Lecture 2

1 Surfaces and their tangents

There are several ways to define n dimensional surface in \mathbb{R}^{m}. The first is by a mapping $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The second is as the level surface of a function $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m-n}$.

Definition 1.1. A surface N in \mathbb{R}^{m}, given as the image of $\Phi(U)$ for $U \subset \mathbb{R}^{n}$, is of dimension n if the degree of the Jacobian matrix $D \Phi$ is n (its maximal possible degree). A vector field tangent to N is given by $\Phi_{*}(\mathbf{X})$ where \mathbf{X} is a vectorfield on U in \mathbb{R}^{n}.

In the other case,
Definition 1.2. A surface N in \mathbb{R}^{m}, given as the level set of $F=z_{0} \in \mathbb{R} m-n$ is of dimension n if the degree of the Jacobian matrix $D F$ is $m-n$. A vectorfield \mathbf{X} in \mathbb{R}^{m} is tangent to N if its image $F_{*}(\mathbf{X})$, which is a vectorfield in \mathbb{R}^{m-n}, attains a zero at z_{0}.

Example: $N=\mathbb{S}^{2} \subset \mathbb{R}^{3} . F(x, y, z)=1-x^{2}-y^{2}-z^{2}=0$. The tangent are all vector fields of the form

$$
\left\{a \partial_{x}+b \partial_{y}+x \partial_{z} \quad ; \quad a x+b y+c z=0\right\}
$$

Lemma 1.1. If \mathbf{X}, \mathbf{Y} are tangent to N at any point, so is $[\mathbf{X}, \mathbf{Y}]$.
For $\mathbf{X}=z \partial_{z}-z \partial_{z}, \mathbf{Y}=z \partial_{y}-y \partial_{z}$ then $[\mathbf{X}, \mathbf{Y}]=y \partial_{x}-x \partial_{y}$ is also tangent.
Definition 1.3. Let $\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right)$ a family of vector fields in \mathbb{R}^{m}. Then N is an integral surface if its tangent at any poind it spanned by $\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right)$ at his point. $\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right)$ is integrable iff there exists an integral manifold trough any point.

Definition 1.4. $\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right)$ is said to be in involution if there exists functions $c_{i, j}^{k}(x)$ so that $\left[\mathbf{X}_{i}, \mathbf{X}_{j}\right]=\sum_{k} c_{i, j}^{k} \mathbf{X}_{k}$.
Theorem 1. (Frobinous) $\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right)$ are linearly independent. Then they are in involution iff they are integrable.

Idea of proof: let

$$
\psi\left(t_{1}, \ldots t_{k}\right)=\exp \left(t_{1} \mathbf{X}_{1}\right) \exp \left(t_{2} \mathbf{X}_{2}\right) \ldots \exp \left(t_{k} \mathbf{X}_{k}\right) x_{0}
$$

where $x_{0} \in \mathbb{R}^{m}$. We then show that this defines, locally, an integrable surface tangent to the vector fields. This is evident for x_{0}, and also for $\psi\left(0,0, \ldots, t_{j}, 0 \ldots\right)$ by Lemma 0.1....

2 Lie algebras of vector fields

Definition 2.1. If $\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right)$ are linearly independent and $\left[\mathbf{X}_{i}, \mathbf{X}_{j}\right]=\sum_{k} c_{i, j}^{k} \mathbf{X}_{k}$ where $c_{i, j}^{k}$ are constants, then they form a Lie algebra under the Lie derivative.

Theorem 2. Lie algebra generate an action of a Lie group via

$$
\begin{equation*}
\psi\left(t_{1}, \ldots t_{k}, x\right)=\exp \left(t_{1} \mathbf{X}_{1}\right) \exp \left(t_{2} \mathbf{X}_{2}\right) \ldots \exp \left(t_{k} \mathbf{X}_{k}\right) \circ x_{0} \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi\left(t_{1}, \ldots t_{k}, x\right)=\exp \left(\sum_{1}^{k} t_{k} \mathbf{X}_{k}\right) \circ x_{0} \tag{2.2}
\end{equation*}
$$

or any combination thereof.

Problem

1. Show that $[\mathbf{X}, \mathbf{Y}]_{(x)}=-\left.\frac{d}{d t}\right|_{t=0} \exp (t \mathbf{X})_{*}\left(Y_{(\exp (-t \mathbf{X}) \circ x)}\right)$.
2. Show that, at any point $\left(t_{1}, \ldots t_{k}\right), \psi_{*}\left(\partial_{t_{j}}\right)$ is tangent to the orbit (2.1) and (2.2) at that point (that is, spanned by $\mathbf{X}_{1}, \ldots \mathbf{X}_{k}$ at $x=\psi\left(t_{1}, \ldots t_{k}\right)$.

