
Lecture 5 & 6

1 Second order and beyond

1.1 One parameter symmetry (G1)

A second order ODE is
y
′′

= w(x, y, y
′
)

and the corresponding equation for the symmetry generating vectorfield

X(w) = η(2)(x, y, y1, w(x, y, y1)) (1.1)

where X = ξ∂x + η∂y + η(1)∂y1 . Recall

η(1) = ηx + (ηy − ξx)y1 − ξy(y1)2 , η(2) = ηxx + (2ηxy − ξxx)y1+

(ηyy − 2ξxy)(y1)2 − ξyy(y1)3 + (ηy − 2ξx − 3ξyy1)y2.

Examples:

1.
y
′′

= xny2 .

In this case we get from (1.1):

xny2(ηy − 2ξx)− nxn−1y2ξ − 2yxnη + ηxx + y1(2ηxy − ξxx − 3xny2ξy)

+y2
1(ηyy − 2ξxy)− y3

1ξyy = 0 (1.2)

This is a polynomial in y1. The coefficients of y2
1 and y3

1 yield

ξyy = 0 , ηyy = 2ξxy

so
ξ = yα(x) + β(x), η = y2α

′
(x) + yγ(x) + δ(x) .

From this and the coefficient of y1 we get

−3xny2α + 3yα
′′

+ 2γ
′ − β

′′
= 0

hence α = 0 and 2γ
′
= β

′′
. Thus

ξ = β(x) , η = y(β
′
/2 + c) + δ(x)

for some constant c. We substitute it in the zero oder (in y1) of (1.2) to obtain

−y2[xn(
5
3
β
′
+ c) + nxn−1β] + y(

1
2
β
′′′ − 2xnδ) + δ

′′
= 0 ,

so
5
2
xβ

′
+ nβ + cx = 0 , δ =

1
4
x−nβ

′′′
, δ

′′
= 0 .
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Take, for example, β = −(c/n)x. Then δ ≡ 0 and we obtain the vectorfield

X = x∂x − (n + 2)y∂y

which generates the transformation group (x, y) → (etx, e−(n+2)ty). We may use it to
reduce the order of the equation.

Surprisingly, there are other symmetries only if n = −5,−15/7,−20/7 (!)

Next, we can use this to reduce the order of the equation. The function z1(x, y) = yxn+1

is clearly an invariant. If we choose z2 = ln(x), so x = ez2 , y = z1e
−(n+2)z2 . Then

y
′
=

dy

dx
=

dy/dz2

dx/dz2
= e−(n+3)z2

(
dz1

dz2
− (n + 2)z1

)

y
′′

=
dy

′
/dz2

dx/dz2
= e−(n+4)z2

(
d2z2

1

dz2
2

− (n + 2)
dz1

dz2
− (n + 3)

(
dz1

dz2
− (n + 2)z1

))

= e−(n+4)z2

(
d2z2

1

dz2
2

− (2n + 5)
dz1

dz2
+ (n + 3)(n + 2)z1

)
= xny2 = z2

1e
−(n+4)z2

so
d2z2

1

dz2
2

= (2n + 5)
dz1

dz2
− (n + 3)(n + 2)z1 + z2

1

which is, in fact, a first order equation under disguise (why?)

2.
y
′′

= 0

Then the symmetry equation is reduced into

ηxx + y1(2ηxy − ξxx) + y2
1(ηyy − 2ξxy)− y3

1ξyy = 0 .

This reduces to ηxx = 2ηxy − ξxx = ηyy − 2ξxy = ξyy = 0. From this we obtain

X1 = ∂x, X2 = x∂x, X3 = y∂x , X4 = xy∂x + y2∂y , X5 = x2∂x + xy∂y

X6 = ∂y, X7 = x∂y, X8 = y∂y .

So, we see that the dimension of the transformation groups for second order ODE varies
from zero to 8. Can there be more than 8 dimensional transformation group for second order
ODE? The answer is no. This follows from the fact that η(1) is at most quadratic in y1 (why)?
Problems:

1. Determine the (8th parameter) transformation group generated on R2 by X1, . . .X8.
(Hint: It is the most general transformation which preserves linear functions).

2. Prove that y(n) = 0 have n + 4 dimensional symmetry for n > 2.

3. Prove that there are at most n + 4 invariants for n− th order ODE if n > 2. Why does
it differ from n = 2?

4. Prove that y
′′

= xy + ey
′
+ e−y

′
have no symmetry whatsoever!
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1.2 2-symmetry (G2)

Given a symmetry group generated by Y1,Y2, we get

[Y1,Y2] = a1Y1 + a2Y2 .

