
Lecture 4

1 Differential invariants

Definition 1.1. Given a point transformation Ψ acting on R2, a differential invariant of
order n is an invariant function of the prolonged action Pr(n)Ψ.

Examples (referred to group actions on the previous page) :

(A): ω0 =
√

x2 + y2, ω1 = xy1−y
x+yy1

.

(B) ω0 = y/x, ω1 = y1.

(C) ω0 = y, ω3 = 2(y1)−3y3 − 3(y1)−4(y2)2 is a complete set of third order invariants.

Are there higher order invariants?

Theorem 1. For a group action Ψ : G × R2 → R2, if α, β are invariants of order n then
Dxα/Dxβ is an invariant of order n + 1. Here Dx is a complete derivative:

Dx = ∂x + y1∂y + . . . + yn+1∂yn .

Exercises:

1. Prove that, for φ = φ(x, y, . . . , yn) and X = ξ∂x + η∂y on R2:

Pr(n+1)X(Dxφ) = Dx

(
Pr(n)X(φ)

)
−Dxφ ·Dxξ .

2. Use this to prove Theorem 1.

Example:

(A) For the prolonged action of SO(2) we know that r =
√

x2 + y2 is an invariant and

q = y
′
x−y

yy
′
+x

is a second order invariant. Then

Dx(q)/Dx(r) =

√
x2 + y2

(x + yy1)2
[
(x2 + y2)y2 − (1 + y1)(xy1 − y)

)

is a third order invariant. We can replace it by

κ =
Dx(q)/Dx(r)
(1 + q2)3/2

+
q

r(1 + q2)1/2
=

y2

(1 + (y1)2)3/2

which is an expression for the curvature of the graph of the function (x, y(x)).

(B) For the prolonged action of the scaling group we know the invariants w0 = y/x, w1 = y1.
Then a second order invariant is:

Dx(w1)/Dx(w0) =
x2y2

xy1 − y
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Corollary 1.1. If w0 is a (zero order) invariant, w1 first order invariant of an action derived
by a single symmetry (vectorfield) , than all differential invariants of order n can be obtain,
recursively, by

wn =
Dxwn−1

Dxw0
=

Dn−1
x w1

Dn−1
x w0

.

In particular, any n order invariant is of the form

G

(
w0, w1,

Dxw1

Dxw0
,
D2

xw1

D2
xw0

. . .
Dn−1

x w1

Dn−1
x w0

)

1.1 Infinitesimal formulation of invariance for ODE

Theorem 2. An ODE H = 0 of order n is invariant under the action of the flow ψ(t, x, y)
generated by X if and only if

Pr(n)X(H) = 0 mod H = 0

provided H2
x + H2

y + . . . H2
yn
6= 0 mod H = 0.

Counter-Example: H = (y2 + y)2 verifies PrXH = 0 mod H for any X!
In particular, the explicit ODE of order n

yn = w(x, y, . . . yn−1)

is X invariant iff

Pr(n−1)X(w) = η(n) (x, y, . . . , yn−1, w(x, y, . . . , yn−1)) (1.1)

(take H = w(x, y, . . . , yn−1)− yn).
Examples:

• A linear ODE:

yn =
n−1∑

0

w(i)(x)yi , y0 := y

and the transformation (x̃, ỹ) = (x, ety). Its prolongation

X = y∂y + y1∂y1 + y2∂y2 + . . .

so η(n) = yn and Pr(n−1)X(w) = w.

• Under (x̃, ỹ) = (x, y + t). Then X = ∂y so wy = 0 or w = w(x, y1, . . . yn−1). In that
case the order of the equation can be reduced by using the variable z = y1.

• (x̃, ỹ) = (x + t, y) then X = ∂x and w = w(y, y1, . . . yn−1). The order can be reduced
again by inverting the dependent and independent variables x → y, y → x.
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1.2 First order ordinary differential equations

Recall that, for X = ξ∂x + η∂y,

η(1) = ηx + (ηy − ξx)y1 − ξy(y1)2

so, from (1.1) we get for a first order ODE y
′
= F (x, y)

ηx + (ηy − ξx)F − ξyF
2 = ξFx + ηFy (1.2)

This is a PDE for ξ, η. Note that any vectorfield where

η/ξ = F (1.3)

is a solution (not a big deal!)

Proposition 1.1. If Pdx+Qdy = 0 is an ODE and ξ∂x+η∂y is a generator of its symmetry,
then

R(x, y) := (ξP + ηQ)−1

is an integration factor, that is, RPdx + RQdy is an exact differential.

Remark 1.1. In case (1.3) R is not defined!

In some cases we may find other, more helpful solutions. For example

y
′
= F (y/x)

which is invariant under the scaling group action (x, y) → et(x, y). Here X = x∂x + y∂y is a
solution of (1.2). As we know, z1 := y/x is an invariant, i.e X(z1) = 0. So, if we take any
other function z2 of x or y as a second coordinate, then X is transformed into

X(z1)∂z1 + X(z2)∂z2 = X(z2)∂z2

and the ODE is transformed into

dz2/dz1 = F̃ (z1) .

For example, if z2 = lnx then y = z1e
z2 , x = ez2 so

F (z1) =
dy

dx
=

d(z1e
z2)

dez2
=

1 + z1dz2/dz1

dz2/dz1

and
dz2

dz1
=

1
F (z1)− 1

.

