
Lecture 2

1 Surfaces and their tangents

There are several ways to define n dimensional surface in Rm. The first is by a mapping
Φ : Rn → Rm. The second is as the level surface of a function F : Rm → Rm−n.

Definition 1.1. A surface N in Rm, given as the image of Φ(U) for U ⊂ Rn, is of
dimension n if the degree of the Jacobian matrix DΦ is n (its maximal possible degree).
A vector field tangent to N is given by Φ∗(X) where X is a vectorfield on U in Rn.

In the other case,

Definition 1.2. A surface N in Rm, given as the level set of F = z0 ∈ Rm− n is of
dimension n if the degree of the Jacobian matrix DF is m− n. A vectorfield X in Rm

is tangent to N if its image F∗(X), which is a vectorfield in Rm−n, attains a zero at z0.

Example: N = S2 ⊂ R3. F (x, y, z) = 1 − x2 − y2 − z2 = 0. The tangent are all
vector fields of the form

{a∂x + b∂y + x∂z ; ax + by + cz = 0}
Lemma 1.1. If X,Y are tangent to N at any point, so is [X,Y].

For X = z∂z − z∂z, Y = z∂y − y∂z then [X,Y] = y∂x − x∂y is also tangent.

Definition 1.3. Let (X1, . . .Xk) a family of vector fields in Rm. Then N is an integral
surface if its tangent at any poind it spanned by (X1, . . .Xk) at his point. (X1, . . .Xk)
is integrable iff there exists an integral manifold trough any point.

Definition 1.4. (X1, . . .Xk) is said to be in involution if there exists functions ck
i,j(x)

so that [Xi,Xj] =
∑

k ck
i,jXk.

Theorem 1. (Frobinous) (X1, . . .Xk) are linearly independent. Then they are in in-
volution iff they are integrable.

Idea of proof: let

ψ(t1, . . . tk) = exp(t1X1) exp(t2X2) . . . exp(tkXk)x0

where x0 ∈ Rm. We then show that this defines, locally, an integrable surface tangent
to the vector fields. This is evident for x0, and also for ψ(0, 0, ..., tj, 0...) by Lemma
0.1....
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2 Lie algebras of vector fields

Definition 2.1. If (X1, . . .Xk) are linearly independent and [Xi,Xj] =
∑

k ck
i,jXk

where ck
i,j are constants, then they form a Lie algebra under the Lie derivative.

Theorem 2. Lie algebra generate an action of a Lie group via

ψ(t1, . . . tk, x) = exp(t1X1) exp(t2X2) . . . exp(tkXk) ◦ x0 (2.1)

or

ψ(t1, . . . tk, x) = exp

(
k∑
1

tkXk

)
◦ x0 (2.2)

or any combination thereof.

Problem

1. Show that [X,Y](x) = − d
dt

∣∣
t=0

exp(tX)∗(Y(exp(−tX)◦x)).

2. Show that, at any point (t1, . . . tk), ψ∗(∂tj) is tangent to the orbit (2.1) and (2.2)
at that point (that is, spanned by X1, . . .Xk at x = ψ(t1, . . . tk).

Examples

1. X1 = ∂x, X2 = x∂x + y∂y. Then [X1,X2] = X1. Let (x0, y0) ∈ R2, y0 > 0.

ψ(t1, t2) := exp(t2X2) exp(t1X1) ◦ (x0, y0) =
(
et2x0 + t1e

t2 , y0e
t2
)

(2.3)

this is an action of the group G := (a, b), b > 0 defined by (a2, b2) ◦ (a1, b1) :=
(a2e

−b1 + a1, b1 + b2).

Let us compute the vectorfields induced on G. Let θ(a, b) := φ
(
eb(x0 + a), y0e

b
)
.

Then ∂aθ = ebX1(φ), ∂bθ = X2(φ) so the vectorfields

e−b∂a = [ψ#]−1(X1) , ∂b = [ψ#]−1(X2) (2.4)

are the Lie algebra of the group G on the upper half plane.

Problem: Calculate the Lie group and the corresponding Lie algebra for ψ(t1, t2) :=
exp(t1X1) exp(t2X2) ◦ (x0, y0) and ψ(t1, t2) := exp (t1X1 + t2X2) ◦ (x0, y0)

2. X1 = ∂x, X2 = ∂y, X3 = y∂x − x∂y. Then

exp(t1X1) exp(t2X2) exp(t3X3)z = eit3(z + t1 + it2)

which is a transformation group under

(t, t3) · (τ, τ3) := (t3 + τ3, e
it3τ + t) .
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2.1 Invariant functions

I : M → R is G− invariant if I(ψ(, x)) = I(x) for all g ∈ G and x ∈ M . Equivalent
conditions:

• I is constant on orbits of G.

