Lecture 3

1 How to construct invariants for a given group action?

Let the action given by a single vector field \mathbf{X} in \mathbb{R}^{m}. If $\mathbf{X} \neq 0$ everywhere then there exists exactly $m-1$ functionally independent invariants $\phi_{1}, \ldots \phi_{m-1}$ for this action.

If s vector fields are given which span s-dimensional orbits of a group action, then we expect to find $m-s$ functionally dependent invariants.

Examples:

- $S O(2)$ acting on \mathbb{R}^{2} via $\mathbf{X}=x \partial_{y}-y \partial_{x}$. Then $x^{2}+y^{2}$ is an invariant, and any other invariant is a function thereof.
- $S O(2)$ acting on \mathbb{R}^{3} via $\mathbf{X}=x \partial_{y}-y \partial_{x}+\left(1+z^{2}\right) \partial_{z}$. Then we have to solve

$$
\frac{d x}{-y}=\frac{d y}{x}=\frac{d z}{1+z^{2}}
$$

Since $r^{2}=x^{2}+y^{2}$ is an invariant, then we can eliminate $x=\sqrt{r^{2}-y^{2}}$ so

$$
\frac{d y}{\sqrt{r^{2}-y^{2}}}=\frac{d z}{1+z^{2}}
$$

which implies

$$
\arcsin (y / r)=\arctan (z)+k
$$

but $y / r=\sin \theta$ implies $x / y=\tan \theta$ so $\arcsin (y / r)=\arctan (y / x)$, hence

$$
\arctan (z)-\arctan (y / x)
$$

is a second invariant. So

$$
\begin{equation*}
\tan (\arctan (z)-\arctan (y / x))=\frac{z-y / x}{1+z y / x}=\frac{z x-y}{y z+x}:=q \tag{1.1}
\end{equation*}
$$

is a second invariant (functionally dependent on the former). It is defined on the domain $z \neq-x / y$. Alternatively:

$$
\tilde{q}=\frac{r}{\sqrt{1+q^{2}}}=\frac{x+y z}{\sqrt{1+z^{2}}}
$$

is an invariant defined everywhere.

- $\mathbf{X}_{1}=-y \partial_{x}+x \partial_{y}, \mathbf{X}_{2}=2 x z \partial_{x}+2 y z \partial_{y}+\left(z^{2}+1-x^{2}-y^{2}\right) \partial_{z}$. We have $\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=0$ so these generate an abelian group. We already know an invariant r of \mathbf{X}_{1}. Is there another invariant? Yes, it is ∂_{z}. Since any invariant of $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$ is, in particular, an invariant of \mathbf{X}_{1}. it must be a function $\phi(r, z)$. So, we may push \mathbf{X}_{2} to the coordinates (r, z), that is, consider $F(x, y, z)=(r, z)$ and let $\mathbf{Y}:=F_{*}\left(\mathbf{X}_{2}\right)$. We calculate \mathbf{Y} easily via

$$
\mathbf{Y}=\mathbf{X}_{2}(r) \partial_{r}+\mathbf{X}_{2}(z) \partial_{z}=2 r z \partial_{r}+\left(z^{2}+1-r^{2}\right) \partial_{z}
$$

The function we are looking satisfies

$$
2 r z \frac{\partial \phi}{\partial r}+\left(z^{2}+1-r^{2}\right) \frac{\partial \phi}{\partial z}=0
$$

which verifies the characteristic equation

$$
\frac{d r}{2 r z}=\frac{d z}{z^{2}+1-r^{2}}
$$

The solution is

$$
\phi=\frac{z^{2}+r^{2}+1}{r}=\frac{x^{2}+y^{2}+z^{2}+1}{\sqrt{x^{2}+y^{2}}}
$$

2 Invariance of Differential equations: Overview

Definition 2.1. An ODE of order n is a relation

$$
\begin{equation*}
H\left(x, y, y^{\prime}, \ldots y_{n}\right)=0 \tag{2.1}
\end{equation*}
$$

where $H\left(x_{1}, \ldots x_{n+1}\right): \mathbb{R}^{n+1} \rightarrow \mathbb{R}$.
A point transformation is an action $\Psi:=\left(\psi_{1}, \psi_{2}\right)$ of a Lie group G acting on the space \mathbb{R}^{2} identified with $(x, y): \Psi(g, x, y)=\left(\psi_{1}(g, x, y), \psi_{2}(g, x, y)\right):=\left(x_{g}, y_{g}\right)$.

