Lecture 5 \& 6

1 Second order and beyond

1.1 One parameter symmetry (G1)

A second order ODE is

$$
y^{\prime \prime}=w\left(x, y, y^{\prime}\right)
$$

and the corresponding equation for the symmetry generating vectorfield

$$
\begin{equation*}
\mathbf{X}(w)=\eta^{(2)}\left(x, y, y_{1}, w\left(x, y, y_{1}\right)\right) \tag{1.1}
\end{equation*}
$$

where $\mathbf{X}=\xi \partial_{x}+\eta \partial_{y}+\eta^{(1)} \partial_{y_{1}}$. Recall

$$
\begin{aligned}
\eta^{(1)}= & \eta_{x}+\left(\eta_{y}-\xi_{x}\right) y_{1}-\xi_{y}\left(y_{1}\right)^{2}, \quad \eta^{(2)}=\eta_{x x}+\left(2 \eta_{x y}-\xi_{x x}\right) y_{1}+ \\
& \left(\eta_{y y}-2 \xi_{x y}\right)\left(y_{1}\right)^{2}-\xi_{y y}\left(y_{1}\right)^{3}+\left(\eta_{y}-2 \xi_{x}-3 \xi_{y} y_{1}\right) y_{2} .
\end{aligned}
$$

Examples:

1.

$$
y^{\prime \prime}=x^{n} y^{2}
$$

In this case we get from (1.1):

$$
\begin{gather*}
x^{n} y^{2}\left(\eta_{y}-2 \xi_{x}\right)-n x^{n-1} y^{2} \xi-2 y x^{n} \eta+\eta_{x x}+y_{1}\left(2 \eta_{x y}-\xi_{x x}-3 x^{n} y^{2} \xi_{y}\right) \\
+y_{1}^{2}\left(\eta_{y} y-2 \xi_{x y}\right)-y_{1}^{3} \xi_{y y}=0 \tag{1.2}
\end{gather*}
$$

This is a polynomial in y_{1}. The coefficients of y_{1}^{2} and y_{1}^{3} yield

$$
\xi_{y y}=0, \quad \eta_{y y}=2 \xi_{x y}
$$

so

$$
\xi=y \alpha(x)+\beta(x), \quad \eta=y^{2} \alpha^{\prime}(x)+y \gamma(x)+\delta(x) .
$$

From this and the coefficient of y_{1} we get

$$
-3 x^{n} y^{2} \alpha+3 y \alpha^{\prime \prime}+2 \gamma^{\prime}-\beta^{\prime \prime}=0
$$

hence $\alpha=0$ and $2 \gamma^{\prime}=\beta^{\prime \prime}$. Thus

$$
\xi=\beta(x), \quad \eta=y\left(\beta^{\prime} / 2+c\right)+\delta(x)
$$

for some constant c. We substitute it in the zero oder (in y_{1}) of (1.2) to obtain

$$
-y^{2}\left[x^{n}\left(\frac{5}{3} \beta^{\prime}+c\right)+n x^{n-1} \beta\right]+y\left(\frac{1}{2} \beta^{\prime \prime \prime}-2 x^{n} \delta\right)+\delta^{\prime \prime}=0,
$$

so

$$
\frac{5}{2} x \beta^{\prime}+n \beta+c x=0 \quad, \quad \delta=\frac{1}{4} x^{-n} \beta^{\prime \prime \prime}, \quad \delta^{\prime \prime}=0 .
$$

Take, for example, $\beta=-(c / n) x$. Then $\delta \equiv 0$ and we obtain the vectorfield

$$
\mathbf{X}=x \partial_{x}-(n+2) y \partial_{y}
$$

which generates the transformation group $(x, y) \rightarrow\left(e^{t} x, e^{-(n+2) t} y\right)$. We may use it to reduce the order of the equation.
Surprisingly, there are other symmetries only if $n=-5,-15 / 7,-20 / 7$ (!)
Next, we can use this to reduce the order of the equation. The function $z_{1}(x, y)=y x^{n+1}$ is clearly an invariant. If we choose $z_{2}=\ln (x)$, so $x=e^{z_{2}}, y=z_{1} e^{-(n+2) z_{2}}$. Then

