Lecture 4

1 Differential invariants

Definition 1.1. Given a point transformation Ψ acting on \mathbb{R}^{2}, a differential invariant of order n is an invariant function of the prolonged action $\operatorname{Pr}^{(n)} \Psi$.

Examples (referred to group actions on the previous page) :
(A): $\omega_{0}=\sqrt{x^{2}+y^{2}}, \omega_{1}=\frac{x y_{1}-y}{x+y y_{1}}$.
(B) $\omega_{0}=y / x, \omega_{1}=y_{1}$.
(C) $\omega_{0}=y, \omega_{3}=2\left(y_{1}\right)^{-3} y_{3}-3\left(y_{1}\right)^{-4}\left(y_{2}\right)^{2}$ is a complete set of third order invariants.

Are there higher order invariants?
Theorem 1. For a group action $\Psi: G \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, if α, β are invariants of order n then $D_{x} \alpha / D_{x} \beta$ is an invariant of order $n+1$. Here D_{x} is a complete derivative:

$$
D_{x}=\partial_{x}+y_{1} \partial_{y}+\ldots+y_{n+1} \partial_{y_{n}}
$$

Exercises:

1. Prove that, for $\phi=\phi\left(x, y, \ldots, y_{n}\right)$ and $\mathbf{X}=\xi \partial_{x}+\eta \partial_{y}$ on \mathbb{R}^{2} :

$$
\operatorname{Pr}^{(n+1)} \mathbf{X}\left(D_{x} \phi\right)=D_{x}\left(\operatorname{Pr}^{(n)} \mathbf{X}(\phi)\right)-D_{x} \phi \cdot D_{x} \xi
$$

2. Use this to prove Theorem 1.

Example:

(A) For the prolonged action of $S O(2)$ we know that $r=\sqrt{x^{2}+y^{2}}$ is an invariant and $q=\frac{y^{\prime} x-y}{y y^{\prime}+x}$ is a second order invariant. Then

$$
D_{x}(q) / D_{x}(r)=\frac{\sqrt{x^{2}+y^{2}}}{\left(x+y y_{1}\right)^{2}}\left[\left(x^{2}+y^{2}\right) y_{2}-\left(1+y_{1}\right)\left(x y_{1}-y\right)\right)
$$

is a third order invariant. We can replace it by

$$
\kappa=\frac{D_{x}(q) / D_{x}(r)}{\left(1+q^{2}\right)^{3 / 2}}+\frac{q}{r\left(1+q^{2}\right)^{1 / 2}}=\frac{y_{2}}{\left(1+\left(y_{1}\right)^{2}\right)^{3 / 2}}
$$

which is an expression for the curvature of the graph of the function $(x, y(x))$.
(B) For the prolonged action of the scaling group we know the invariants $w_{0}=y / x, w_{1}=y_{1}$. Then a second order invariant is:

$$
D_{x}\left(w_{1}\right) / D_{x}\left(w_{0}\right)=\frac{x^{2} y_{2}}{x y_{1}-y}
$$

Corollary 1.1. If w_{0} is a (zero order) invariant, w_{1} first order invariant of an action derived by a single symmetry (vectorfield), than all differential invariants of order n can be obtain, recursively, by

$$
w_{n}=\frac{D_{x} w_{n-1}}{D_{x} w_{0}}=\frac{D_{x}^{n-1} w_{1}}{D_{x}^{n-1} w_{0}}
$$

In particular, any n order invariant is of the form

$$
G\left(w_{0}, w_{1}, \frac{D_{x} w_{1}}{D_{x} w_{0}}, \frac{D_{x}^{2} w_{1}}{D_{x}^{2} w_{0}} \cdots \frac{D_{x}^{n-1} w_{1}}{D_{x}^{n-1} w_{0}}\right)
$$

1.1 Infinitesimal formulation of invariance for ODE

Theorem 2. An $O D E H=0$ of order n is invariant under the action of the flow $\psi(t, x, y)$ generated by \mathbf{X} if and only if

$$
\operatorname{Pr}^{(n)} \mathbf{X}(H)=0 \quad \bmod H=0
$$

provided $H_{x}^{2}+H_{y}^{2}+\ldots H_{y_{n}}^{2} \neq 0 \quad \bmod H=0$.
Counter-Example: $H=\left(y_{2}+y\right)^{2}$ verifies $\operatorname{Pr} \mathbf{X} H=0 \bmod H$ for any \mathbf{X} ! In particular, the explicit ODE of order n

$$
y_{n}=w\left(x, y, \ldots y_{n-1}\right)
$$

is \mathbf{X} invariant iff

$$
\begin{equation*}
\operatorname{Pr}^{(n-1)} \mathbf{X}(w)=\eta^{(n)}\left(x, y, \ldots, y_{n-1}, w\left(x, y, \ldots, y_{n-1}\right)\right) \tag{1.1}
\end{equation*}
$$

