Lecture 8

1 Lagrangian dynamics

1.1 Overview

We now consider the important case of equations (or, rather, system of equations) derived from a Lagrange principle. Let $L=L\left(x, y_{1}, \ldots y_{p}, y_{1}^{(1)}, \ldots y_{p}^{(n)}\right)$ be any function of x and p dependent variables $Y:=\left\{y_{1}, \ldots y_{p}\right\}$ and their x derivative to order n. We shall denote such a function by $L=L\left(x, Y^{(n)}\right)$. This Lagrangian induces an action on the set of orbits $\mathcal{Y}=Y(x)$ defined on the interval $x \in(\alpha, \beta)$ which verify the end conditions $\mathcal{Y}(\alpha)=Y_{1}, \mathcal{Y}(\beta)=Y_{2}$:

$$
\mathcal{L}(\mathcal{Y})=\int_{\alpha}^{\beta} L\left(x, \mathcal{Y}^{(n)}(x)\right) d x
$$

A function \mathcal{Y} in this set is called stationary of this Lagrangian if

$$
\begin{equation*}
\delta_{\mathcal{Y}} \mathcal{L}(\Gamma):=\left.\frac{d}{d t} \mathcal{L}\left(\mathcal{Y}^{(n)}+t \Gamma^{(n)}\right)\right|_{t=0}=0 \tag{1.1}
\end{equation*}
$$

for any n-differentiable $\Gamma=\left\{\gamma_{1}(x), \ldots \gamma_{p}(x)\right\}$ which verifies

$$
\begin{equation*}
\Gamma^{(n)}(\alpha)=\Gamma^{(n)}(\beta)=0 . \tag{1.2}
\end{equation*}
$$

Now, let D_{i} is the complete derivative with respect to y_{i} :

$$
D_{j}=\partial_{x}+y_{j}^{(1)} \partial_{y_{j}}+\ldots
$$

Let

$$
E_{j}:=\sum_{k=0}^{n}\left(-D_{j}\right)^{k} \partial_{y_{j}^{(k)}} .
$$

Here $D_{j}^{0}=1$.
Proposition 1.1. \mathcal{Y} is a stationary solution of the Lagrangian L iff it satisfies the system of equations (Euler-Lagrange equations)

$$
\begin{equation*}
E_{i}(L)=0 \quad, i=1, \ldots p . \tag{1.3}
\end{equation*}
$$

Proof. From (1.1) we get that

$$
\delta_{Y} \mathcal{L}(\Gamma)=\sum_{j=1}^{p} \sum_{i=0}^{n} \int_{\alpha}^{\beta} \frac{\partial L}{\partial y_{j}^{(i)}} \frac{d^{i} \gamma_{j}}{d x^{i}} d x
$$

By integration by parts and (1.2) we get

$$
\delta_{Y} \mathcal{L}(\Gamma)=\sum_{j=1}^{p} \sum_{i=1}^{n} \int_{\alpha}^{\beta}(-1)^{i} D_{j}^{i}\left(\frac{\partial L}{\partial y_{j}^{(i)}}\right) \gamma_{j} d x=0
$$

which implies the result (since Γ is, apart from condition (1.2), arbitrary).

Example A mechanical Lagrangian is of the form

$$
L\left(x, Y^{(2)}\right)=\sum_{1}^{p} m_{i}\left(y_{i}^{\prime}\right)^{2}-U(x, Y)
$$

where m_{i} are constants (inertia masses) and U the interaction potential. the equation $E_{i}(L)=$ o takes the form

$$
m_{i} y_{i}^{\prime \prime}+U_{y_{i}}=0
$$

In particular, the equation for the single pendulum of mass m and length l in a gravitational field g, given by $L=m\left(y^{\prime}\right)^{2} / 2-(1-g l \cos (y))$ takes the form

$$
y^{\prime \prime}=(g l / m) \sin (y)
$$

1.2 Transformations of the Lagrangian

Let now a symmetry group G acting on a domain in \mathbb{R}^{p+1} parameterized by $(x, Y)=$ $\left(x, y_{1}, \ldots y_{p}\right)$. The action is denoted by $\Psi: \mathbb{R}^{p+1} \rightarrow \mathbb{R}^{p+1}$ where $\Psi:=\left(\psi_{(x)}, \psi_{(Y)}\right)$.

$$
x \rightarrow \tilde{x}=\psi_{(x)}(x, Y) \quad, \quad Y \rightarrow \tilde{Y}=\psi_{(Y)}(x, Y) .
$$

This action induces an action on the graph of a dependent variable $Y=Y(x)$ as defined in lecture 3. It can also be prolonged into the graph of $Y^{(n)}$, The prolonged action is denoted by $\Psi^{(n)}:\left(x, Y^{(n)}\right) \rightarrow \tilde{x}, \tilde{Y}^{(n)}$.