$$
\begin{gathered}
y^{\prime}=\frac{d y}{d x}=\frac{d y / d z_{2}}{d x / d z_{2}}=e^{-(n+3) z_{2}}\left(\frac{d z_{1}}{d z_{2}}-(n+2) z_{1}\right) \\
y^{\prime \prime}=\frac{d y^{\prime} / d z_{2}}{d x / d z_{2}}=e^{-(n+4) z_{2}}\left(\frac{d^{2} z_{1}^{2}}{d z_{2}^{2}}-(n+2) \frac{d z_{1}}{d z_{2}}-(n+3)\left(\frac{d z_{1}}{d z_{2}}-(n+2) z_{1}\right)\right) \\
=e^{-(n+4) z_{2}}\left(\frac{d^{2} z_{1}^{2}}{d z_{2}^{2}}-(2 n+5) \frac{d z_{1}}{d z_{2}}+(n+3)(n+2) z_{1}\right)=x^{n} y^{2}=z_{1}^{2} e^{-(n+4) z_{2}}
\end{gathered}
$$

so

$$
\frac{d^{2} z_{1}^{2}}{d z_{2}^{2}}=(2 n+5) \frac{d z_{1}}{d z_{2}}-(n+3)(n+2) z_{1}+z_{1}^{2}
$$

which is, in fact, a first order equation under disguise (why?)
2.

$$
y^{\prime \prime}=0
$$

Then the symmetry equation is reduced into

$$
\eta_{x x}+y_{1}\left(2 \eta_{x y}-\xi_{x x}\right)+y_{1}^{2}\left(\eta_{y y}-2 \xi_{x y}\right)-y_{1}^{3} \xi_{y y}=0
$$

This reduces to $\eta_{x x}=2 \eta_{x y}-\xi_{x x}=\eta_{y y}-2 \xi_{x y}=\xi_{y y}=0$. From this we obtain

$$
\begin{gathered}
\mathbf{X}_{1}=\partial_{x}, \quad \mathbf{X}_{2}=x \partial_{x}, \quad \mathbf{X}_{3}=y \partial_{x}, \quad \mathbf{X}_{4}=x y \partial_{x}+y^{2} \partial_{y}, \quad \mathbf{X}_{5}=x^{2} \partial_{x}+x y \partial_{y} \\
\mathbf{X}_{6}=\partial_{y}, \quad \mathbf{X}_{7}=x \partial_{y}, \quad \mathbf{X}_{8}=y \partial_{y}
\end{gathered}
$$

So, we see that the dimension of the transformation groups for second order ODE varies from zero to 8 . Can there be more than 8 dimensional transformation group for second order ODE? The answer is no. This follows from the fact that $\eta^{(1)}$ is at most quadratic in y_{1} (why)? Problems:

1. Determine the (8th parameter) transformation group generated on \mathbb{R}^{2} by $\mathbf{X}_{1}, \ldots \mathbf{X}_{8}$. (Hint: It is the most general transformation which preserves linear functions).
2. Prove that $y^{(n)}=0$ have $n+4$ dimensional symmetry for $n>2$.
3. Prove that there are at most $n+4$ invariants for $n-t h$ order ODE if $n>2$. Why does it differ from $n=2$?
4. Prove that $y^{\prime \prime}=x y+e^{y^{\prime}}+e^{-y^{\prime}}$ have no symmetry whatsoever!

$1.2 \quad$ 2-symmetry (G2)

Given a symmetry group generated by $\mathbf{Y}_{1}, \mathbf{Y}_{2}$, we get

$$
\left[\mathbf{Y}_{1}, \mathbf{Y}_{2}\right]=a_{1} \mathbf{Y}_{1}+a_{2} \mathbf{Y}_{2} .
$$

If $a_{1} \neq 0$ we may choose another base $\mathbf{X}_{1}=a_{1} \mathbf{Y}_{1}+a_{2} \mathbf{Y}_{2}, \mathbf{X}_{2}=\mathbf{Y}_{2} / a_{1}$ so

$$
\begin{equation*}
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=\mathbf{X}_{1} \tag{a}
\end{equation*}
$$