• The level sets {I(x) = c} are G invariant subsets of M .

Examples:

• Action of O(n) on Rn are all radial functions I = I(r), r =
√

x2
1 + . . . x2

n.

• Only constants are invariant functions of a transivite action (e.g GL(R, n) on Rn).

• Invariant functions of the co-adjoint action of O(n) on Sym(n): All symmetric
polynomials of the eigenvalues tr(Ak), k = 1, . . . n.

Functionally dependence of a set f1, . . . fn if for any x there exists a neighborhood
U and a function H of n variables so H(f1, . . . fn) ≡ 0 on U .
A fundamental problem is to determine a complete set of independent invariant func-
tions for a certain group action.

Local invariants: For open U ⊂ M , I : U → R is a local invariant iff there exists
Vx ⊂ G, neighborhood of the identity, and I(g · x) = I(x) for any x ∈ U and g ∈ Vx

for which g · x ∈ U . Example: the action of R on the 2-torus g(θ, φ) = (θ + g, φ + κg)
has a local invariant I = φ− κθ. It is, indeed, local if κ 6∈ Q.

2.2 Vectorfields induced by action

Let v be a vector tangent to G at the identity e ∈ G. Then v induces a vector-field
X(v) on M as follows:

X
(v)
(x) = Ψ(x)

∗ (v) ∀ x ∈ M (2.5)

where Ψ(x) := Ψ(x, ·) : G → M . That is, for any φ ∈ C∞(M)

X(v)(φ)(x) = v
(
φ(Ψ(x)(h)

)
h=0

.

Examples:

1. Using (2.3) we take

Ψ(x,y)(t1, t2) =
(
et2x + t1e

t2 , yet2
)

The identity of the group is t1 = t2 = 0 so

X(∂t1)(φ)(x,y) = ∂t1

(
φ(Ψ(x,y)(t1, t2)

)
t1=t2=0

= ∂xφ = X1(φ)

X(∂t2 )(φ)(x,y) = ∂t2

(
φ(Ψ(x,y)(t1, t2)

)
t1=t2=0

= (x∂x + y∂y)φ = X2(φ)
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2. The action of GL(n,R) on Rn: Let vi,j := ∂ti,j at the identity of GL(n,R) (the
identity matrix ti,j = δi,j). Then

∂ti,jφ

(∑

l

t1,lxl,
∑

l

t2,lxl . . .
∑

l

tn,lxl

)

ti,j=δi,j

= xjφxi

so X(∂ti,j ) = xj∂xi
.

2.3 Right action on Lie groups

In case M = G then we define Ψ(g, h) = Rg(h) = h · g where g, h ∈ G. Any vector v
tangent to the identity of G is extended to a vectorfield V on G as follows:

(Rg)∗(v)(h=0) = V g,

that is,
V g(φ) = v(h=e)(φ(h · g))

This way we obtain Right-invariant vector fields on G, each is uniquely determined by
its value at the identity. In fact

Rg,∗V = V

since
Rg,∗(V h) = Rg,∗ (Rh,∗v) = (RgRh)∗ v = Rh·g,∗v = V Rg(h)

Corollary 2.1. The right-invariant v.f is a finite dimensional Lie algebra, which in-
duces a Lie algebra structure on the tangent of G at the identity as

[v1,v2] := [V 1,V 2](e) .

Examples:

1. The vector fields (2.4) are right invariant for the group (h1, h2)◦ (a, b) := (h1e
−b +

a, b + h2). Indeed, (R(a,b))∗∂h1 = e−b∂a and (R(a,b))∗∂h2 = ∂b

2. The right action of GL(m,R): Let v(i,j) := ∂xi,j
be a vector at the identity

xi,j = δi,j. Then, for T = {ti,j} ∈ GL(m,R)

V
(i,j)
T = ∂xi,j

(∑

k,m

xl,ktk,m

)
∂xl,m

=
∑
m

tj,m∂xi,m

If we replace ti,j by xi,j we obtain all the right-invariant vector fields

V (a) =
∑
i,j,m

ai,jxj,m∂xi,m

for any m×m real matrix a = {ai,j}. We can now calculate

[V (a),V (b)] = V ([a,b])

where [a, b] = ab− ba, the matrix cumutator.
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2.4 Relation between action induced and right-invariant vectorfields

Lemma 2.1. If Ψ : G ×M → M is an action on M , v a vector in the tangent of G
at the identity, X(v) the induced vector via (2.5) and V (v) a right invariant on G, then

Ψ(x)
∗

(
V (v)

)
= X(v) .