Such an action induces a transformation on a Lagrangian L in the following, natural way:

$$
\begin{equation*}
\tilde{\mathcal{L}}(\tilde{Y})=\mathcal{L}(Y) \tag{1.4}
\end{equation*}
$$

It follows that the Lagrangian function $L:(\alpha, \beta) \times \mathbb{R}^{p(n+1)} \rightarrow \mathbb{R}$ is transformed into $\tilde{L}:(\tilde{\alpha}, \tilde{\beta}) \times \mathbb{R}^{p(n+1)} \rightarrow \mathbb{R}$ where $(\tilde{\alpha}, \tilde{\beta})=\left(\psi_{(x)}\left(\alpha, Y_{1}\right), \psi_{(x)}\left(\beta, Y_{2}\right)\right)$. From (1.4) we get the form of the transformed Lagrangian by change of variables formula:

$$
\begin{equation*}
\tilde{L}\left(\tilde{x}, \tilde{Y}^{(n)}\right) D_{x} \psi_{(x)}(x, Y)=L\left(x, Y^{(n)}\right) \tag{1.5}
\end{equation*}
$$

where $D_{x}:=\partial_{x}+\sum_{i}^{p} y_{i}^{(1)} \partial_{y_{i}}$.
How does the Euler-Lagrange equations look like for the transformed Lagrangian? Let us consider a variation $Y \rightarrow Y+t \Gamma$ and $x_{(t)}, Y_{(t)}$ given by

$$
\tilde{x}=\psi_{(x)}\left(x_{(t)}, Y\left(x_{(t)}\right)+t \Gamma\left(x_{(t)}\right)\right), \quad \tilde{Y}_{(t)}=\psi_{(Y)}\left(x_{(t)}, Y\left(x_{(t)}\right)+t \Gamma\left(x_{(t)}\right)\right)
$$

By this convention, \tilde{x} is independent of t. Hence

$$
0=D_{x} \psi_{(x)} \frac{d x_{(t)}}{d t}+\nabla_{Y} \psi_{(x)} \cdot \Gamma
$$

So

$$
\frac{d x_{(t)}}{d t}=-\nabla_{Y} \psi_{(x)} \cdot \Gamma / D_{x} \psi_{(x)}
$$

$$
\frac{d \tilde{Y}_{(t)}}{d t}=\nabla_{Y} \psi_{(Y)} \cdot \Gamma+D_{x} \psi_{(Y)} \frac{d x_{(t)}}{d t}=\nabla_{Y} \psi_{(Y)} \cdot \Gamma-\left(D_{x} \psi_{(x)}\right)^{-1} D_{x} \psi_{(Y)} \nabla_{Y} \psi_{(x)} \cdot \Gamma
$$

Consider now

$$
F_{i, j}:=\left(\begin{array}{cc}
D_{x} \psi_{(x)} & \partial_{y_{i}} \psi_{(x)} \\
D_{x} \psi_{\left(y_{j}\right)} & \partial_{y_{i}} \psi_{\left(y_{j}\right)}
\end{array}\right)
$$

Then

$$
\frac{d \tilde{y}_{j}}{d t}=\left(D_{x} \psi_{(x)}\right)^{-1} \sum_{i, j} \operatorname{det}\left(F_{i, j}\right) \gamma_{i} .
$$