If $a_{1}=0$ then $\mathbf{X}_{1}=\mathbf{Y}_{1} / a_{2}, \mathbf{X}_{2}=\mathbf{Y}_{2}$ and get the same group structure. If both $a_{1}=a_{2}=0$ then we, evidently, have an abelian group

$$
\begin{equation*}
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=0 . \tag{b}
\end{equation*}
$$

What are the "canonical" forms of vectorfields realizing these abstract algebras? Consider

$$
\mathbf{X}_{1}=\xi_{1} \partial_{x}+\eta_{1} \partial_{y} \quad, \quad \mathbf{X}_{2}=\xi_{2} \partial_{x}+\eta_{2} \partial_{y} .
$$

There are, in fact, 2 cases for either (a) and (b):

$$
\text { (i) } \delta:=\xi_{1} \eta_{2}-\xi_{2} \eta_{1} \neq 0, \quad \text { (ii) } \delta=0
$$

a) We may always assume $\mathbf{X}_{1}=\partial_{x}$. Then ${ }^{1} \mathbf{X}_{2}=a(x, y) \partial_{x}+b(x, y) \partial_{y}$ and

$$
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=a_{x}(x, y) \partial_{x}+b_{x}(x, y) \partial_{y}=\partial_{x}
$$

so $a=x+a(y), b=b(y)$. We my further transform the variables $\tilde{x}=x+h(y), \tilde{y}=v(y)$ to obtain

$$
\tilde{\mathbf{X}}_{1}=\partial_{\tilde{x}} \quad, \quad \tilde{\mathbf{X}}_{2}=\left[x+a(y)+h^{\prime}(y) b(y)\right] \partial_{\tilde{x}}+b v^{\prime} \partial_{\tilde{y}}
$$

There are now two two cases
(i) $\delta=-b \neq 0$. Here we take h as a solution of $b h^{\prime}+a=h, b v^{\prime}=v$ and get (removing the tilda's)

$$
\begin{equation*}
\mathbf{X}_{1}=\partial_{x}, \quad \mathbf{X}_{2}=x \partial_{x}+y \partial_{y} \tag{1.3}
\end{equation*}
$$

(ii) $\delta=b=0$, hence, with $h=a$,

$$
\begin{equation*}
\mathbf{X}_{1}=\partial_{x}, \quad \mathbf{X}_{2}=x \partial_{x} \tag{1.4}
\end{equation*}
$$

(b) By similar arguments we obtain the two possibilities:
(i) $\mathbf{X}_{1}=\partial_{x}, \quad \mathbf{X}_{2}=\partial_{y}$
(ii) $\mathbf{X}_{1}=\partial_{x}, \quad \mathbf{X}_{2}=y \partial_{x}$

We now ask what are the most general second order equations which realizes these symmetries. For this we must find the invariants of second degree in each case.

[^0](a-i) Recall the prolongation to second order,
$$
\mathbf{X}_{1}=\partial_{x}, \quad \mathbf{X}_{2}=x \partial_{x}+y \partial_{y}-y_{2} \partial_{y_{2}}
$$
from which we obtain the 2 invariants $y_{1}, x y_{2}$. Then $H\left(x, y, y_{1}, y_{2}\right)=x y_{2}-w\left(y_{1}\right)=0$ stands for the most general invariant function, which gives us the canonical equation
$$
y^{\prime \prime}=x^{-1} w\left(y^{\prime}\right)
$$
(a-ii) From the prolongations
$$
\partial_{x}, \quad x \partial_{x}-y_{1} \partial_{y_{1}}-2 y_{2} \partial_{y_{2}}
$$
we readily get the invariants $y_{2} /\left(y_{1}\right)^{2}, y$, so $y^{\prime \prime}=\left(y^{\prime}\right)^{2} w(y)$ is the most general canonical equation. However, if we change the role of x and y we obtain
$$
\partial_{y}, \quad y \partial_{y}+y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}} .
$$