(take $\left.H=w\left(x, y, \ldots, y_{n-1}\right)-y_{n}\right)$.
Examples:

- A linear ODE:

$$
y_{n}=\sum_{0}^{n-1} w^{(i)}(x) y_{i}, \quad y_{0}:=y
$$

and the transformation $(\tilde{x}, \tilde{y})=\left(x, e^{t} y\right)$. Its prolongation

$$
\mathbf{X}=y \partial_{y}+y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+\ldots
$$

so $\eta^{(n)}=y_{n}$ and $\operatorname{Pr}^{(n-1)} \mathbf{X}(w)=w$.

- Under $(\tilde{x}, \tilde{y})=(x, y+t)$. Then $\mathbf{X}=\partial_{y}$ so $w_{y}=0$ or $w=w\left(x, y_{1}, \ldots y_{n-1}\right)$. In that case the order of the equation can be reduced by using the variable $z=y_{1}$.
- $(\tilde{x}, \tilde{y})=(x+t, y)$ then $\mathbf{X}=\partial_{x}$ and $w=w\left(y, y_{1}, \ldots y_{n-1}\right)$. The order can be reduced again by inverting the dependent and independent variables $x \rightarrow y, y \rightarrow x$.

1.2 First order ordinary differential equations

Recall that, for $\mathbf{X}=\xi \partial_{x}+\eta \partial_{y}$,

$$
\eta^{(1)}=\eta_{x}+\left(\eta_{y}-\xi_{x}\right) y_{1}-\xi_{y}\left(y_{1}\right)^{2}
$$

so, from (1.1) we get for a first order $\operatorname{ODE} y^{\prime}=F(x, y)$

$$
\begin{equation*}
\eta_{x}+\left(\eta_{y}-\xi_{x}\right) F-\xi_{y} F^{2}=\xi F_{x}+\eta F_{y} \tag{1.2}
\end{equation*}
$$

This is a PDE for ξ, η. Note that any vectorfield where

$$
\begin{equation*}
\eta / \xi=F \tag{1.3}
\end{equation*}
$$

is a solution (not a big deal!)
Proposition 1.1. If $P d x+Q d y=0$ is an $O D E$ and $\xi \partial_{x}+\eta \partial_{y}$ is a generator of its symmetry, then

$$
R(x, y):=(\xi P+\eta Q)^{-1}
$$

is an integration factor, that is, $R P d x+R Q d y$ is an exact differential.
Remark 1.1. In case (1.3) R is not defined!
In some cases we may find other, more helpful solutions. For example

$$
y^{\prime}=F(y / x)
$$

which is invariant under the scaling group action $(x, y) \rightarrow e^{t}(x, y)$. Here $\mathbf{X}=x \partial_{x}+y \partial_{y}$ is a solution of (1.2). As we know, $z_{1}:=y / x$ is an invariant, i.e $\mathbf{X}\left(z_{1}\right)=0$. So, if we take any other function z_{2} of x or y as a second coordinate, then \mathbf{X} is transformed into

$$
\mathbf{X}\left(z_{1}\right) \partial_{z_{1}}+\mathbf{X}\left(z_{2}\right) \partial_{z_{2}}=\mathbf{X}\left(z_{2}\right) \partial_{z_{2}}
$$

and the ODE is transformed into

$$
d z_{2} / d z_{1}=\tilde{F}\left(z_{1}\right)
$$

For example, if $z_{2}=\ln x$ then $y=z_{1} e^{z_{2}}, x=e^{z_{2}}$ so

$$
F\left(z_{1}\right)=\frac{d y}{d x}=\frac{d\left(z_{1} e^{z_{2}}\right)}{d e^{z_{2}}}=\frac{1+z_{1} d z_{2} / d z_{1}}{d z_{2} / d z_{1}}
$$

and

$$
\frac{d z_{2}}{d z_{1}}=\frac{1}{F\left(z_{1}\right)-1}
$$

Another example:

$$
\begin{equation*}
y^{\prime}=\frac{y+x H\left(\sqrt{x^{2}+y^{2}}\right)}{x-y H\left(\sqrt{x^{2}+y^{2}}\right)} \tag{1.4}
\end{equation*}
$$

is invariant under the action of $\mathbf{X}=-y \partial_{x}+x \partial_{y}$. Indeed, it is the most general equation of this form: Any such equation must be of the form $H\left(w_{0}\right)=w_{1}$ where w_{0}, w_{1} are the two first invariant of order ≤ 1 by Theorem 1 (see (A)). Again, we take the zero-order invariant $r=\sqrt{x^{2}+y^{2}}$ as the first coordinate, and (most conveniently) θ to be the second one. So $\mathbf{X}=\partial_{\theta}$ in the new coordinate and the equation must be reduced into $d \theta / d r=F(r)$. We calculate, using this and (1.4),

$$
\frac{d y}{d x}=\frac{d(r \sin \theta) / d r}{d(r \cos \theta) / d r}=\frac{\sin \theta+r \theta^{\prime} \cos \theta}{\cos \theta-r \theta^{\prime} \sin \theta}=\frac{\sin \theta+H(r) \cos \theta}{\cos \theta-H(r) \sin \theta}
$$

which yields

$$
\theta^{\prime}=\frac{H(r)}{r}
$$

1.3 Differential invariants revisited

Consider the firsr order linear PDE on \mathbb{R}^{n+1} :

$$
\sum a_{i} \partial_{x_{i}} f=0
$$

We can associate with this a vector field $\mathbf{A}=\sum a_{i} \partial_{x_{i}}$. We already know that it can be transformed to a new set of coordinates $s, \phi_{i}, i=1, \ldots n$ where

$$
\mathbf{A} \phi_{i}=0, \quad \mathbf{A} s=1
$$

so \mathbf{A} is transformed into ∂_{s} in this system.
Now, we consider an n order ODE:

$$
y_{n}=w\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right)
$$

and the corresponding vector field on \mathbb{R}^{n+1}

$$
\mathbf{A}=\partial_{x}+y_{1} \partial_{y}+y_{2} \partial_{y_{1}}+\ldots+w \partial_{y_{n-1}}
$$

in the coordinates $x, y_{0}, y_{1}, \ldots y_{n-1}$. Here $w=w\left(x, y, y_{1}, \ldots y_{n-1}\right)$.
There is a deep relation between the ODE and \mathbf{A} so defined. A solution of $\mathbf{A} \phi=0$ is an invariant of motion to the ODE, that is

$$
\frac{d}{d x} \phi\left(x, y, y^{\prime}, \ldots y_{n-1}\right)=\mathbf{A} \phi=0
$$

If we found such a non-constant invariant ϕ then $\phi_{y_{n-1}} \neq 0$ (why?) and we solve for the implicit function $y_{n-1}=\hat{w}\left(x, y, y_{1}, \ldots, y_{n-2}\right)$ and reduce the order of the ODE:

$$
y^{(n-1)}=\hat{w}\left(x, y, y^{\prime}, \ldots, y_{n-2}\right)
$$

Lemma 1.1. If $\mathbf{A} \neq 0$ is a v-f in \mathbb{R}^{n+1} then there are (locally) n functionally independent invariant functions $\phi_{1}, \ldots \phi_{n}$ verifying $\mathbf{A} \phi_{i}=0$. Moreover, any invariant function f is given by $f=F\left(\phi_{1}, \ldots \phi_{n}\right)$ for some smooth $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Moreover, if \mathbf{B} is another vector field with the same invariants as \mathbf{A}, then $\mathbf{B}=\lambda\left(x_{1}, \ldots x_{n+1}\right) \mathbf{A}$.

Proof. Since we can find new variables $s_{0}, \ldots s_{n}$ in which $\mathbf{A}=\partial_{s_{0}}$, then all invariants are functions of $s_{1}, \ldots s_{n}$. Also, any other vector field with the same invariants is of the form $\tilde{\lambda} \partial_{s_{0}}$ for some $\tilde{\lambda}\left(s_{0}, \ldots s_{n}\right)$.

