
Lecture 7

1 ODE of higher order

1.1 Successive order reductions

Given an ODE
y(n) = w(x, y, y

′
, . . . y(n−1))

and an action of a symmetry group generated by Gr generated by X1, . . .Xr, we can always
reduce the order by one in the usual way: transform X1, say, to ∂s and set s as the dependent
variable. Then, we know that in the new coordinates t, s (say), the ODE takes the form

s(n) = w̃(t, s
′
, . . . s(n−1))

so the corresponding operator

A = ∂t + s1∂s + s2∂s1 + . . . + w̃∂sn−1

while the prolongations of the transformed symmetry generators

X1 = ∂s, Xj = ξ̃j∂t + η̃j∂s + η̃
(1)
j ∂s1 + . . . + η̃

(n−1)
j ∂s−1 j = 2, . . . r .

Since w̃ is independent of s we may now reduce the system by removing the coefficients of ∂s

from A and Xj , 2 ≤ j ≤ r. Thus, we end up with

Â = ∂t + s2∂s1 + . . . w̃(x, s1, . . . sn−1)∂sn−1

X̂j = ξ̃j∂t + η̃
(1)
j ∂s1 + . . . + η̃

(n−1)
j ∂sn−1 , j = 2 . . . r .

In order to go on with the reduction process, we need to verify that X̂j 2 ≤ j ≤ r, generate
a symmetry group for Â, that is

[X̂j , Â] = λ̂jÂ , 2 ≤ j ≤ r ? (1.1)

Remark 1.1. Note that, at this stage, we do not know if X̂j is an algebra of v-f on the
coordinate space t, s1, . . . sn−1.

Since
[Xj ,A] = [X̂j + η̃jX1, Â + s1X1] = λjA

by assumption, using [X̃j , s1X1] + [η̃jX1, s1X1] = [Xj , s1X1] = −s1[Xj ,X1] + η̃
(1)
j X1 we

arrive at
η̃

(1)
j X1 − Â(η̃j)X1 − s1[X1,Xj ] + [X̂j , Â] = λj

(
Â + s1X1

)
(1.2)

so a necessary condition for (1.1) is

[X1,Xj ] = αX1 + βÂ
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for some functions α, β. From this we get

∂s(ξ̃j)∂t +
n−1∑

k=0

∂s(η̃
(k)
j )∂sk

= α∂s + β∂t + β
n−1∑

k=1

sk+1∂sk

so βsk+1 = ∂s(η̃
(k)
j ) for k ≥ 1, but this is impossible since η̃

(k)
j is independent of sk+1, hence

β = 0. Also, α = η̃
(0)
j,s , as well as ∂s(η̃

(k)
j ) = 0 = ∂s(ξ̃j). It follows that α cannot depend on

neither s nor x, so it is a constant α = α0:

[X1,Xj ] = α0X1 (1.3)

Remark 1.2. Note that, with condition (1.3), X̂2, . . . X̂r is an algebra for each fixed value
of s. Indeed

[X̂i, X̂j ] = [Xi − ηiX1,Xj − ηjX1] = [Xi,Xj ]− ηi[X1,Xj ] + ηj [X1,Xi] mod X1

so (1.3) we get
[X̂i, X̂j ] = [Xi,Xj ] mod X1

Conclusion: If there exists j0 so that the structure constants Ci
j0,k = 0 for any i, k 6= j0

then we may continue the reduction process.

1.2 Solutions by first integrals

If we can find a first integral φ = φ(x, y, y1, . . . yn−1) of the equation, then we can use it in
the solution process. In some cases we can use the symmetry group, if exists, to compute
such an integral without solving any ODE. For this, assume that there is a Lie algebra of n
symmetric v-f Xj , j = 1, . . . n for the given ODE. We also suppose that the corresponding
action on the extended space Rn+1 := (x, y, y1, . . . yn−1) is transitive, that is, the n + 1 v-f
X1, . . .Xn and A are linearly independent at each point. Our object is to solve

X1(φ) = 1, A(φ) = X2(φ) = . . . = Xn(φ) = 0 . (1.4)

If such φ can be found, we could change to a new set of variables by which X1 = ∂φ which is
invariant of the ODE. In particular, the homogeneous system

A(φ) = X2(φ) = . . . = Xn(φ) = 0 (1.5)

should have a non-trivial solution. We recall Theorem 1, Lecture 2, to obtain the condition
for such a solution: These vector fields should be in involution. In fact we know that

[Xi,Xj ] =
n∑

k=2

Ck
i,jXk + C1

i,jX1

and
[Xj ,A] = λjA
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so we get the solvability of (1.5) provided

C1
i,j = 0 (1.6)

for any 2 ≤ i, j ≤ n.
Next, the solvability of X1(φ) = 1 within the set of homogeneous solutions of (1.5) needs

also a compatibility condition: [X1,Xj ](φ) = 0 and [X1,A](φ) = 0. The last condition is
satisfied since [X1,A] = λ1A. The first condition requires

n∑

k=1

Ck
1,jXk(φ) = C1

1,jX1(φ) = C1
1,j = 0 2 ≤ j ≤ n . (1.7)

If (1.6, 1.7) are satisfied then the system (1.4) can be solved and φ can be found from
integration of

φxdx + φydy +
n∑

1

φyjdyj =

∣∣∣∣∣∣∣∣∣∣∣∣

dx dy dy1 . . . dyn−1

ξ2 η2 η
(1)
2 . . . η

(n−1)
2

...
...

...
...

...
ξn ηn η

(1)
n . . . η

(n−1)
n

1 y1 y2 . . . w

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

ξ1 η1 η
(1)
1 . . . η

(n−1)
1

ξ2 η2 η
(1)
2 . . . η

(n−1)
2

...
...

...
...

...
ξn ηn η

(1)
n . . . η

(n−1)
n

1 y1 y2 . . . w

∣∣∣∣∣∣∣∣∣∣∣∣

Once it was done, we factor out y(n−1) = y(n−1)(φ, x, y, y1, . . . yn−2) and obtain the system in
new coordinates φ, x, y, . . . , yn−1 as

Xj = ξj∂x+ηj∂y+. . .+η
(n−2)
j ∂n−2 j = 2 . . . n ,A = ∂x+y1∂y+. . .+y(n−1)(φ, x, y, . . . , yn−2)∂yn−2 .

where φ is now a parameter. We may proceed with this process if we could find a v-f
X ∈ X2, . . .Xn, say X2, for which

[X2,Xj ] =
n∑

k=3

Ck
2,jXk , [Xi,Xj ] =

n∑

k=3

Ck
i,jXk

for any i, j ≥ 3.

Definition 1.1. Given a Lie algebra G := Span{X1, . . .Xr}, the commutator algebra C(G)
is spanned by the set of all commutators [Xi,Xj ] ∈ G. (why it is a subalgebra of G?)

Then there is a hierarchy and there exists m ≥ 1 for which G ⊃ C(G) ⊃ C2(G) ⊃ . . . ⊃
Cm(G) = Cm+1(G) .

A Lie algebra is called solvable if Cm(G) = {e}.
Conclusion (Lie Theorem): If the algebra of the symmetry group with n generators is
solvable and transitive on the space of first integrals of the ODE, then we may find these
invariants (and solve the equation) by carrying out n line integrals.
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