Here the invariants are $x, y_{2} / y_{1}$, and the most general equation

$$
y^{\prime \prime}=y^{\prime} w(x) .
$$

(b-i) Here, clearly, y_{1}, y_{2} are the invariants so the general equation is

$$
y^{\prime \prime}=w\left(y^{\prime}\right) .
$$

(b-ii) Again, replacing the role of x and y

$$
\partial_{y}, \quad x \partial_{y}+\partial_{y_{1}} .
$$

The invariants x, y_{2} yield

$$
y^{\prime \prime}=w(x) .
$$

1.3 Full solutions for second order equations admitting G2

a) $\mathbf{X}_{j}:=\xi_{j} \partial_{x}+\eta_{j} \partial_{y}, j=1,2$ where

$$
\begin{equation*}
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=\mathbf{X}_{1} \tag{1.5}
\end{equation*}
$$

i) $\xi_{1} \eta_{2}-\xi_{2} \eta_{1} \neq 0$: We need to transform to new variables by which $\mathbf{X}_{1}=\partial_{s}$ and $\mathbf{X}_{2}=t \partial_{t}+s \partial_{s}$. For this, let $u=\ln (t)$ and

$$
\mathbf{X}_{1}(u)=\xi_{1} u_{x}+\eta_{1} u_{y}=0, \quad \mathbf{X}_{2}(u)=\xi_{2} u_{x}+\eta_{2} u_{y}=1
$$

which implies

$$
u(x, y)=\int^{x, y} \frac{\eta_{1} d x-\xi_{1} d y}{\xi_{1} \eta_{2}-\xi_{2} \eta_{1}}
$$

which is well defined because of (1.8). Next we substitute $s=t v(s, t)$ and get (since $\left.\mathbf{X}_{1}(t)=\mathbf{X}_{1}(u)=0, \mathbf{X}_{2}(t)=t\right)$

$$
\begin{equation*}
\mathbf{X}_{1}(s)=t \mathbf{X}_{1}(v)=t \eta_{1}(y, t) v_{y}=1 \tag{1.6}
\end{equation*}
$$

and

$$
\mathbf{X}_{2}(s)=v \mathbf{X}_{2}(t)+t \mathbf{X}_{2}(v)=s+t \mathbf{X}_{2}(v) \Longrightarrow \mathbf{X}_{2}(v)=0
$$

hence

$$
\begin{equation*}
t v_{t}+\eta_{2} v_{y}=0 \tag{1.7}
\end{equation*}
$$

implies

$$
\mathbf{X}_{1}=\partial_{t}, \quad \mathbf{X}_{2}=t \partial_{t}+s \partial_{s}
$$

We get from (1.6)

$$
s(y, t)=t v(y, t)=t \int^{y, t}\left(\frac{d y}{t \eta_{1}}-\frac{\eta_{2} d t}{t^{2} \eta_{1}}\right)
$$

Finally, we get the equation $s^{\prime \prime}=\tilde{w}\left(s^{\prime}\right) / t$ whose solution

$$
\int^{s^{\prime}} \frac{d \tau}{\tilde{w}(\tau)}=\ln (t)+c \Longrightarrow s^{\prime}=F^{(-1)}(\ln (t)+c)
$$

where $F^{\prime}=1 / \tilde{w}$. This yields another integration $s(t)=\int^{t} F^{(-1)}(\tau, c)$. We get the solution after 4 integrations altogether.
ii) $\xi_{1} \eta_{2}-\xi_{2} \eta_{1}=0$: Since $\mathbf{X}_{2}=s(x, y) \mathbf{X}_{1}$ we get s immediately. We obtain t from

$$
\mathbf{X}_{1}(t)=\xi_{1} t_{x}+\eta_{1} t_{y}=\xi_{1}\left(\partial_{x}+\frac{\eta_{1}}{\xi_{1}} \partial_{y}\right) t=0
$$