Moreover, if we find a complete set of n functionally independent invariants $\phi_{1}, \ldots \phi_{n}$ then we may eliminate $y=y\left(x, \phi_{1}^{0}, \ldots \phi_{n}^{0}\right)$ form the system

$$
\phi_{1}=\phi_{1}^{0} \quad \ldots \phi_{n}=\phi_{n}^{0}
$$

and get n parameter family of solutions!
Example: consider $y^{\prime \prime}=-y$ then $\mathbf{A}=\partial_{x}+y_{1} \partial_{y}-y_{0} \partial_{y_{1}}$ and the invariants are

$$
\phi_{1}=y_{0}^{2}+y_{1}^{2}, \quad \phi_{2}=x-\arctan \left(y_{0} / y_{1}\right)
$$

We can eliminate the solution $y_{0}=y_{1} \tan \left(x-\phi_{2}^{0}\right) \rightarrow\left(y_{0}\right)^{2}=\left(y_{1}\right)^{2} \tan ^{2}\left(x-\phi_{2}^{0}\right) \rightarrow\left(y_{0}\right)^{2}+$ $\left(y_{1}\right)^{2}=\left(y_{1}\right)^{2} \cos ^{-2}\left(x-\phi_{2}^{0}\right) \rightarrow\left(y_{1}\right)^{2}=\phi_{1}^{0} \cos ^{2}\left(x-\phi_{2}^{0}\right) \rightarrow$

$$
y_{1}:=y=\left(\phi_{1}^{0}\right)^{1 / 2} \sin \left(x-\phi_{2}^{0}\right)
$$

2 Symmetry of ODE: second formulation

Let $\mathbf{A}=\partial_{x}+y_{1} \partial_{y_{0}}+\ldots+w \partial_{y-1}$ and $\mathbf{X}=\xi \partial_{x}+\eta \partial_{y}+\eta_{1} \partial_{y_{1}}+\ldots+\eta_{n-1} \partial_{y_{n-1}}$ be a prolonged symmetry. Let $\phi_{1}, \ldots \phi_{n}$ be a set of functionally independent invariants. Since $\mathbf{X}(\phi)$ is also an invariant if ϕ is (prove!) and since the set of invariants are complete by Lemma 1.1, then

$$
\mathbf{A X}\left(\phi_{i}\right)=0 \rightarrow \mathbf{X}\left(\phi_{i}\right)=\Omega_{i}\left(\phi_{1}, \ldots \phi_{n}\right)
$$

It follows

$$
[\mathbf{X}, \mathbf{A}] \phi_{i}=\mathbf{X}\left(\mathbf{A}\left(\phi_{i}\right)\right)-\mathbf{A}\left(\mathbf{X}\left(\phi_{i}\right)\right)=0, i=1, \ldots n
$$

So, by Lemma 1.1 again:

$$
\begin{equation*}
[\mathbf{X}, \mathbf{A}]=\lambda\left(\mathbf{x}, \mathbf{y}, \mathbf{y}_{\mathbf{1}}, \ldots \mathbf{y}_{\mathbf{n}-\mathbf{1}}\right) \mathbf{A} \tag{2.1}
\end{equation*}
$$

Writing explicitly:

$$
[\mathbf{X}, \mathbf{A}]=-(\mathbf{A} \xi) \partial_{x}+\left[\mathbf{X}\left(y_{1}\right)-\mathbf{A}(\eta)\right] \partial_{y}+\ldots+\left[\mathbf{X}(w)-\mathbf{A}\left(\eta_{n-1}\right)\right] \partial_{y_{n-1}}
$$

so the first component (coefficient of ∂_{x}) yields

$$
\lambda=-\mathbf{A} \xi=-\xi_{x}-y_{1} \xi_{y}:=-\frac{d \xi}{d x}
$$

Now, from (2.1)

$$
\begin{equation*}
\left(\eta^{\prime} \frac{d \eta}{d x}\right) \partial_{y}+\left(\eta^{\prime \prime}-\frac{d \eta_{1}}{d x}\right) \partial_{y_{1}}+\ldots+\left(\mathbf{X}(w)-\frac{d \eta_{n-1}}{d x}\right) \partial_{y_{n-1}}=-\frac{d \xi}{d x}\left(y_{1} \partial_{y}+y_{2} \partial_{y_{1}}+\ldots+w \partial_{y_{n-1}}\right) \tag{2.2}
\end{equation*}
$$

Recall from the definition of the prolongation

$$
\eta_{k}=\frac{d \eta_{k-1}}{d x}-y_{k} \frac{d \xi}{d x}
$$

we obtain that (2.2) is equivalent to

$$
\mathbf{X}(w)=\eta_{n} \quad \bmod \quad y_{n}=w
$$

which is precisely $\mathbf{X}(H)=0$ for $H=y_{n}-w\left(x, y, y_{1}, \ldots y_{n-1}\right)$.

