4) we get that

h := −x2g2,x1 − x1x2g1,x1 − x2
2g1,x2 − (x2/2 + x2

1/4)g1 + 1/2x2g2

must be a solution of the heat equation as well!

2. Laplace equation in R3:
∆u := u,11 + u,22 + u,33 = 0

We need to prolong the v-f

X = ξ1∂1 + ξ2∂2 + ξ3∂3 + η∂u

into second order, and find the coefficients η(11), η(22), η(33). Then Pr(2)X(H) = 0
implies

η(11) + η(22) + η(33) = (u,11 + u,22 + u,33)Q
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where Q is any function of u and its derivatives up to second order (why?).

We now compare the coefficients of the mixed derivatives of u. We obtain as a result
of somewhat long but straightforward calculation, that

ξ1,2 + ξ2,1 = 0 , ξ3,1 + ξ1,3 = 0 , ξ3,2 + ξ2,3 = 0 (1.9)

as well as that neither ξ1, ξ2, ξ3 are independent of u. In addition

ξ1,1 = ξ2,2 = ξ3,3 (1.10)

Now, (1.9, 1.10) implies that the vectors (ξ1, ξ2, ξ3 generate a conformal mapping in the
Euclidian metric dx2

1 + dx2
2 + dx2

3 (why?). It can be shown that these are polynomials
of order 2 (show it!). Then, a direct computation yields

X1 = ∂1,X2 = ∂2,X3 = ∂3 (1.11)

as well as the rotations

R1,2 = x2∂1 − x1∂2 , R1,3 = x1∂3 − x3∂1, R2,3 = x2∂3 − x3∂2 (1.12)

and the dilation
D = x1∂1 + x2∂2 + x3∂3 (1.13)

An conformal mapping in R3 is the inversion. For r := (x1, x2, x3), it is given by
I(r) := r/|r|2. Then the action

qi := I ◦ exp(t∂i)I (1.14)

induces a v-f

d

dt
qi

∣∣∣∣
t=0

= (x2
1 + x2

2 + x2
3)∂i − 2xix1∂1 − 2xix2∂2 − 2xix3∂3 := Ii (1.15)

are additional generators of the conformal group in R3.

If we now compare the coefficients of u2
x, say, then we obtain that ηuu = 0, hence

η = β(x1, x2, x3)u + α(x1, x2, x3)

Then, the coefficients in the linear derivatives yield the following equations

2∂iβ = ∆ξ(i)

and ∆α = 0, that is, α is, by itself, a solution of the Laplace equation. Thus

Xα := α∂u , ∆u = 0 (1.16)

is a generator of a symmetry group. From (1.11, 1.12, 1.15) we get that the coefficients
ξ(i) are all linear so ∆ξ(i) = 0 and β is a constant. Thus

Xu := ∂u (1.17)
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is another symmetry, as well as (1.11, 1.12, 1.15). From (1.15) we have that ∆ξ(i) = 2
so β = xi for any of the v.f. (1.15). Thus, we get the additional 3 generators

XIi := (x2
1 + x2

2 + x2
3)∂i − 2xix1∂1 − 2xix2∂2 − 2xix3∂3 + xi∂u , i = 1, 2, 3 . (1.18)

Let us try to understand the meaning of the transformation induced by XIi. From
(1.14) we get

r → r + trxi

|r/r + txi|
and

u → |r/r + txi|u
so, for i = 1, 2, 3,

ũ =
u

(
r+trxi
|r/r+txi|

)

|r/r + txi|
is a solution of the Laplace equation, if u(r) is.

3. If we consider only 2 coordinates x1, x2, then (1.11-2.6) and (1.18) is reduced to the 5
generators of the Mobiuos group on R2. In complex notation z = x1 + ix2, z = x1− ix2,
∂z = ∂x1 − i∂x2 , ∂z = ∂x1 + i∂x2 we get the generators

∂z, 2z∂z, −z2∂z + z∂u

which induce, respectively (here t is a complex ”time” parameter)

z → z + t, z → e2tz, z → z

tz + 1
.