So, we solve the characteristic equation (ODE):

$$
\frac{d y}{d t}=\eta_{1} / \xi_{1}
$$

for the function $y=y(x, t)$. We factor out $t=t(x, y)$ to obtain the second variable.
Remark 1.1. Note that it is the only case where we need to solve an ODE!
Finally, the equation is reduced into $s^{\prime \prime}=s^{\prime} w(t)$ so a pair of integration

$$
s(t)=\int^{t} d \tau e^{\int^{\tau} w}
$$

yields the result.
b) $\mathbf{X}_{j}:=\xi_{j} \partial_{x}+\eta_{j} \partial_{y}, j=1,2$ where

$$
\begin{equation*}
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=0 \tag{1.8}
\end{equation*}
$$

i) $\xi_{1} \eta_{2}-\xi_{2} \eta_{1} \neq 0$: The two integrations

$$
t(x, y)=\int^{x, y} \frac{-\eta_{1} d x+\xi_{1} d y}{\xi_{1} \eta_{2}-\xi_{2} \eta_{1}}, s(x, y)=\int^{x, y} \frac{-\eta_{2} d x+\xi_{2} d y}{\xi_{1} \eta_{2}-\xi_{2} \eta_{1}}
$$

reduces the system to $s^{\prime \prime}=\tilde{w}\left(s^{\prime}\right)$. An integration gives

$$
t+c_{0}=\int^{s^{\prime}} w^{-1}(\tau) d \tau
$$

so

$$
s(t)=\int^{t} F^{(-1)}\left(\tau+c_{0}\right) d \tau+d_{0}
$$

where $F^{(-1)}$ is the inverse of F while F is the primitive of w^{-1}.
ii) $\xi_{1} \eta_{2}-\xi_{2} \eta_{1}=0$: Then $\mathbf{X}_{2}=t(x, y) \mathbf{X}_{1}$ so t is obtained immediately. Next, we take t, x as independent variables, hence $s=s(t, y)$ satisfies

$$
1=\mathbf{X}_{1}(s)=\mathbf{X}_{1}(y) s_{y}+\mathbf{X}_{1}(t) s_{t}=\eta_{1}(y, t) s_{y}
$$

(recall $\left[\mathbf{X}_{1}, \mathbf{X}_{1}\right]=\mathbf{X}_{1}(t) \mathbf{X}_{1}=0$ so $\left.\mathbf{X}_{1}(t)=0\right)$. So

$$
s(y, t)=\int^{y} \eta_{1}^{-1}(\tau, t) d \tau .
$$

The resulting equation $s^{\prime \prime}=w(t)$ can be solved by two integrations:

$$
s(t)=s_{0}+t s_{1}+\int^{t} w .
$$

1.4 Solutions of G2-symmetric second order ODE in the space of invariants

We may look for two invariants ϕ, ψ of the ODE (functions of $x, y, y_{1} \equiv y^{\prime}$). That is,

$$
\mathbf{A}(\phi)=\mathbf{A}(\psi)=0 .
$$

The solutions are, then, obtained implicitly by

$$
\phi\left(x, y, y_{1}\right)=\phi_{0}, \quad \psi\left(x, y, y_{1}\right)=\psi_{0} .
$$

If the Jacobian derivative $\phi_{y} \psi_{y_{1}}-\psi_{y} \phi_{y_{1}} \neq 0$ then we can apply the Implicit Function Theorem to factor out

$$
y=y\left(x, \phi_{0}, \psi_{0}\right)
$$

and obtain the complete family of solutions.
A third function ρ satisfies

$$
\mathbf{A}(\rho)=\rho_{x}+y_{1} \rho_{y}+w \rho_{y_{1}}=1
$$

and the trio ϕ, ψ, ρ forms a new set of independent variables, by which

$$
\mathbf{A}=\partial_{\rho}, \quad \mathbf{X}_{1}=\mathbf{X}_{1}(\phi) \partial_{\phi}+\mathbf{X}_{1}(\psi) \partial_{\psi}+\mathbf{X}_{1}(\rho) \partial_{\rho}, \quad \mathbf{X}_{2}=\mathbf{X}_{2}(\phi) \partial_{\phi}+\mathbf{X}_{2}(\psi) \partial_{\psi}+\mathbf{X}_{2}(\rho) \partial_{\rho}
$$

The determinant of the coefficients

$$
\Delta:=\left|\begin{array}{ccc}
1 & y_{1} & w \\
\xi_{1} & \eta_{1} & \eta_{1}^{(1)} \\
\xi_{2} & \eta_{2} & \eta_{2}^{(1)}
\end{array}\right|
$$

verifies $\Delta \neq 0$ iff $\mathbf{X}_{1}(\phi) \mathbf{X}_{2}(\psi)-\mathbf{X}_{1}(\psi) \mathbf{X}_{2}(\phi) \neq 0$. Note that Δ and δ defined above are related if ϕ, ψ are functions of x, y only. In general, Δ may be zero while $\delta \neq 0$ and v.v.