Since, by definition

$$
\begin{aligned}
& \left.\frac{d}{d t} \tilde{\mathcal{L}}(\tilde{Y})\right|_{t=0}=\int_{\tilde{\alpha}}^{\tilde{\beta}}\left(\sum_{i=1}^{p} \tilde{E}_{i}(\tilde{L}) \frac{d \tilde{y}_{i}}{d t}\right) d \tilde{x}=\int_{\alpha}^{\beta} D_{x} \psi_{(x)}\left(\sum_{i=1}^{p} \tilde{E}_{i}(\tilde{L}) \frac{d \tilde{y}_{i}}{d t}\right) d x \\
& =\sum_{i=1}^{p} \sum_{j=1}^{p} \int_{\alpha}^{\beta} \operatorname{det}\left(F_{i, j}\right) \tilde{E}_{i}(\tilde{L}) \gamma_{i} d x=\left.\frac{d}{d t} \mathcal{L}(Y)\right|_{t=0}=\sum_{i=1}^{p} \int_{\alpha}^{\beta} E_{i}(L) \gamma_{i} d x
\end{aligned}
$$

We finally get the relation between the Euler-Lagrange equations:

$$
\begin{equation*}
\sum_{j=1}^{p} \operatorname{det}\left(F_{i, j}\right) \tilde{E}_{j}(\tilde{L})=E_{i}(L) \tag{1.6}
\end{equation*}
$$

Example: In the case $p=1$ we obtain

$$
E(L)=\operatorname{det}\left(\begin{array}{cc}
\partial_{x} \psi_{(x)} & \partial_{y} \psi_{(x)} \\
\partial_{x} \psi_{(y)} & \partial_{y} \psi_{(y)}
\end{array}\right) \tilde{E}(\tilde{L})
$$

Why did we replaced $D_{x} \psi_{(x)}$ by $\partial_{x} \psi_{(x)}$?
Let now $(x, y) \rightarrow(y, x)$ so $\psi_{(x)}(x, y)=y, \psi_{(y)}(x, y)=x$. In this case we obtain

$$
E(L)=-\tilde{E}(\tilde{L}) .
$$

Can you verify it directly from the Lagrangian formulation?

1.3 Lagrangian preserving transformations

A transformation ψ is said to preserve a given Lagrangian L if \tilde{L}, as defined in (1.5), is equel to L :

$$
\begin{equation*}
L\left(\tilde{x}, \tilde{Y}^{(n)}\right) D_{x} \psi_{(x)}(x, Y)=L\left(x, Y^{(n)}\right) . \tag{1.7}
\end{equation*}
$$

It is possible to generalize this definition and request the transformed Lagrangian to induce the same Lagrangian action. Suppose there exists a function $V=V\left(x, Y^{(n-1)}\right)$ such that the transformed Lagrangian takes the form $L+D_{x} V$. Evidently, this Lagrangian generates the same action as L, up to an irrelevant constant, for

$$
\int_{\alpha}^{\beta}\left[L+D_{x} V\right] d x=\int_{\alpha}^{\beta} L d x+V\left(\beta, Y^{(n)}(\beta)\right)-V\left(\alpha, Y^{(n)}(\alpha)\right)
$$

Exercise: Prove directly, using (1.1), that the Euler Lagrange equations for L and $L+D_{x} V$ are identical. For this, you need to show the identity $E_{i} D_{x} \equiv 0$ for any i.

We now generalize the notion of a transformation which preserves the Lagrangian, to a transformation which preserves the Lagrangian action. Thus

$$
\begin{equation*}
L\left(\tilde{x}, \tilde{Y}^{(n)}\right) D_{x} \psi_{(x)}(x, Y)=L\left(x, Y^{(n)}\right)+D_{x} V \tag{1.8}
\end{equation*}
$$

for some function $V=V\left(x, Y^{(n-1)}\right)$.
Next, consider a symmetry generated by a vector field

$$
\mathbf{X}:=\xi \partial_{x}+\sum_{j=1}^{p} \eta_{j} \partial_{y_{j}}
$$

acting on the domain (x, Y) of a Lagrangian action induced by $L\left(x, Y^{(n)}\right)$.
Example: The v-f ∂_{x} preserves any Lagrangian of the form $L=L\left(Y^{(n)}\right)$.
The v-f $\partial_{y_{j}}$ preserves any Lagrangian which is independent of y_{j} (but may depend on its derivatives).