However, (1.9,1.10), when reduced to the two dimensional case, are the C-R equation
which are satisfied for any transformation induced by an analytic function. In particu-
lar, any v-f of the form

X = f(z)∂z + f(z)∂z +
[
W (z) + W (z)

]
∂u

induces such a symmetry group.

4. The case of the wave equation

¤u := −u,11 + u,22 + u,33 = 0 .

By an equivalent way we get the conditions (1.9, 1.10) replaced by

ξ1,2 − ξ2,1 = 0 , ξ3,1 − ξ1,3 = 0 , ξ3,2 + ξ2,3 = 0 (1.19)

ξ1,1 = ξ2,2 = ξ3,3 (1.20)

This is the condition for the generators of conformal transformation with respect to the
Lorentz metric −dx2

1+dx2
2+dx2

3. In a completely analogous way to the Laplace equation

5



we get the generators (1.11). The rotations (1.12) are replaced by the hyperbolic
rotations

H1,2 = x2∂1 + x1∂2 , H1,3 = x1∂3 + x3∂1, R2,3 = x2∂3 − x3∂2 (1.21)

while the dilation (2.6) preserves its form. The action of H12, for example, is

(x1, x2, x3) → (x2 cosh(t) + x1 sinh(t), x3, x2 sinh(t) + x1 cosh(t)) ,

so u (x2 cosh(t) + x1 sinh(t), x3, x2 sinh(t) + x1 cosh(t)) is a solution of the wave equa-
tion for any t, if u(x1, x2, x3) is.

The generators of inversion with respect to the Lorenz metric are, analogously to (1.18),

XHi := (−x2
1 + x2

2 + x2
3)∂i + 2xix1∂1 − 2xix2∂2 − 2xix3∂3 + xi∂u , i = 1, 2, 3 . (1.22)

Let us demonstrate now a way to obtain similarity solutions of the wave equation. A
trivial one is using the symmetry X = ∂x1 . This implies that we can find solutions
u = u(x2, x3) of the wave equation. The equation these solutions must satisfy is,
evidently, the Laplace equation u,22 +u,33 = 0, that is, the potential equation in x2, x3.

Another, less trivial example is to use the dilation symmetry D = ∂x1 + ∂x2 + ∂x3 .
We use the transformation of the variables x1, x2, x3 to the variables y1, y2τ by which
D = ∂τ . To obtain this we take τ = ln(x1) and y1 = x2/x2, y2 = x3/x1 (check). Then
we look for solutions of the form u = u(y1, y2). For this, we calculate

∂1 = e−τ (−y1∂y1 − y2∂y2 + ∂τ ) ; ∂2 = e−τ∂y1 , ∂3 = e−τ∂y2

The wave equation is transformed into

−∂τu + ∂2
y1

u + ∂2
y2

u− y2
1∂

2
y1

u− y2
2∂

2
y2

u− 2y1y2∂y1∂y2u− 2y2∂y2u− 2y1∂y1u = 0 (1.23)

and we can easily obtain the equation for u = u(y2, y3) by omitting the τ derivative
from the equation.

5. If, as in the Laplace equation, we remove x3 from the game, we get

ξ1,2 − ξ2,1 = 0 , ξ1,1 = ξ22 (1.24)

hence ξ1,11 − ξ1,22 = ξ2,11 − ξ2,22 = 0. So, both ξ1, ξ2 verify the wave equation in two
independent variables. The general solution is a function of x1 + x2 or a function of
x1 − x2. So, we get

X1 = α(x1 − x2)(∂x1 − ∂x2) , X2 = β(x1 + x2)(∂x1 + ∂x2)

where α and β are arbitrary functions. Indeed, under these transformations,

x̃1 − x̃2 = x1 − x2 + tα(x1 − x2) + . . . , x̃1 + x̃2 = x1 + x2 + tβ(x1 − x2)

while ũ = u. Thus, if we omit the ”tilde” from x1, x2,

ũ(x̃1, x̃2) = u (x1 + tα(x1 − x2) + tβ(x1 + x2), x2 − tα(x1 − x2) + tβ(x1 + x2)) .
(1.25)