Examples

1. $\mathbf{X}_{1}=\partial_{x}, \mathbf{X}_{2}=x \partial_{x}+y \partial_{y}$. Then $\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=\mathbf{X}_{1}$. Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}, y_{0}>0$.

$$
\begin{equation*}
\psi\left(t_{1}, t_{2}\right):=\exp \left(t_{2} \mathbf{X}_{2}\right) \exp \left(t_{1} \mathbf{X}_{1}\right) \circ\left(x_{0}, y_{0}\right)=\left(e^{t_{2}} x_{0}+t_{1} e^{t_{2}}, y_{0} e^{t_{2}}\right) \tag{2.3}
\end{equation*}
$$

this is an action of the group $G:=(a, b), b>0$ defined by $\left(a_{2}, b_{2}\right) \circ\left(a_{1}, b_{1}\right):=$ $\left(a_{2} e^{-b_{1}}+a_{1}, b_{1}+b_{2}\right)$.
Let us compute the vectorfields induced on G. Let $\theta(a, b):=\phi\left(e^{b}\left(x_{0}+a\right), y_{0} e^{b}\right)$.
Then $\partial_{a} \theta=e^{b} \mathbf{X}_{1}(\phi), \partial_{b} \theta=\mathbf{X}_{2}(\phi)$ so the vectorfields

$$
\begin{equation*}
e^{-b} \partial_{a}=\left[\psi_{\#}\right]^{-1}\left(\mathbf{X}_{1}\right) \quad, \partial_{b}=\left[\psi_{\#}\right]^{-1}\left(\mathbf{X}_{2}\right) \tag{2.4}
\end{equation*}
$$

are the Lie algebra of the group G on the upper half plane.
Problem: Calculate the Lie group and the corresponding Lie algebra for $\psi\left(t_{1}, t_{2}\right):=$ $\exp \left(t_{1} \mathbf{X}_{1}\right) \exp \left(t_{2} \mathbf{X}_{2}\right) \circ\left(x_{0}, y_{0}\right)$ and $\psi\left(t_{1}, t_{2}\right):=\exp \left(t_{1} \mathbf{X}_{1}+t_{2} \mathbf{X}_{2}\right) \circ\left(x_{0}, y_{0}\right)$
2. $\mathbf{X}_{1}=\partial_{x}, \mathbf{X}_{2}=\partial_{y}, \mathbf{X}_{3}=y \partial_{x}-x \partial_{y}$. Then

$$
\exp \left(t_{1} \mathbf{X}_{1}\right) \exp \left(t_{2} \mathbf{X}_{2}\right) \exp \left(t_{3} \mathbf{X}_{3}\right) z=e^{i t_{3}}\left(z+t_{1}+i t_{2}\right)
$$

which is a transformation group under

$$
\left(t, t_{3}\right) \cdot\left(\tau, \tau_{3}\right):=\left(t_{3}+\tau_{3}, e^{i t_{3}} \tau+t\right)
$$

2.1 Invariant functions

$I: M \rightarrow \mathbb{R}$ is G - invariant if $I(\psi(, x))=I(x)$ for all $g \in G$ and $x \in M$. Equivalent conditions:

- I is constant on orbits of G.
- The level sets $\{I(x)=c\}$ are G invariant subsets of M.

Examples:

- Action of $O(n)$ on \mathbb{R}^{n} are all radial functions $I=I(r), r=\sqrt{x_{1}^{2}+\ldots x_{n}^{2}}$.
- Only constants are invariant functions of a transivite action (e.g $G L(\mathbb{R}, n)$ on $\left.\mathbb{R}^{n}\right)$.
- Invariant functions of the co-adjoint action of $O(n)$ on $\operatorname{Sym}(n)$: All symmetric polynomials of the eigenvalues $\operatorname{tr}\left(A^{k}\right), k=1, \ldots n$.

Functionally dependence of a set $f_{1}, \ldots f_{n}$ if for any x there exists a neighborhood U and a function H of n variables so $H\left(f_{1}, \ldots f_{n}\right) \equiv 0$ on U.
A fundamental problem is to determine a complete set of independent invariant functions for a certain group action.