Proof. Since Ψ(x) ◦Rg(h) = Ψ(Ψ(x)(g))(h) (prove) and
[
Ψ(x) ◦Rg

]
∗ = Ψ

(x)
∗ ◦Rg,∗ we get

Ψ(x)
∗

(
V (v)

g

)
= Ψ(x)

∗ ◦Rg,∗ (v) = Ψ(Ψ(x)(g))
∗ (v) = X

(v)

(ψ(x)(g))

Corollary 2.2. The vectorfields X induced by an action Ψ : G ×M → M is a finite
Lie algebra, where [

X(v1),X(v2)
]

= X([v1,v2])

and [v1,v2] is the Lie multiplication induced on the tangent of G at the identity by the
right-invariant extension.

Remark 2.1. In general,
Ψ(g, ·)∗X(v) 6= X(v) .

Indeed, Let g ∈ G and Ψ(g) = Ψ(·, g) : M → M .
Then

Ψ(g),∗X
(v)(φ)Ψ(g)(x) ≡ X(v)

(
φ ◦Ψ(g)

)
(x)
≡ v

(
φ ◦Ψ(g) ◦Ψ(x)(h)

)
h=0

On the other hand
X(v)(φ)Ψ(g)(x) ≡ v

(
φ ◦Ψ(Ψ(g)(x))(h)

)
h=0

but Ψ(Ψ(g)(x))(h) ≡ Ψ
(
h, Ψ(g)(x)

) ≡ Ψ (h, Ψ(g, x)) ≡ Ψ(hg, x) while Ψ(g) ◦Ψ(x)(h) =
Ψ(g, Ψ(h, x)) = Ψ(gh, x) and, in general, Ψ(gh, x) 6= Ψ(hg, x).

2.5 Infinitesimal invariants

Lemma 2.2. f : M → R is invariant under the action Ψ of G iff X(f) = 0 for any
vectorfiels X induced by the action.

Proof. Assume f(x) = f(Ψ, g, x)) for any g ∈ G. In particular, c(h=0) (f ◦Ψ(h, x)) = 0

for any v at the identity of G. But, according to definition, it is just X(v)(f) = 0 where
X(v) is induced on M by the action.

Conversely, if X(f) = 0 everywhere then also

d

dt
f (exp(tX)x) = 0

for any t so f(x) = f (exp(X)) for any X in the Lie algebra. But any element ψ(g, ·)
is represented in this way.
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Corollary 2.3. f is an invariant iff it is a solution of the linear first order PDE

m∑
1

ξi
∂f

∂xi

= 0

for any X =
∑

ξi∂xi
in the Lie algebra.

Example: the Lie albebra of the translation (x, y) → (x+ ct, y + t) is X = c∂x + ∂y,
and f(x, y) = x− cy is an invariant. Is it the only invariant?

Theorem 3. Let N be a surface determined by f1 = . . . fm−n = 0 and (∇f1, . . .∇fm−n)
is of rank m−n. Then N is G invariant under the action ψ of G on Rm iff X(fj) = 0
for any X in the Lie algebra of ψ, 1 ≤ j ≤ m− n and x ∈ N .

Proof. Without limit of generality we can transform the coordinated in Rm into y1, . . . ym

where yi = fi for i = 1, . . . n. Then N is (locally) given by y1 = . . . = ym = 0. If X
in the Lie algebra then X =

∑
ξi∂yi

, so X(fj) = ξj. The condition X(fj) = 0 implies
that

ξj = 0 1 ≤ j ≤ n whenever y1 = . . . = yn = 0 .

The flow φ(t, x) is a solution of

dφi

dt
= ξi(φ(x, t)) , φi(0) = 0 for i = 1 . . . n .

Hence φi = 0 for i = 1 . . . n.

Example: f(x, y) = x4 + x2y2 + y2 − 1. The Lie algebra of the rotation group is
X = −x∂y + y∂x, and

X(f) = −4x3y − 2xy3 + 2x3y + 2xy = −2xy(x2 + 1)−1f(x, y)

so the zero level of f is rotation invariant. Indeed f(x, y) = (x2 + 1)(x2 + y2 − 1).
Note that H(x, y) = y2− 2y + 1 also verifies X(H) = 2x(y− 1) = 0 for H(x, y) = 0

but is not rotationally invariant. In this case, ∇H = 0 on H = 0!

Definition 2.2. If the dimension of the space spanned by all vectorfields induced by
an action Ψ at a point x ∈ M is is independent of x (in a neighborhood of x), then the
action is called regular (locally regular).

Proposition 2.1. If the action Ψ of a group is locally regular, then there exists a
complete set of invariant functions f1, . . . fn under the action, in the sense that any
invariant function g is of the form g = G(f1, . . . fn) for some function G of n variables.
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