Indeed, if u is a solution of the wave equation then u = ψ(x1 + x2) or u = φ(x1 − x2).
In both cases the structure of the solition is preserved under (1.25).
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2 Multiple reduction

When is it possible to use further symmetry generators? Suppose we utilized the
symmetry X. It means that we dropped the variable τ which verifies X = ∂τ . In
the new variables τ, y1, . . . yk the equation takes the form

H(y1, . . . yk, u(J)) = 0

where u(J) stands, as usual, for the derivatives of u. Since we consider only functions
u = u(y1, . . . yk), the condition for another symmetry Y to be a symmetry of the reduced
equation is that

Y = α(τ, y1, . . . yk)∂τ +
k∑

1

βj(y1, . . . yk)∂yi

that is, the components in the direction different from τ must be independent of τ . In
coordinate-invariant form this implies that [X,Y] should be in the direction of X.

Let us consider again the wave equation. We used the dilation D to reduce it to the
form (1.23). Now, we my use the rotation symmetry R23. Indeed, [D,R2,3] = 0. In
the new coordinates it takes the form

R23 = R23(y1)∂y1 + R23(y2)∂y2 = y2∂y1 − y1∂y2 .

The invariants of R23 are ρ := y2
1 + y2

2 and u, so we look for solutions of the form
u = u(ρ). We can find

∂2
y1

u+∂2
y2

u−y2
1∂

2
y1

u−y2
2∂

2
y2

u−2y1y2∂y1∂y2u−2y2∂y2u−2y1∂y1u = 4ρ(1−ρ)∂2
ρu+(4−6ρ)∂ρu = 0

which is an ODE.

2.1 Separation of variables

We consider the Helmhotz equation

Ψxx + Ψyy + ω2Ψ = 0 (2.1)

and look for symmetries of the form

X = X(x, y, z)∂x + Y (x, y, z)∂y + Z(x, y, z)∂z

and Q = ∂2
x + ∂2

y + ω2z∂z. Then the condition for a symmetry is

[X,Q] = RQ (2.2)

where R is some function of x, y, z and its prolonged variables. The set of symmetries verifying
(2.2) is a Lie algebra. It follows that u is a solution of (2.1) then X(u) is a solution as well.
We find out that

X1 = ∂x , X2 = ∂y , X3 = y∂x − x∂y
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are the generators of this group, and the structure of this algebra is

[X1,X2] = 0 , [X3,X1] = X2 , [X3,X2] = −X1 .

This is the Euclidian group, parameterized by g1, g2, g3 where

T1(g1)(φ) := exp(g1X1)(φ) = φ(x + g1, y) , T2(g2)(φ) := exp(g2X2)(φ) = φ(x, y + g2)

T3(g3)(φ) := exp(g1X3)(φ) = φ (x cos(g3) + y sin(g3),−x sin(g3) + y cos(g3))

Then, any action on the set of functions φ = φ(x, y) is given by

T (g1, g2, g3) = T2(g2)T1(g1)T3(g3)

We may look for second order operators which generate a symmetry. Such an operator

S = A11∂
2
x + A12∂

2
xy + A22∂

2
y + B1∂x + B2∂y + C

is a symmetry operator if
[S,Q] = UQ (2.3)

where U is a first order operator (so that the r.h.s of (2.3) is of third order, as it should ne).
Again, it follows that if u is a solution of (2.1) then so is S(u).

Note that X2
1 + X2

2 = −ω2 is identified by a zero order operator. Let S be the space of
all symmetry operators of second order (including the first order ones), modulo X2

1 + X2
2.