The ODE (2.1) is invariant under the point transformation iff for any solution $y=y(x)$ of the ODE, the graph $(x, y(x))$ is transformed under Ψ to a graph of another solution of the same $O D E:\left(\psi_{1}(g, x, y(x)), \psi_{2}(g, x, y(x))\right)$ is a graph of a solution $y_{(g)}=y_{(g)}(x)$ for any $g \in G$.

Example: The action of $S O(2)$ on \mathbb{R}^{2} via

$$
\Psi(t, x, y)=(x \cos (t)-y \sin (t), x \sin (t)+y \cos (t))
$$

preserves the linear functions $y=a x+b$. Indeed,

$$
\left(x_{(t)}, y_{(t)}\right)=(x \cos (t)-(a x+b) \sin (t), x \sin (t)+(a x+b) \cos (t))
$$

and we eliminate

$$
x=\frac{x_{(t)}+b \sin (t)}{\cos (t)-a \sin (t)}
$$

and

$$
y_{(t)}=x \sin (t)+(a x+b) \cos (t)=\frac{\sin (t)+a \cos (t)}{\cos (t)-a \sin (t)} x_{(t)}+\frac{b}{\cos (t)-a \sin (t)}
$$

Hence: The equation $y^{\prime \prime}=0$ is invariant under the $S O(2)$ action.
If we replace the slop $a=y^{\prime}$ by y_{1}, we see that the action $S O(2)$ is extended to an action on \mathbb{R}^{3} parameterized by $\left.x, y, y_{1}\right)$ as:

$$
\begin{equation*}
\left(x, y, y_{1}\right) \rightarrow\left(x \cos (t)-y \sin (t), x \sin (t)+y \cos (t), \frac{\sin (t)+y_{(1)} \cos (t)}{\cos (t)-y_{(1)} \sin (t)}\right) \tag{2.2}
\end{equation*}
$$

which is induced by the vextorfield

$$
\mathbf{X}=-y \partial_{x}+x \partial_{y}+\left(1+\left(y_{1}\right)^{2}\right) \partial_{y_{1}}
$$

Let now $y=y(x)$ be any function. Suppose $y=a x+b$ is the tangent to its graph at $\left(x_{0}, y_{0}\right)$. Then

$$
y_{1,(t)}=a_{(t)}:=\frac{\sin (t)+a \cos (t)}{\cos (t)-a \sin (t)}
$$

is the slop to the tangent of the transformed graph at $\left(x_{(t)}, y_{(t)}\right)$. In particular, we obtained that the derivative y^{\prime} is transformed as y_{1} in the extended action.

We shall see later that the invariants of this action on \mathbb{R}^{3}, namely

$$
r^{2}=x^{2}+y^{2} \quad, \quad q=\frac{y^{\prime} x-y}{y y^{\prime}+x}
$$

(see (1.1)) are constants for any solution of $S O(2)$ invariant equation:

$$
r^{2}(x, y(x))=C_{1}, \quad q\left(x, y(x), y^{\prime}(x)\right)=C_{2}
$$

and that any such equation of first order is given by a functional relation between r^{2} and q :

$$
H\left(x, y, y^{\prime}\right)=F\left(r^{2}, q\right)=0
$$

3 Prolongation of vector fields

Motivated by the extension of functional to differential invariance we wish to extend the graph of a function $y=f(x)$ in \mathbb{R}^{2} to a graph of a prolonged function $\left(y, y^{\prime}\right)=\operatorname{Pr}^{(1)} f(x):=$ $\left(f(x), f^{\prime}(x)\right)$ in \mathbb{R}^{3}. More generally,

$$
Y^{(n)}=\left(y, y^{\prime}, y^{\prime \prime}, \ldots y_{n}\right)=\left(f(x), f^{\prime}(x), \ldots f^{(n)}(x)\right)
$$

What is the image of $Y^{(n)}=\operatorname{Pr}^{(n)} f(x)$ under the flow of a vector field $\mathbf{X}=\xi \partial_{x}+\eta \partial_{y}$?