The symmetry condition $[\mathbf{A}, \mathbf{X}]=\lambda \mathbf{A}$ implies that the coefficients of $\partial_{\phi}, \partial_{\psi}$ in $\mathbf{X}_{1}, \mathbf{X}_{2}$ are independent of ρ. Then, the truncation of the ∂_{ρ} component of $\mathbf{X}_{1}, \mathbf{X}_{2}$ does not change the Lie algebra structure. In particular we have the two cases (a, b) for the algebra representations, as well as the two cases $i, i i$ corresponding to $\Delta \neq 0$ and $\Delta=0$, respectively. Recall that we are now considering the modified fields

$$
\tilde{\mathbf{X}}_{i}=\tilde{\xi}_{i} \partial_{\phi}+\tilde{\eta}_{i} \partial_{\psi}, \quad i=1,2
$$

where $\tilde{\xi}_{i}:=\mathbf{X}_{i}(\phi)=\tilde{\xi}_{i}(\phi, \psi), \tilde{\eta}_{i}:=\mathbf{X}_{i}(\psi)=\tilde{\eta}_{i}(\phi, \psi)$.
Let us consider the transitive, commutative case $\left[\tilde{\mathbf{X}}_{1}, \tilde{\mathbf{X}}_{2}\right]=0$ and $\Delta \neq 0$. Recall that this case corresponds (but to identical to) (b-i). Then, by repeating the argument leading to (b-i) we get the existence of two invariants ψ, ψ for which

$$
\tilde{\mathbf{X}}_{1}=\partial_{\psi}, \quad, \quad \tilde{\mathbf{X}}_{2}=\partial_{\phi} .
$$

In particular, both

$$
\begin{align*}
& \mathbf{A}(\phi)=\mathbf{X}_{1}(\phi)=0, \quad \mathbf{X}_{2}(\phi)=1 \tag{1.9}\\
& \mathbf{A}(\psi)=\mathbf{X}_{1}(\psi)=0, \quad \mathbf{X}_{2}(\psi)=0 \tag{1.10}
\end{align*}
$$

are solvable. Hence we solve for $\phi_{x}, \phi_{y}, \phi_{y_{1}}$ from

$$
\phi_{x}+y_{1} \phi_{y}+w \phi_{y_{1}}=0, \quad \xi_{1} \phi_{x}+\eta_{1} \phi_{y}+\eta_{1}^{(1)} \phi_{y_{1}}=0, \quad \xi_{2} \phi_{x}+\eta_{2} \phi_{y}+\eta_{2}^{(1)} \phi_{y_{1}}=1
$$

to obtain

$$
\phi_{x} d x+\phi_{y} d y+\phi_{y_{1}} d y_{1}=\Delta^{-1}\left|\begin{array}{ccc}
d x & d y & d y_{1} \tag{1.11}\\
1 & y_{1} & w \\
\xi_{2} & \eta_{2} & \eta_{2}^{(1)}
\end{array}\right|
$$

which is a exact differential (!) So, we obtain ϕ by a line integral (without solving the characteristic equation or any first order ODE, for that matter).