Local invariants: For open $U \subset M, I: U \rightarrow \mathbb{R}$ is a local invariant iff there exists $V_{x} \subset G$, neighborhood of the identity, and $I(g \cdot x)=I(x)$ for any $x \in U$ and $g \in V_{x}$ for which $g \cdot x \in U$. Example: the action of \mathbb{R} on the 2-torus $g(\theta, \phi)=(\theta+g, \phi+\kappa g)$ has a local invariant $I=\phi-\kappa \theta$. It is, indeed, local if $\kappa \notin \mathbb{Q}$.

2.2 Vectorfields induced by action

Let \boldsymbol{v} be a vector tangent to G at the identity $e \in G$. Then \boldsymbol{v} induces a vector-field $\mathbf{X}^{(v)}$ on M as follows:

$$
\begin{equation*}
\mathbf{X}_{(x)}^{(v)}=\Psi_{*}^{(x)}(\boldsymbol{v}) \quad \forall x \in M \tag{2.5}
\end{equation*}
$$

where $\Psi^{(x)}:=\Psi(x, \cdot): G \rightarrow M$. That is, for any $\phi \in C^{\infty}(M)$

$$
\mathbf{X}^{(v)}(\phi)_{(x)}=\boldsymbol{v}\left(\phi\left(\Psi^{(x)}(h)\right)_{h=0} .\right.
$$

Examples:

1. Using (2.3) we take

$$
\Psi^{(x, y)}\left(t_{1}, t_{2}\right)=\left(e^{t_{2}} x+t_{1} e^{t_{2}}, y e^{t_{2}}\right)
$$

The identity of the group is $t_{1}=t_{2}=0$ so

$$
\begin{gathered}
\mathbf{X}^{\left(\partial_{t_{1}}\right)}(\phi)_{(x, y)}=\partial_{t_{1}}\left(\phi\left(\Psi^{(x, y)}\left(t_{1}, t_{2}\right)\right)_{t_{1}=t_{2}=0}=\partial_{x} \phi=\mathbf{X}_{1}(\phi)\right. \\
\mathbf{X}^{\left(\partial_{t_{2}}\right)}(\phi)_{(x, y)}=\partial_{t_{2}}\left(\phi\left(\Psi^{(x, y)}\left(t_{1}, t_{2}\right)\right)_{t_{1}=t_{2}=0}=\left(x \partial_{x}+y \partial_{y}\right) \phi=\mathbf{X}_{2}(\phi)\right.
\end{gathered}
$$

2. The action of $\mathbb{G L}(n, \mathbb{R})$ on \mathbb{R}^{n} : Let $\boldsymbol{v}_{i, j}:=\partial_{t_{i, j}}$ at the identity of $\mathbb{G} \mathbb{L}(n, \mathbb{R})$ (the identity matrix $\left.t_{i, j}=\delta_{i, j}\right)$. Then

$$
\begin{aligned}
& \quad \partial_{t_{i, j}} \phi\left(\sum_{l} t_{1, l} x_{l}, \sum_{l} t_{2, l} x_{l} \ldots \sum_{l} t_{n, l} x_{l}\right)_{t_{i, j}=\delta_{i, j}}=x_{j} \phi_{x_{i}} \\
& \text { so } \mathbf{X}^{\left(\partial_{t, j}\right)}=x_{j} \partial_{x_{i}} \text {. }
\end{aligned}
$$

2.3 Right action on Lie groups

In case $M=G$ then we define $\Psi(g, h)=R_{g}(h)=h \cdot g$ where $g, h \in G$. Any vector \boldsymbol{v} tangent to the identity of G is extended to a vectorfield \boldsymbol{V} on G as follows:

$$
\left(R_{g}\right)_{*}(\boldsymbol{v})_{(h=0)}=\boldsymbol{V}_{g}
$$

that is,

$$
\boldsymbol{V}_{g}(\phi)=\boldsymbol{v}_{(h=e)}(\phi(h \cdot g))
$$

This way we obtain Right-invariant vector fields on G, each is uniquely determined by its value at the identity. In fact

$$
R_{g, *} \boldsymbol{V}=\boldsymbol{V}
$$

since

$$
R_{g, *}\left(\boldsymbol{V}_{h}\right)=R_{g, *}\left(R_{h, *} \boldsymbol{v}\right)=\left(R_{g} R_{h}\right)_{*} \boldsymbol{v}=R_{h \cdot g, *} \boldsymbol{v}=\boldsymbol{V}_{R_{g}(h)}
$$

Corollary 2.1. The right-invariant v.f is a finite dimensional Lie algebra, which induces a Lie algebra structure on the tangent of G at the identity as

$$
\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]:=\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right]_{(e)} .
$$

Examples:

1. The vector fields (2.4) are right invariant for the group $\left(h_{1}, h_{2}\right) \circ(a, b):=\left(h_{1} e^{-b}+\right.$ $\left.a, b+h_{2}\right)$. Indeed, $\left(R_{(a, b)}\right)_{*} \partial_{h_{1}}=e^{-b} \partial_{a}$ and $\left(R_{(a, b)}\right)_{*} \partial_{h_{2}}=\partial_{b}$
2. The right action of $\mathbb{G L}(m, \mathbb{R})$: Let $\boldsymbol{v}^{(i, j)}:=\partial_{x_{i, j}}$ be a vector at the identity $x_{i, j}=\delta_{i, j}$. Then, for $T=\left\{t_{i, j}\right\} \in \mathbb{G} \mathbb{L}(m, \mathbb{R})$

$$
\boldsymbol{V}_{T}^{(i, j)}=\partial_{x_{i, j}}\left(\sum_{k, m} x_{l, k} t_{k, m}\right) \partial_{x_{l, m}}=\sum_{m} t_{j, m} \partial_{x_{i, m}}
$$

If we replace $t_{i, j}$ by $x_{i, j}$ we obtain all the right-invariant vector fields

$$
\boldsymbol{V}^{(a)}=\sum_{i, j, m} a_{i, j} x_{j, m} \partial_{x_{i, m}}
$$

for any $m \times m$ real matrix $a=\left\{a_{i, j}\right\}$. We can now calculate

$$
\left[\boldsymbol{V}^{(a)}, \boldsymbol{V}^{(b)}\right]=\boldsymbol{V}^{([a, b])}
$$

where $[a, b]=a b-b a$, the matrix cumutator.

2.4 Relation between action induced and right-invariant vectorfields

Lemma 2.1. If $\Psi: G \times M \rightarrow M$ is an action on M, \boldsymbol{v} a vector in the tangent of G at the identity, $\mathbf{X}^{(v)}$ the induced vector via (2.5) and $\boldsymbol{V}^{(v)}$ a right invariant on G, then

$$
\Psi_{*}^{(x)}\left(\boldsymbol{V}^{(v)}\right)=\mathbf{X}^{(v)}
$$

Proof. Since $\Psi^{(x)} \circ R_{g}(h)=\Psi^{\left(\Psi^{(x)}(g)\right)}(h)$ (prove) and $\left[\Psi^{(x)} \circ R_{g}\right]_{*}=\Psi_{*}^{(x)} \circ R_{g, *}$ we get

$$
\Psi_{*}^{(x)}\left(\boldsymbol{V}_{g}^{(v)}\right)=\Psi_{*}^{(x)} \circ R_{g, *}(v)=\Psi_{*}^{\left(\Psi^{(x)}(g)\right)}(v)=\mathbf{X}_{\left(\psi^{(x)}(g)\right)}^{(v)}
$$

Corollary 2.2. The vectorfields \mathbf{X} induced by an action $\Psi: G \times M \rightarrow M$ is a finite Lie algebra, where

$$
\left[\mathbf{X}^{\left(\boldsymbol{v}_{1}\right)}, \mathbf{X}^{\left(\boldsymbol{v}_{2}\right)}\right]=\mathbf{X}^{\left(\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]\right)}
$$

and $\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]$ is the Lie multiplication induced on the tangent of G at the identity by the right-invariant extension.
Remark 2.1. In general,

$$
\Psi(g, \cdot)_{*} \mathbf{X}^{(v)} \neq \mathbf{X}^{(v)}
$$

Indeed, Let $g \in G$ and $\Psi_{(g)}=\Psi(\cdot, g): M \rightarrow M$.
Then

$$
\Psi_{(g), *} \mathbf{X}^{(v)}(\phi)_{\Psi_{(g)}(x)} \equiv \mathbf{X}^{(v)}\left(\phi \circ \Psi_{(g)}\right)_{(x)} \equiv \boldsymbol{v}\left(\phi \circ \Psi_{(g)} \circ \Psi^{(x)}(h)\right)_{h=0}
$$

On the other hand

$$
\mathbf{X}^{(v)}(\phi)_{\Psi_{(g)}(x)} \equiv \boldsymbol{v}\left(\phi \circ \Psi^{\left(\Psi_{(g)}(x)\right)}(h)\right)_{h=0}
$$

but $\Psi^{\left(\Psi_{(g)}(x)\right)}(h) \equiv \Psi\left(h, \Psi_{(g)}(x)\right) \equiv \Psi(h, \Psi(g, x)) \equiv \Psi(h g, x)$ while $\Psi_{(g)} \circ \Psi^{(x)}(h)=$ $\Psi(g, \Psi(h, x))=\Psi(g h, x)$ and, in general, $\Psi(g h, x) \neq \Psi(h g, x)$.