If a1 6= 0 we may choose another base X1 = a1Y1 + a2Y2, X2 = Y2/a1 so

[X1,X2] = X1 (a)

If a1 = 0 then X1 = Y1/a2,X2 = Y2 and get the same group structure. If both a1 = a2 = 0
then we, evidently, have an abelian group

[X1,X2] = 0 . (b)

What are the ”canonical” forms of vectorfields realizing these abstract algebras? Consider

X1 = ξ1∂x + η1∂y , X2 = ξ2∂x + η2∂y .

There are, in fact, 2 cases for either (a) and (b):

(i) δ := ξ1η2 − ξ2η1 6= 0, (ii) δ = 0 .

a) We may always assume X1 = ∂x. Then1 X2 = a(x, y)∂x + b(x, y)∂y and

[X1,X2] = ax(x, y)∂x + bx(x, y)∂y = ∂x

so a = x+a(y), b = b(y). We my further transform the variables x̃ = x+h(y), ỹ = v(y)
to obtain

X̃1 = ∂x̃ , X̃2 =
[
x + a(y) + h

′
(y)b(y)

]
∂x̃ + bv

′
∂ỹ

There are now two two cases

(i) δ = −b 6= 0. Here we take h as a solution of bh
′
+a = h, bv

′
= v and get (removing

the tilda’s)
X1 = ∂x , X2 = x∂x + y∂y (1.3)

(ii) δ = b = 0, hence, with h = a,

X1 = ∂x , X2 = x∂x (1.4)

(b) By similar arguments we obtain the two possibilities:

(i) X1 = ∂x , X2 = ∂y

(ii) X1 = ∂x , X2 = y∂x

We now ask what are the most general second order equations which realizes these symmetries.
For this we must find the invariants of second degree in each case.

1Sometimes it is better to choose X1 = ∂y, as in a− ii, b− ii below.
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(a-i) Recall the prolongation to second order,

X1 = ∂x, X2 = x∂x + y∂y − y2∂y2

from which we obtain the 2 invariants y1, xy2. Then H(x, y, y1, y2) = xy2 − w(y1) = 0
stands for the most general invariant function, which gives us the canonical equation

y
′′

= x−1w(y
′
)

(a-ii) From the prolongations
∂x, x∂x − y1∂y1 − 2y2∂y2

we readily get the invariants y2/(y1)2, y, so y
′′

= (y
′
)2w(y) is the most general canonical

equation. However, if we change the role of x and y we obtain

∂y, y∂y + y1∂y1 + y2∂y2 .

Here the invariants are x, y2/y1, and the most general equation

y
′′

= y
′
w(x) .

( b-i) Here, clearly, y1, y2 are the invariants so the general equation is

y
′′

= w(y
′
) .

(b-ii) Again, replacing the role of x and y

∂y, x∂y + ∂y1 .

The invariants x, y2 yield
y
′′

= w(x) .

1.3 Full solutions for second order equations admitting G2

a) Xj := ξj∂x + ηj∂y, j = 1, 2 where

[X1,X2] = X1 (1.5)

i) ξ1η2 − ξ2η1 6= 0: We need to transform to new variables by which X1 = ∂s and
X2 = t∂t + s∂s. For this, let u = ln(t) and

X1(u) = ξ1ux + η1uy = 0 , X2(u) = ξ2ux + η2uy = 1 .

which implies

u(x, y) =
∫ x,y η1dx− ξ1dy

ξ1η2 − ξ2η1

which is well defined because of (1.8). Next we substitute s = tv(s, t) and get
(since X1(t) = X1(u) = 0,X2(t) = t)

X1(s) = tX1(v) = tη1(y, t)vy = 1 (1.6)
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and
X2(s) = vX2(t) + tX2(v) = s + tX2(v) =⇒ X2(v) = 0

hence
tvt + η2vy = 0 . (1.7)

implies
X1 = ∂t , X2 = t∂t + s∂s .

We get from (1.6)

s(y, t) = tv(y, t) = t

∫ y,t (
dy

tη1
− η2dt

t2η1

)
.

Finally, we get the equation s
′′

= w̃(s
′
)/t whose solution

∫ s
′

dτ

w̃(τ)
= ln(t) + c =⇒ s

′
= F (−1)(ln(t) + c)

where F
′
= 1/w̃. This yields another integration s(t) =

∫ t
F (−1)(τ, c). We get the

solution after 4 integrations altogether.

ii) ξ1η2 − ξ2η1 = 0: Since X2 = s(x, y)X1 we get s immediately. We obtain t from

X1(t) = ξ1tx + η1ty = ξ1

(
∂x +

η1

ξ1
∂y

)
t = 0 .

So, we solve the characteristic equation (ODE):

dy

dt
= η1/ξ1

for the function y = y(x, t). We factor out t = t(x, y) to obtain the second variable.