Let S(2) ⊂ S be the set of ”pure” second order operators, and S(1) the first order operators
in S (namely, those generating the Lie algebra). It follows that S(2) is generated by the five
operators

X2
2, X1X2, X2

3, {X3,X1}, {X3,X2} (2.4)

where {X,Y} := XY +YX. Recall that X2
1 is not included, since we take the space modulo

X2
1 + X2

2.
We know two ways to separate variables for the Helmhotz equation. The first is by

eigenvalues of X1,X2, namely ψk := ei[kx+
√

ω2−k2y]. Here

X1ψk = ikψk , X2ψk = i
√

ω2 − k2ψk . (2.5)

The second one is ψk := Jk(ωr)eikθ where Jk is the Bessel function

r2J
′′
k + rJ

′
k + (r2ω2 − k2)Jk = 0

Here, also, ψk is given by
X3ψk = ikψk . (2.6)

More generally, if X is a symmetry v-f of order one, and u(x, y), v(x, y) is a new set of
variables for which X = ∂u, then ψk(u, v) = eikuV (v) is a solution of (2.1) provided V solves
a second order ODE whose coefficients depend only on v. So X(ψk) = ikψk.

Note also that if X is a symmetry (either first or second order), then Xg := T (g)XT (g−1)
is also a symmetry, and ψg

k := T (g)ψk verifies Xgψg
k = ikψg

k. In particular, it follows that
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Xg1g2 = (Xg2)g1 is a representation of the group G in the Lie algebra. A direct computation
yields

Xg1
1 = X1, Xg1

2 = X2, Xg1
3 = X3 − g1X2

Xg2
1 = X1, Xg2

2 = X2, Xg2
3 = X3 + g1X1

Xg3
1 = cos(g3)X1 + sin(g3)X2 , Xg3

2 = − sin(g3)X1 + cos(g3)X2 , Xg3
3 = X3 (2.7)

This implies a representation (the so called adjoint representation) on the Lie algebra
S(1) := Span{X1,X2,X3}. Moreover, if S ∈ S and ψ is an eigenfunction of S, then ψg is
an eigenfunction of Sg as well. So, we identify the eigenfunctions modulo the group action
ψ ∼ ψg. From (2.7) we get that there are only two orbits of the adjoint action on S(1). The
first is spanned by X1,X2 and can be identified with either of them. the second is composed
of all the fields which have a nonzero component of X3. It can be identified with X3. Thus,
(2.5, 2.6) are the only representatives of the eigenspaces associated with the operators in S(1).

We can also verify that, for any X,Y, {X,Y}g = {Xg,Yg} so we extend the adjoint
representation from S(1) to the whole of S. To verify this, we only have to notice that the
space spanned by X2

1 + X2
2 commutes with all the elements of S.

Using this, we may exted the adjoint action from S(1) to S(2). We find out, in this way,
that there are only 4 orbits of this group acting on S(2). These are given by

(a) X2
2 , (b) X2

3, (c) {X3,X2} , (d) X2
3 + αX2

1 (2.8)

where α ∈ R is a free parameter. We see that (2.8-a) yields the separation variables x, y with
the separation function given as in (2.5). Next, (2.8-b) yields the polar variables r, θ with the
separation function given as in (2.6).

The next two cases give us new set of variables. For (2.8-c) we get the parabolic coordinates

x =
1
2
(u2 − v2) , y = uv

in terms of which the equation (2.1) takes the form

∂2
uψ + ∂2

vψ + (u2 + v2)ω2Ψ = 0

and
{X3,X2} = (u2 + v2)−1

(
v2∂2

u − u2∂v

)

The eigenfunctions {X3,X2}Ψk = k2Ψk are Ψk = U(u)V (v) where

U
′′

+ (ω2u2 − k2)U = 0 , V
′′

+ (ω2v2 + k2)V = 0

For (2.8-d) we get the elliptic coordinates

x = α coshu cos v , y = α sinhu sin v

in terms of which the equation (2.1) takes the form

∂2
uψ + ∂2

vψ + α2ω2(cosh2 u− cos2 v)Ψ = 0
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and
X2

3 + αX2
1 = (cosh2 u− cos2 v)−1

(
cos2 v∂2

u + cosh2 u∂2
v

)

The eigenfunctions (X2
3 + αX2

1)Ψk = k2Ψk are Ψk = U(u)V (v) where

U
′′

+ (α2ω2 cosh2 u + k2)U = 0 , V
′′ − (α2ω2 cosh2 v + k2)V = 0

For further information see the book of W. Miller, Symmetry and separation of variables,
ch. 1.3.
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