2.5 Infinitesimal invariants

Lemma 2.2. $f: M \rightarrow \mathbb{R}$ is invariant under the action Ψ of G iff $\mathbf{X}(f)=0$ for any vectorfiels \mathbf{X} induced by the action.
Proof. Assume $f(x)=f(\Psi, g, x))$ for any $g \in G$. In particular, $\boldsymbol{c}_{(h=0)}(f \circ \Psi(h, x))=0$ for any \boldsymbol{v} at the identity of G. But, according to definition, it is just $\mathbf{X}^{(v)}(f)=0$ where $\mathbf{X}^{(v)}$ is induced on M by the action.

Conversely, if $\mathbf{X}(f)=0$ everywhere then also

$$
\frac{d}{d t} f(\exp (t \mathbf{X}) x)=0
$$

for any t so $f(x)=f(\exp (\mathbf{X}))$ for any \mathbf{X} in the Lie algebra. But any element $\psi(g, \cdot)$ is represented in this way.

Corollary 2.3. f is an invariant iff it is a solution of the linear first order PDE

$$
\sum_{1}^{m} \xi_{i} \frac{\partial f}{\partial_{x_{i}}}=0
$$

for any $\mathbf{X}=\sum \xi_{i} \partial_{x_{i}}$ in the Lie algebra.
Example: the Lie albebra of the translation $(x, y) \rightarrow(x+c t, y+t)$ is $\mathbf{X}=c \partial_{x}+\partial_{y}$, and $f(x, y)=x-c y$ is an invariant. Is it the only invariant?

Theorem 3. Let N be a surface determined by $f_{1}=\ldots f_{m-n}=0$ and $\left(\nabla f_{1}, \ldots \nabla f_{m-n}\right)$ is of rank $m-n$. Then N is G invariant under the action ψ of G on \mathbb{R}^{m} iff $\mathbf{X}\left(f_{j}\right)=0$ for any \mathbf{X} in the Lie algebra of $\psi, 1 \leq j \leq m-n$ and $x \in N$.

Proof. Without limit of generality we can transform the coordinated in \mathbb{R}^{m} into $y_{1}, \ldots y_{m}$ where $y_{i}=f_{i}$ for $i=1, \ldots n$. Then N is (locally) given by $y_{1}=\ldots=y_{m}=0$. If \mathbf{X} in the Lie algebra then $\mathbf{X}=\sum \xi_{i} \partial_{y_{i}}$, so $\mathbf{X}\left(f_{j}\right)=\xi_{j}$. The condition $\mathbf{X}\left(f_{j}\right)=0$ implies that

$$
\xi_{j}=0 \quad 1 \leq j \leq n \text { whenever } y_{1}=\ldots=y_{n}=0 .
$$

The flow $\phi(t, x)$ is a solution of

$$
\frac{d \phi_{i}}{d t}=\xi_{i}(\phi(x, t)), \phi_{i}(0)=0 \quad \text { for } i=1 \ldots n .
$$

Hence $\phi_{i}=0$ for $i=1 \ldots n$.
Example: $f(x, y)=x^{4}+x^{2} y^{2}+y^{2}-1$. The Lie algebra of the rotation group is $\mathbf{X}=-x \partial_{y}+y \partial_{x}$, and

$$
\mathbf{X}(f)=-4 x^{3} y-2 x y^{3}+2 x^{3} y+2 x y=-2 x y\left(x^{2}+1\right)^{-1} f(x, y)
$$

so the zero level of f is rotation invariant. Indeed $f(x, y)=\left(x^{2}+1\right)\left(x^{2}+y^{2}-1\right)$.
Note that $H(x, y)=y^{2}-2 y+1$ also verifies $\mathbf{X}(H)=2 x(y-1)=0$ for $H(x, y)=0$ but is not rotationally invariant. In this case, $\nabla H=0$ on $H=0$!

Definition 2.2. If the dimension of the space spanned by all vectorfields induced by an action Ψ at a point $x \in M$ is is independent of x (in a neighborhood of x), then the action is called regular (locally regular).

Proposition 2.1. If the action Ψ of a group is locally regular, then there exists a complete set of invariant functions $f_{1}, \ldots f_{n}$ under the action, in the sense that any invariant function g is of the form $g=G\left(f_{1}, \ldots f_{n}\right)$ for some function G of n variables.