Remark 1.1. Note that it is the only case where we need to solve an ODE!

Finally, the equation is reduced into s
′′

= s
′
w(t) so a pair of integration

s(t) =
∫ t

dτe
∫ τ w

yields the result.

b) Xj := ξj∂x + ηj∂y, j = 1, 2 where
[X1,X2] = 0 (1.8)

i) ξ1η2 − ξ2η1 6= 0: The two integrations

t(x, y) =
∫ x,y −η1dx + ξ1dy

ξ1η2 − ξ2η1
, s(x, y) =

∫ x,y −η2dx + ξ2dy

ξ1η2 − ξ2η1
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reduces the system to s
′′

= w̃(s
′
). An integration gives

t + c0 =
∫ s

′

w−1(τ)dτ

so

s(t) =
∫ t

F (−1)(τ + c0)dτ + d0

where F (−1) is the inverse of F while F is the primitive of w−1.

ii) ξ1η2 − ξ2η1 = 0: Then X2 = t(x, y)X1 so t is obtained immediately. Next, we take
t, x as independent variables, hence s = s(t, y) satisfies

1 = X1(s) = X1(y)sy + X1(t)st = η1(y, t)sy

(recall [X1,X1] = X1(t)X1 = 0 so X1(t) = 0). So

s(y, t) =
∫ y

η−1
1 (τ, t)dτ .

The resulting equation s
′′

= w(t) can be solved by two integrations:

s(t) = s0 + ts1 +
∫ t

w .

1.4 Solutions of G2-symmetric second order ODE in the space of invariants

We may look for two invariants φ, ψ of the ODE (functions of x, y, y1 ≡ y
′
). That is,

A(φ) = A(ψ) = 0 .

The solutions are, then, obtained implicitly by

φ(x, y, y1) = φ0 , ψ(x, y, y1) = ψ0 .

If the Jacobian derivative φyψy1−ψyφy1 6= 0 then we can apply the Implicit Function Theorem
to factor out

y = y(x, φ0, ψ0)

and obtain the complete family of solutions.
A third function ρ satisfies

A(ρ) = ρx + y1ρy + wρy1 = 1

and the trio φ, ψ, ρ forms a new set of independent variables, by which

A = ∂ρ , X1 = X1(φ)∂φ + X1(ψ)∂ψ + X1(ρ)∂ρ , X2 = X2(φ)∂φ + X2(ψ)∂ψ + X2(ρ)∂ρ .
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The determinant of the coefficients

∆ :=

∣∣∣∣∣∣∣

1 y1 w

ξ1 η1 η
(1)
1

ξ2 η2 η
(1)
2

∣∣∣∣∣∣∣

verifies ∆ 6= 0 iff X1(φ)X2(ψ) − X1(ψ)X2(φ) 6= 0. Note that ∆ and δ defined above are
related if φ, ψ are functions of x, y only. In general, ∆ may be zero while δ 6= 0 and v.v.

The symmetry condition [A,X] = λA implies that the coefficients of ∂φ, ∂ψ in X1,X2 are
independent of ρ. Then, the truncation of the ∂ρ component of X1, X2 does not change the Lie
algebra structure. In particular we have the two cases (a,b) for the algebra representations,
as well as the two cases i, ii corresponding to ∆ 6= 0 and ∆ = 0, respectively. Recall that we
are now considering the modified fields

X̃i = ξ̃i∂φ + η̃i∂ψ , i = 1, 2

where ξ̃i := Xi(φ) = ξ̃i(φ, ψ), η̃i := Xi(ψ) = η̃i(φ, ψ).
Let us consider the transitive, commutative case [X̃1, X̃2] = 0 and ∆ 6= 0. Recall that

this case corresponds (but to identical to) (b-i). Then, by repeating the argument leading to
(b-i) we get the existence of two invariants ψ, ψ for which

X̃1 = ∂ψ, , X̃2 = ∂φ .

In particular, both
A(φ) = X1(φ) = 0 , X2(φ) = 1 (1.9)

A(ψ) = X1(ψ) = 0 , X2(ψ) = 0 (1.10)

are solvable. Hence we solve for φx, φy, φy1 from

φx + y1φy + wφy1 = 0 , ξ1φx + η1φy + η
(1)
1 φy1 = 0 , ξ2φx + η2φy + η

(1)
2 φy1 = 1

to obtain

φxdx + φydy + φy1dy1 = ∆−1

∣∣∣∣∣∣

dx dy dy1

1 y1 w

ξ2 η2 η
(1)
2

∣∣∣∣∣∣
(1.11)

which is a exact differential (!) So, we obtain φ by a line integral (without solving the
characteristic equation or any first order ODE, for that matter).