Another example:

y
′
=

y + xH(
√

x2 + y2)

x− yH(
√

x2 + y2)
(1.4)
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is invariant under the action of X = −y∂x + x∂y. Indeed, it is the most general equation
of this form: Any such equation must be of the form H(w0) = w1 where w0, w1 are the two
first invariant of order ≤ 1 by Theorem 1 (see (A)). Again, we take the zero-order invariant
r =

√
x2 + y2 as the first coordinate, and (most conveniently) θ to be the second one. So

X = ∂θ in the new coordinate and the equation must be reduced into dθ/dr = F (r). We
calculate, using this and (1.4),

dy

dx
=

d(r sin θ)/dr

d(r cos θ)/dr
=

sin θ + rθ
′
cos θ

cos θ − rθ′ sin θ
=

sin θ + H(r) cos θ

cos θ −H(r) sin θ

which yields

θ
′
=

H(r)
r

1.3 Differential invariants revisited

Consider the firsr order linear PDE on Rn+1:
∑

ai∂xif = 0

We can associate with this a vector field A =
∑

ai∂xi . We already know that it can be
transformed to a new set of coordinates s, φi, i = 1, . . . n where

Aφi = 0, As = 1

so A is transformed into ∂s in this system.
Now, we consider an n order ODE:

yn = w(x, y, y
′
, y

′′
, . . . , y(n−1))

and the corresponding vector field on Rn+1

A = ∂x + y1∂y + y2∂y1 + . . . + w∂yn−1

in the coordinates x, y0, y1, . . . yn−1. Here w = w(x, y, y1, . . . yn−1).
There is a deep relation between the ODE and A so defined. A solution of Aφ = 0 is an

invariant of motion to the ODE, that is

d

dx
φ(x, y, y

′
, . . . yn−1) = Aφ = 0

If we found such a non-constant invariant φ then φyn−1 6= 0 (why?) and we solve for the
implicit function yn−1 = ŵ(x, y, y1, . . . , yn−2) and reduce the order of the ODE:

y(n−1) = ŵ
(
x, y, y

′
, . . . , yn−2

)
.

Lemma 1.1. If A 6= 0 is a v-f in Rn+1 then there are (locally) n functionally independent
invariant functions φ1, . . . φn verifying Aφi = 0. Moreover, any invariant function f is given
by f = F (φ1, . . . φn) for some smooth F : Rn → R.

Moreover, if B is another vector field with the same invariants as A, then B = λ(x1, . . . xn+1)A.
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Proof. Since we can find new variables s0, . . . sn in which A = ∂s0 , then all invariants are
functions of s1, . . . sn. Also, any other vector field with the same invariants is of the form
λ̃∂s0 for some λ̃(s0, . . . sn).

Moreover, if we find a complete set of n functionally independent invariants φ1, . . . φn

then we may eliminate y = y(x, φ0
1, . . . φ

0
n) form the system

φ1 = φ0
1 . . . φn = φ0

n

and get n parameter family of solutions!
Example: consider y

′′
= −y then A = ∂x + y1∂y − y0∂y1 and the invariants are

φ1 = y2
0 + y2

1 , φ2 = x− arctan(y0/y1)

We can eliminate the solution y0 = y1 tan(x − φ0
2) → (y0)2 = (y1)2 tan2(x − φ0

2) → (y0)2 +
(y1)2 = (y1)2 cos−2(x− φ0

2) → (y1)2 = φ0
1 cos2(x− φ0

2) →
y1 := y = (φ0

1)
1/2 sin(x− φ0

2)

2 Symmetry of ODE: second formulation

Let A = ∂x +y1∂y0 + . . .+w∂y−1 and X = ξ∂x +η∂y +η1∂y1 + . . .+ηn−1∂yn−1 be a prolonged
symmetry. Let φ1, . . . φn be a set of functionally independent invariants. Since X(φ) is also
an invariant if φ is (prove!) and since the set of invariants are complete by Lemma 1.1, then

AX(φi) = 0 → X(φi) = Ωi(φ1, . . . φn)

It follows
[X,A]φi = X(A(φi))−A(X(φi)) = 0 , i = 1, . . . n .

So, by Lemma 1.1 again:
[X,A] = λ(x,y,y1, . . .yn−1)A (2.1)

Writing explicitly:

[X,A] = −(Aξ)∂x + [X(y1)−A(η)]∂y + . . . + [X(w)−A(ηn−1)]∂yn−1

so the first component (coefficient of ∂x) yields

λ = −Aξ = −ξx − y1ξy := −dξ

dx

Now, from (2.1)(
η
′ dη

dx

)
∂y+

(
η
′′ − dη1

dx

)
∂y1+. . .+

(
X(w)− dηn−1

dx

)
∂yn−1 = −dξ

dx

(
y1∂y + y2∂y1 + . . . + w∂yn−1

)

(2.2)
Recall from the definition of the prolongation

ηk =
dηk−1

dx
− yk

dξ

dx

we obtain that (2.2) is equivalent to

X(w) = ηn mod yn = w

which is precisely X(H) = 0 for H = yn − w(x, y, y1, . . . yn−1).
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