If we substitute $x+t \xi$ for $\tilde{x}:=\psi_{(x)}(x, Y), y_{j}^{(k)}+t \eta_{j}^{(k)}$ for $\tilde{y}_{j}^{(k)}$ and $t V$ for V in (1.8) and differentiate the equality at $t=0$ we get

$$
\operatorname{Pr}^{(n)} \mathbf{X}(L)+L D_{x}(\xi)=D_{x} V .
$$

Example: Let $L=\sqrt{1+\left(y^{\prime}\right)^{2}}$ and consider $\mathbf{X}=-y \partial_{x}+x \partial_{y}$. We already met the prolongation of this field $\operatorname{Pr}^{(1)} \mathbf{X}=-y \partial_{x}+x \partial_{y}+\left(1+y_{1}^{2}\right) \partial_{y_{1}}$. Then

$$
\operatorname{Pr}^{(1)} \mathbf{X}(L)+L D_{x} \xi=\left(1+\left(y^{\prime}\right)^{2}\right) L_{y^{\prime}}-y^{\prime} L \equiv 0
$$

as we could expect. Since the action of this Lagrangian is the arc-length of the graph of y, it is not surprising that a rotation in the plane preserves this arc-length.

A natural conclusion is
Corollary 1.1. If \mathbf{X} preserves the Lagrangian action, it also induces a symmetry of the corresponding Euler-Lagrange equation $E(L)=0$.

The inverse claim is not true, in general.
Example: The Kepler problem (point mass under inverse square law): We consider the Lagrangian

$$
L\left(Y, Y^{(1)}\right)=\frac{1}{2}\left(\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}+\left(y_{3}^{\prime}\right)^{2}\right)-\frac{M}{\sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}}
$$

The EL equations are

$$
y_{i}^{\prime \prime}=-\frac{M y_{i}}{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}} \quad, \quad i=1,2,3 .
$$

Direct computation implies that this equation is invariant under the first prolongation of

$$
\mathbf{X}_{i, j}=y_{i} \partial_{y_{j}}-y_{j} \partial_{y_{i}}, \quad i \neq j,
$$

$$
\begin{gathered}
\mathbf{X}_{4}=\partial_{x} \\
\mathbf{X}_{5}=x \partial_{x}+\frac{2}{3} \sum_{1}^{3} y_{i} \partial_{y_{i}}
\end{gathered}
$$

The v.f $\mathbf{X}_{i, j}$ represents the symmetry of the system with respect to rotation in space $S O(3)$. We readily see that its prolongation $\operatorname{Pr}^{(1)} \mathbf{X}_{i, j}=y_{i} \partial_{y_{j}}-y_{j} \partial_{y_{i}}+y_{i}^{\prime} \partial_{y_{j}^{\prime}}-y_{j}^{\prime} \partial_{y_{i}^{\prime}}$ preserves the Lagrangian

$$
\operatorname{Pr}^{(1)} \mathbf{X}_{i, j}(L)=0
$$

Evidently, the prolongation of \mathbf{X}_{4} (which is \mathbf{X}_{4} itself) preserves to Lagrangian as well. However, $\operatorname{Pr}^{(1)} \mathbf{X}_{5}=x \partial_{x}+\frac{2}{3} \sum_{1}^{3} y_{i} \partial_{y_{i}}-\frac{1}{3} \sum_{1}^{3} y_{i}^{(1)} \partial_{y_{i}^{(1)}}$ verifies

$$
\operatorname{Pr}^{(1)} \mathbf{X}_{5}(L)-D_{x}(x) L=\frac{2}{3}\left(M-\sum_{1}^{3}\left(y_{j}^{(1)}\right)^{2}\right) \neq D_{x} V
$$

We shall see later that $\mathbf{X}_{i, j}$ induces an invariant $L_{i, j}=y_{i} y_{j}^{\prime}-y_{j} y_{i}^{\prime}$ of the Kepler system. It is nothing but the angular momentum of this system in the direction perpendicular to the $\left(y_{i}, y_{j}\right)$ plan. Similarly, \mathbf{X}_{4} induces the invariant

$$
\mathcal{E}=\frac{1}{2}\left(\left(y_{1}^{\prime}\right)^{2}+\left(y_{2}^{\prime}\right)^{2}+\left(y_{3}^{\prime}\right)^{2}\right)+\frac{M}{\sqrt{y_{1}^{2}+y_{2}^{2}+y_{3}^{2}}}
$$

which is to energy of the system. The v-f \mathbf{X}_{5} is a manifestation of the third law of Kepler: It induces the transformation $x \rightarrow e^{t} x, y_{i} \rightarrow e^{2 t / 3} y_{i}$ which implies, between other, the power law of $2 / 3$ between the period and the radius of a planet's orbit. It does not correspond, however, to a conservation law.