In the same way

ψxdx + ψydy + ψy1dy1 = ∆−1

∣∣∣∣∣∣

dx dy dy1

1 y1 w

ξ1 η1 η
(1)
1

∣∣∣∣∣∣

follows and we get X1 = ∂ψ, X2 = ∂φ.
The case corresponding to (a-i), that is [X̃1, X̃2] = X̃1 and ∆ 6= 0, we still have one

invariant, say φ, corresponding to (1.9). Indeed, the normal form (1.8) can be converted into

X̃1 = ∂ψ , X̃2 = ψ∂ψ + ∂φ (1.12)

7



and find φ by integrating (1.11).
To find the second invariant ψ we proceed as follows: Since φy1 6= 0 (why?) we can

introduce y1 = y1(x, y, φ) and

A = ∂x + y1(x, y, φ)∂y + A(φ)∂φ = ∂x + y1(x, y, φ)∂y .

A second invariant ψ (related to x) should be found which satisfy

A(ψ) = ψx + y1(x, y, φ)ψy = 0 , X1(ψ) = 1 . (1.13)

From (1.13) we get

ψ(x, y, φ) =
∫

dy − y1(x, y, φ)dx

η1 − ξ1y1
,

up to a function of φ. In particular we circumvented the need to solve a first order ODE(!)
(see remark 1.1).

In some cases we can also use the invariants method to solve the case ∆ = 0.

1.5 More is better?

If we have a symmetry group of more than 2 generators then we may find one of the types
G2 as a subgroup and proceed as above. Between all Lie groups acting on R2, there is only
one group which does not contain G2. Its Lie algebra is the same as this of SO(3):

[X1,X2] = X3 , [X2,X3] = X1 , [X3,X1] = X2 . (1.14)

Exercise: Find an action on R2 which realizes this group. (Hint: use the generators of
SO(3) on R3: x∂y − y∂x , x∂z − z∂x, z∂y − y∂z).

Once we realized such a symmetry group for a given second order ODE A, we must
conclude that its prolongations to the 3-dimensional space x, y, y1, together with A, forms
a (locally) linearly dependent system. That is, there exists functions α1, α2, α3, θ of x, y, y1

such that
α1X1 + α2X2 + α3X3 + θA = 0 . (1.15)

Hence, we may write
X1 = φX2 + ψX3 + γA (1.16)

for some functions φ, ψ, θ. We claim that φ, ψ are nontrivial, independent invariants of the
ODE:

A(φ) = A(ψ) = 0 .

To show this, we first argue that there cannot be a linear dependence between X2,X3,A, for
assume

β2X2 + β3X3 + γA = 0 . (1.17)

We make a change of variables to q, p, s where q and p are first integrals of the equation,
namely

A(q) = A(p) = 0 ,A(s) = 1 . (1.18)
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so A = ∂s. Then, from [Xi,A] = λiA we get that the coefficients of ∂p, ∂q of Xi are
independent of s. That is, Xi(p),Xi(q) , i = 1, 2, 3 are independent of s.

Next, we claim that p, q can be chosen in such a way that X2(p) = 1, X2(q) = 0.
Otherwise we have X2(p) = X2(q) = 0 and X2 = X2(s)∂s. Hence [X2,Xi] is a vector field in
the direction of ∂s for i = 1, 3. It follows that all 3 fields Xi, i = 1, 2, 3 are multiple of ∂s, so
the algebra (1.14) has a representation on R1. But this is impossible (show it!).

So, we have a representation of (1.14) as

X2 = ∂p + X2(s)∂s, X3 = X3(p)∂p + X3(q)∂q + X3(s)∂s , A = ∂s

and its determinant is X3(q). Since this determinant must be zero by (1.17), it follows that
X3(q) = 0. Hence [X2,X3](q) = X1(q) = 0 as well, and can restrict the algebra of vectorfields
(1.14) to R1 parametrized by the q coordinate (since the other confinements are independent
of s). Again, we get a representation of (1.14) on R1 which is impossible. Hence

β2 = β3 = 0 . (1.19)

Exercise: Prove that there is no one dimensional realization of (1.14) on R1.
From (1.16):

[X1,A] = φ[X2,A] + ψ[X3,A] + A(γ)A + A(φ)X2 + A(ψ)X3

so, by the symmetry condition [Xi,A] = λiA:

(−λ1 + λ2 + λ2 −A(γ))A = A(φ)X2 + A(ψ)X3 ,

and X2,X2,A verifies (1.17) where β2 = A(φ) and β3 = A(ψ). Thus, A(ψ) = A(φ) = 0 by
(1.19) so φ, ψ are invariants of the ODE as claimed.

We may now show, by commuting (1.16) with Xi, i = 1, 2, 3, that φ, ψ are independent
invariants (show it!)
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