In the same way

$$
\psi_{x} d x+\psi_{y} d y+\psi_{y_{1}} d y_{1}=\Delta^{-1}\left|\begin{array}{ccc}
d x & d y & d y_{1} \\
1 & y_{1} & w \\
\xi_{1} & \eta_{1} & \eta_{1}^{(1)}
\end{array}\right|
$$

follows and we get $\mathbf{X}_{1}=\partial_{\psi}, \quad \mathbf{X}_{2}=\partial_{\phi}$.
The case corresponding to (a-i), that is $\left[\tilde{\mathbf{X}}_{1}, \tilde{\mathbf{X}}_{2}\right]=\tilde{\mathbf{X}}_{1}$ and $\Delta \neq 0$, we still have one invariant, say ϕ, corresponding to (1.9). Indeed, the normal form (1.8) can be converted into

$$
\begin{equation*}
\tilde{\mathbf{X}}_{1}=\partial_{\psi}, \quad \tilde{\mathbf{X}}_{2}=\psi \partial_{\psi}+\partial_{\phi} \tag{1.12}
\end{equation*}
$$

and find ϕ by integrating (1.11).
To find the second invariant ψ we proceed as follows: Since $\phi_{y_{1}} \neq 0$ (why?) we can introduce $y_{1}=y_{1}(x, y, \phi)$ and

$$
\mathbf{A}=\partial_{x}+y_{1}(x, y, \phi) \partial_{y}+\mathbf{A}(\phi) \partial_{\phi}=\partial_{x}+y_{1}(x, y, \phi) \partial_{y}
$$

A second invariant ψ (related to x) should be found which satisfy

$$
\begin{equation*}
\mathbf{A}(\psi)=\psi_{x}+y_{1}(x, y, \phi) \psi_{y}=0, \quad \mathbf{X}_{1}(\psi)=1 \tag{1.13}
\end{equation*}
$$

From (1.13) we get

$$
\psi(x, y, \phi)=\int \frac{d y-y_{1}(x, y, \phi) d x}{\eta_{1}-\xi_{1} y_{1}},
$$

up to a function of ϕ. In particular we circumvented the need to solve a first order ODE(!) (see remark 1.1).

In some cases we can also use the invariants method to solve the case $\Delta=0$.

1.5 More is better?

If we have a symmetry group of more than 2 generators then we may find one of the types $G 2$ as a subgroup and proceed as above. Between all Lie groups acting on \mathbb{R}^{2}, there is only one group which does not contain $G 2$. Its Lie algebra is the same as this of $S O(3)$:

$$
\begin{equation*}
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=\mathbf{X}_{3}, \quad\left[\mathbf{X}_{2}, \mathbf{X}_{3}\right]=\mathbf{X}_{1}, \quad\left[\mathbf{X}_{3}, \mathbf{X}_{1}\right]=\mathbf{X}_{2} . \tag{1.14}
\end{equation*}
$$

Exercise: Find an action on \mathbb{R}^{2} which realizes this group. (Hint: use the generators of $S O(3)$ on $\left.\mathbb{R}^{3}: x \partial_{y}-y \partial_{x}, x \partial_{z}-z \partial_{x}, z \partial_{y}-y \partial_{z}\right)$.

Once we realized such a symmetry group for a given second order ODE A, we must conclude that its prolongations to the 3 -dimensional space x, y, y_{1}, together with \mathbf{A}, forms a (locally) linearly dependent system. That is, there exists functions $\alpha_{1}, \alpha_{2}, \alpha_{3}, \theta$ of x, y, y_{1} such that

$$
\begin{equation*}
\alpha_{1} \mathbf{X}_{1}+\alpha_{2} \mathbf{X}_{2}+\alpha_{3} \mathbf{X}_{3}+\theta \mathbf{A}=0 . \tag{1.15}
\end{equation*}
$$

Hence, we may write

$$
\begin{equation*}
\mathbf{X}_{1}=\phi \mathbf{X}_{2}+\psi \mathbf{X}_{3}+\gamma \mathbf{A} \tag{1.16}
\end{equation*}
$$

for some functions ϕ, ψ, θ. We claim that ϕ, ψ are nontrivial, independent invariants of the ODE:

$$
\mathbf{A}(\phi)=\mathbf{A}(\psi)=0 .
$$

To show this, we first argue that there cannot be a linear dependence between $\mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{A}$, for assume

$$
\begin{equation*}
\beta_{2} \mathbf{X}_{2}+\beta_{3} \mathbf{X}_{3}+\gamma \mathbf{A}=0 . \tag{1.17}
\end{equation*}
$$

We make a change of variables to q, p, s where q and p are first integrals of the equation, namely

$$
\begin{equation*}
\mathbf{A}(q)=\mathbf{A}(p)=0, \mathbf{A}(s)=1 . \tag{1.18}
\end{equation*}
$$

so $\mathbf{A}=\partial_{s}$. Then, from $\left[\mathbf{X}_{i}, \mathbf{A}\right]=\lambda_{i} \mathbf{A}$ we get that the coefficients of $\partial_{p}, \partial_{q}$ of \mathbf{X}_{i} are independent of s. That is, $\mathbf{X}_{i}(p), \mathbf{X}_{i}(q), i=1,2,3$ are independent of s.

