
Lecture 3

1 How to construct invariants for a given group action?

Let the action given by a single vector field X in Rm. If X 6= 0 everywhere then there exists
exactly m− 1 functionally independent invariants φ1, . . . φm−1 for this action.

If s vector fields are given which span s−dimensional orbits of a group action, then we
expect to find m− s functionally dependent invariants.

Examples:

• SO(2) acting on R2 via X = x∂y − y∂x. Then x2 + y2 is an invariant, and any other
invariant is a function thereof.

• SO(2) acting on R3 via X = x∂y − y∂x + (1 + z2)∂z. Then we have to solve

dx

−y
=

dy

x
=

dz

1 + z2

Since r2 = x2 + y2 is an invariant, then we can eliminate x =
√

r2 − y2 so

dy√
r2 − y2

=
dz

1 + z2

which implies
arcsin(y/r) = arctan(z) + k

but y/r = sin θ implies x/y = tan θ so arcsin(y/r) = arctan(y/x), hence

arctan(z)− arctan(y/x)

is a second invariant. So

tan (arctan(z)− arctan(y/x)) =
z − y/x

1 + zy/x
=

zx− y

yz + x
:= q (1.1)

is a second invariant (functionally dependent on the former). It is defined on the domain
z 6= −x/y. Alternatively:

q̃ =
r√

1 + q2
=

x + yz√
1 + z2

is an invariant defined everywhere.

• X1 = −y∂x + x∂y, X2 = 2xz∂x + 2yz∂y + (z2 + 1− x2 − y2)∂z. We have [X1,X2] = 0
so these generate an abelian group. We already know an invariant r of X1. Is there
another invariant? Yes, it is ∂z. Since any invariant of (X1,X2) is, in particular, an
invariant of X1. it must be a function φ(r, z). So, we may push X2 to the coordinates
(r, z), that is, consider F (x, y, z) = (r, z) and let Y := F∗(X2). We calculate Y easily
via

Y = X2(r)∂r + X2(z)∂z = 2rz∂r + (z2 + 1− r2)∂z
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The function we are looking satisfies

2rz
∂φ

∂r
+ (z2 + 1− r2)

∂φ

∂z
= 0

which verifies the characteristic equation

dr

2rz
=

dz

z2 + 1− r2

The solution is

φ =
z2 + r2 + 1

r
=

x2 + y2 + z2 + 1√
x2 + y2

2 Invariance of Differential equations: Overview

Definition 2.1. An ODE of order n is a relation

H(x, y, y
′
, . . . yn) = 0 (2.1)

where H(x1, . . . xn+1) : Rn+1 → R.
A point transformation is an action Ψ := (ψ1, ψ2) of a Lie group G acting on the space

R2 identified with (x, y): Ψ(g, x, y) = (ψ1(g, x, y), ψ2(g, x, y)) := (xg, yg).
The ODE (2.1) is invariant under the point transformation iff for any solution y = y(x)

of the ODE, the graph (x, y(x)) is transformed under Ψ to a graph of another solution of
the same ODE: (ψ1(g, x, y(x)), ψ2(g, x, y(x))) is a graph of a solution y(g) = y(g)(x) for any
g ∈ G.

Example: The action of SO(2) on R2 via

Ψ(t, x, y) = (x cos(t)− y sin(t), x sin(t) + y cos(t))

preserves the linear functions y = ax + b. Indeed,

(x(t), y(t)) = (x cos(t)− (ax + b) sin(t), x sin(t) + (ax + b) cos(t))

and we eliminate

x =
x(t) + b sin(t)

cos(t)− a sin(t)

and

y(t) = x sin(t) + (ax + b) cos(t) =
sin(t) + a cos(t)
cos(t)− a sin(t)

x(t) +
b

cos(t)− a sin(t)

Hence: The equation y
′′

= 0 is invariant under the SO(2) action.
If we replace the slop a = y

′
by y1, we see that the action SO(2) is extended to an action

on R3 parameterized by x, y, y1) as:

(x, y, y1) →
(

x cos(t)− y sin(t), x sin(t) + y cos(t),
sin(t) + y(1) cos(t)
cos(t)− y(1) sin(t)

)
(2.2)
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which is induced by the vextorfield

X = −y∂x + x∂y + (1 + (y1)2)∂y1

Let now y = y(x) be any function. Suppose y = ax+ b is the tangent to its graph at (x0, y0).
Then

y1,(t) = a(t) :=
sin(t) + a cos(t)
cos(t)− a sin(t)

is the slop to the tangent of the transformed graph at (x(t), y(t)). In particular, we obtained
that the derivative y

′
is transformed as y1 in the extended action.

We shall see later that the invariants of this action on R3, namely

r2 = x2 + y2 , q =
y
′
x− y

yy′ + x

(see (1.1)) are constants for any solution of SO(2) invariant equation:

r2(x, y(x)) = C1, q(x, y(x), y
′
(x)) = C2 ,

and that any such equation of first order is given by a functional relation between r2 and q:

H(x, y, y
′
) = F (r2, q) = 0 .

3 Prolongation of vector fields

Motivated by the extension of functional to differential invariance we wish to extend the
graph of a function y = f(x) in R2 to a graph of a prolonged function (y, y

′
) = Pr(1)f(x) :=

(f(x), f
′
(x)) in R3. More generally,

Y (n) = (y, y
′
, y

′′
, . . . yn) = (f(x), f

′
(x), . . . f (n)(x))

What is the image of Y (n) = Pr(n)f(x) under the flow of a vector field X = ξ∂x + η∂y?

ỹ
′
=

dỹ

dx̃
; ỹk+1 =

dỹk

dx̃
and so on, where

x̃ = x + εξ(x, y) + . . . , ỹ = y + εη(x, y) + . . . ; ỹ1 = y1 + εη(1)(x, y, y1) + . . .

Here we make, for any h = h(x, y, y1, . . .

dh = (hx + hyy1 + . . . hynyn+1) dx

implies
dỹ = dy + εdη , dx̃ = dx + εdξ

ỹ1 =
dỹ

dx̃
=

dy

dx
+ ε

(
dη

dx
− y1

dξ

dx

)
:= y1 + εη(1)+

as well as

ỹn =
dỹn−1

dx̃
=

dyn−1

dx
+ ε

(
dη(n−1)

dx
− yn

dξ

dx

)
:= yn + εη(n)+
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Definition 3.1. The prolongation of a vector field X = ξ∂x + η∂y to order n is given by

Pr(n)X := ξ∂x + η∂y + η(1)∂y1 + . . . + η(n)∂yn

where

η(0) ≡ η , η(k) =
dη(k−1)

dx
− yk

dξ

dx

We shall sometimes write X instead of Pr(n)X, when no confusion is expected.

Examples:

(A) −y∂x + x∂y +
(
1 + (y1)2

)
∂y1 + 3y1y2∂y2 +

(
3(y2)2 + 4y1y3

)
∂y3 + . . .

(B) x∂x + y∂y − y2∂y2 − 2y3∂y3 . . .

(C) ∂x, x∂x− y1∂y1 − 2y2∂y2 − 3y3∂y3 + . . . , x2∂x− 2xy1∂y1 − (2y1 +4xy2)∂y2 − 6(xy3−
y2)∂y3 + . . .

Theorem 1. The prolongation of vector fields is compatible with the Lie product, i.e

[Pr(n)(X1), P r(n)(X2)] = Pr(n)[X1,X2] .

In particular, it follows that the prolongation of a Lie algebra is an isomorphic Lie algebra.

Definition 3.2. The n− prolongation of action Ψ : G × R2 → R2 is denoted by Pr(n)Ψ :
G × R2+n → R2+n. The invariants vectorfields are the prolonged Lie algebra corresponding
to Ψ.

Remark 3.1. Note that, in general, the prolonged action is only local (even if the original
action is global- see (2.2)).
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