$$
\tilde{y}^{\prime}=\frac{d \tilde{y}}{d \tilde{x}} ; \quad \widetilde{y_{k+1}}=\frac{d \widetilde{y_{k}}}{d \tilde{x}}
$$

and so on, where

$$
\tilde{x}=x+\varepsilon \xi(x, y)+\ldots \quad, \quad \tilde{y}=y+\varepsilon \eta(x, y)+\ldots \quad ; \quad \tilde{y}_{1}=y_{1}+\varepsilon \eta^{(1)}\left(x, y, y_{1}\right)+\ldots
$$

Here we make, for any $h=h\left(x, y, y_{1}, \ldots\right.$

$$
d h=\left(h_{x}+h_{y} y_{1}+\ldots h_{y_{n}} y_{n+1}\right) d x
$$

implies

$$
\begin{gathered}
d \tilde{y}=d y+\varepsilon d \eta \quad, \quad d \tilde{x}=d x+\varepsilon d \xi \\
\widetilde{y_{1}}=\frac{d \tilde{y}}{d \tilde{x}}=\frac{d y}{d x}+\varepsilon\left(\frac{d \eta}{d x}-y_{1} \frac{d \xi}{d x}\right):=y_{1}+\varepsilon \eta^{(1)}+
\end{gathered}
$$

as well as

$$
\widetilde{y_{n}}=\frac{d \tilde{y}_{n-1}}{d \tilde{x}}=\frac{d y_{n-1}}{d x}+\varepsilon\left(\frac{d \eta^{(n-1)}}{d x}-y_{n} \frac{d \xi}{d x}\right):=y_{n}+\varepsilon \eta^{(n)}+
$$

Definition 3.1. The prolongation of a vector field $\mathbf{X}=\xi \partial_{x}+\eta \partial_{y}$ to order n is given by

$$
\operatorname{Pr}^{(n)} \mathbf{X}:=\xi \partial_{x}+\eta \partial_{y}+\eta^{(1)} \partial_{y_{1}}+\ldots+\eta^{(n)} \partial_{y_{n}}
$$

where

$$
\eta^{(0)} \equiv \eta, \quad \eta^{(k)}=\frac{d \eta^{(k-1)}}{d x}-y_{k} \frac{d \xi}{d x}
$$

We shall sometimes write \mathbf{X} instead of $\operatorname{Pr}^{(n)} \mathbf{X}$, when no confusion is expected.
Examples:
(A) $-y \partial_{x}+x \partial_{y}+\left(1+\left(y_{1}\right)^{2}\right) \partial_{y_{1}}+3 y_{1} y_{2} \partial_{y_{2}}+\left(3\left(y_{2}\right)^{2}+4 y_{1} y_{3}\right) \partial_{y_{3}}+\ldots$
(B) $x \partial_{x}+y \partial_{y}-y_{2} \partial_{y_{2}}-2 y_{3} \partial_{y_{3}} \ldots$
(C) $\partial_{x}, \quad x \partial_{x}-y_{1} \partial_{y_{1}}-2 y_{2} \partial_{y_{2}}-3 y_{3} \partial_{y_{3}}+\ldots \quad, x^{2} \partial_{x}-2 x y_{1} \partial_{y_{1}}-\left(2 y_{1}+4 x y_{2}\right) \partial_{y_{2}}-6\left(x y_{3}-\right.$ $\left.y_{2}\right) \partial_{y_{3}}+\ldots$

Theorem 1. The prolongation of vector fields is compatible with the Lie product, i.e

$$
\left[\operatorname{Pr}^{(n)}\left(\mathbf{X}_{1}\right), \operatorname{Pr}^{(n)}\left(\mathbf{X}_{2}\right)\right]=\operatorname{Pr}^{(n)}\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]
$$

In particular, it follows that the prolongation of a Lie algebra is an isomorphic Lie algebra.
Definition 3.2. The $n-$ prolongation of action $\Psi: G \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is denoted by $\operatorname{Pr}^{(n)} \Psi$: $G \times \mathbb{R}^{2+n} \rightarrow \mathbb{R}^{2+n}$. The invariants vectorfields are the prolonged Lie algebra corresponding to Ψ.

Remark 3.1. Note that, in general, the prolonged action is only local (even if the original action is global- see (2.2)).