Next, we claim that p, q can be chosen in such a way that $\mathbf{X}_{2}(p)=1, \mathbf{X}_{2}(q)=0$. Otherwise we have $\mathbf{X}_{2}(p)=\mathbf{X}_{2}(q)=0$ and $\mathbf{X}_{2}=\mathbf{X}_{2}(s) \partial_{s}$. Hence $\left[\mathbf{X}_{2}, \mathbf{X}_{i}\right]$ is a vector field in the direction of ∂_{s} for $i=1,3$. It follows that all 3 fields $\mathbf{X}_{i}, i=1,2,3$ are multiple of ∂_{s}, so the algebra (1.14) has a representation on \mathbb{R}^{1}. But this is impossible (show it!).

So, we have a representation of (1.14) as

$$
\mathbf{X}_{2}=\partial_{p}+\mathbf{X}_{2}(s) \partial_{s}, \quad \mathbf{X}_{3}=\mathbf{X}_{3}(p) \partial_{p}+\mathbf{X}_{3}(q) \partial_{q}+\mathbf{X}_{3}(s) \partial_{s}, \quad \mathbf{A}=\partial_{s}
$$

and its determinant is $\mathbf{X}_{3}(q)$. Since this determinant must be zero by (1.17), it follows that $\mathbf{X}_{3}(q)=0$. Hence $\left[\mathbf{X}_{2}, \mathbf{X}_{3}\right](q)=\mathbf{X}_{1}(q)=0$ as well, and can restrict the algebra of vectorfields (1.14) to \mathbb{R}^{1} parametrized by the q coordinate (since the other confinements are independent of s). Again, we get a representation of (1.14) on \mathbb{R}^{1} which is impossible. Hence

$$
\begin{equation*}
\beta_{2}=\beta_{3}=0 . \tag{1.19}
\end{equation*}
$$

Exercise: Prove that there is no one dimensional realization of (1.14) on \mathbb{R}^{1}.
From (1.16):

$$
\left[\mathbf{X}_{1}, \mathbf{A}\right]=\phi\left[\mathbf{X}_{2}, \mathbf{A}\right]+\psi\left[\mathbf{X}_{3}, \mathbf{A}\right]+\mathbf{A}(\gamma) \mathbf{A}+\mathbf{A}(\phi) \mathbf{X}_{2}+\mathbf{A}(\psi) \mathbf{X}_{3}
$$

so, by the symmetry condition $\left[\mathbf{X}_{i}, \mathbf{A}\right]=\lambda_{i} \mathbf{A}$:

$$
\left(-\lambda_{1}+\lambda_{2}+\lambda_{2}-\mathbf{A}(\gamma)\right) \mathbf{A}=\mathbf{A}(\phi) \mathbf{X}_{2}+\mathbf{A}(\psi) \mathbf{X}_{3},
$$

and $\mathbf{X}_{2}, \mathbf{X}_{2}, \mathbf{A}$ verifies (1.17) where $\beta_{2}=\mathbf{A}(\phi)$ and $\beta_{3}=\mathbf{A}(\psi)$. Thus, $\mathbf{A}(\psi)=\mathbf{A}(\phi)=0$ by (1.19) so ϕ, ψ are invariants of the ODE as claimed.

We may now show, by commuting (1.16) with $\mathbf{X}_{i}, i=1,2,3$, that ϕ, ψ are independent invariants (show it!)

[^0]: ${ }^{1}$ Sometimes it is better to choose $\mathbf{X}_{1}=\partial_{y}$, as in $a-i i, b-i i$ below.

