Lecture 8

1 Lagrangian dynamics

1.1 Overview

We now consider the important case of equations (or, rather, system of equations) derived
from a Lagrange principle. Let L = L(z,yi,... yp,ygl), .. I()n)) be any function of z and p
dependent variables Y := {yi,...y,} and their z derivative to order n. We shall denote such a
function by L = L(x,Y(™). This Lagrangian induces an action on the set of orbits ) = Y (z)

defined on the interval = € («, 3) which verify the end conditions Y(a) = Y1, Y(5) = Ya:

L) = /jL (:c,yW (:c)) dz .

A function ) in this set is called stationary of this Lagrangian if

SyL(T) := iﬁ(y“‘) +r™) =0 (1.1)

dt =0

for any n—differentiable I' = {1 (), ...7p(x)} which verifies
r™ () =™ (B)=0. (1.2)

Now, let D; is the complete derivative with respect to y;:

Dj=0;+4 "0, +... .

Let

Here D? =1.

Proposition 1.1. Y is a stationary solution of the Lagrangian L iff it satisfies the system
of equations (Euler-Lagrange equations)

E(L)=0 ,i=1,...p. (1.3)

Proof. From (1.1) we get that

which implies the result (since I' is, apart from condition (1.2), arbitrary). O



Example A mechanical Lagrangian is of the form

/4

L(SU,Y(2)) = Zml(y;)z - U(fL‘,Y)
1

where m; are constants (inertia masses) and U the interaction potential. the equation E;(L) =
o takes the form

In particular, the equation for the single pendulum of mass m and length [ in a gravitational
field g, given by L = m(y')?/2 — (1 — gl cos(y)) takes the form

"

y = (gl/m)sin(y) .

1.2 Transformations of the Lagrangian

Let now a symmetry group G acting on a domain in RPT! parameterized by (z,Y) =
(41, .. yp). The action is denoted by W : RPT! — RPFT! where W := (¢(y), ¥(v))-

= i=1u(x,Y) , Y=Y =19y Y).

This action induces an action on the graph of a dependent variable Y = Y'(z) as defined in
lecture 3. It can also be prolonged into the graph of Y("), The prolonged action is denoted
by OO : (2, Y™) - & Y™,

Such an action induces a transformation on a Lagrangian L in the following, natural way:

LY)=L(Y) (1.4)
It follows that the Lagrangian function L : (a, ) X RP("+1) — R is transformed into

L:(&03) x RRH) — R where (&, 8) = (¥ (a, Y1), ¥ (8,Y2)). From (1.4) we get the
form of the transformed Lagrangian by change of variables formula:

L (gz,f/(”)) Dyt (2, Y) = Lz, Y™) (1.5)

where Dy := 0, + Y ¢ yz-(l)ayi.
How does the Euler-Lagrange equations look like for the transformed Lagrangian? Let us
consider a variation Y — Y +¢I" and x(y), Y(;) given by

T =) (20, Y (20) +10(@w)), Yoy = v (20, Y (@) + (@) -
By this convention, Z is independent of t. Hence
dx(t)
0= wa(z)w + Vy ) - T

So

= —Vy ¥ - T/Datp(e)



dy
dit) = Vyiy) - T'+ Datpiyy

Consider now

dx (t) _

dt

Vy ) T = (Datbe)) ™ Dathy) Vydhiay - T

Then

Since, by definition

d 5 P& i g =+ i
—L(Y = E(L) -2 | di = | Dy, E;(L)-2
wlo| /(g <>dt>da: / w()@ (B)2 ) a
P Jé] ~ d P Jé]
=> / det(F; ) Ei(L)yide = —L(Y)| = E;(L)v;dzx
i=1j=1"¢ dt t=0 1/«

Example: In the case p = 1 we obtain

B Ox@)y Oy \ p7
E(L)_det<az¢<y) 331/)@) )

Why did we replaced Dzt (y) by 029 4)?
Let now (7,y) — (¥, %) 50 ¥ () (7,y) =y, Yy (7,y) = . In this case we obtain
E(L)=-E(L) .

Can you verify it directly from the Lagrangian formulation?

1.3 Lagrangian preserving transformations

A transformation v is said to preserve a given Lagrangian L if L, as defined in (1.5), is equel
to L: i
L (i’,Y(")> Doty (2, Y) = Lz, Y™) . (1.7)

It is possible to generalize this definition and request the transformed Lagrangian to induce
the same Lagrangian action. Suppose there exists a function V = V (x, Y(”*l)) such that the
transformed Lagrangian takes the form L + D,V. Evidently, this Lagrangian generates the
same action as L, up to an irrelevant constant, for

/B[L + D, Vl]dz = /ﬁ Ldz +V (3, Y™ (8)) = V(a, Y™ (a))

«



Exercise: Prove directly, using (1.1), that the Euler Lagrange equations for L and L+ D,V
are identical. For this, you need to show the identity F;D, = 0 for any .

We now generalize the notion of a transformation which preserves the Lagrangian, to a
transformation which preserves the Lagrangian action. Thus

L (x 17(">) Doty (2, Y) = Lz, Y™) + D,V (1.8)

for some function V = V (z, Y ®=1),
Next, consider a symmetry generated by a vector field

p
X =0, + Y _nidy,

=1

acting on the domain (x,Y") of a Lagrangian action induced by L(z,Y ().
Example: The v-f §, preserves any Lagrangian of the form L = L(Y (™).
The v-f 9, preserves any Lagrangian which is independent of y; (but may depend on its
derivatives).

If we substitute x + t£ for T := ¢, (z,Y), y](k) + tn](-k) for g](’“) and tV for V in (1.8) and
differentiate the equality at t = 0 we get

PriX(L) 4+ LD, (£) = D,V .

Example: Let L = \/1+ (y')? and consider X = —yd, + z9,. We already met the prolon-
gation of this field PriVX = —yd, + 28, + (1 +4?)9,,. Then

PrOOX(L) + LD,¢ = (1 + (y’)2) Ly-yL=0

as we could expect. Since the action of this Lagrangian is the arc-length of the graph of y, it
is not surprising that a rotation in the plane preserves this arc-length.
A natural conclusion is

Corollary 1.1. If X preserves the Lagrangian action, it also induces a symmetry of the
corresponding Euler-Lagrange equation E(L) = 0.

The inverse claim is not true, in general.
Example: The Kepler problem (point mass under inverse square law): We consider the
Lagrangian
M

Vi + s+ 3

LY, YD) = 2 () + () + (4)?) -

| =

The EL equations are
" Myz

y~ _———e—
' Y+ 3 + 3

Direct computation implies that this equation is invariant under the first prolongation of

. i=1,2,3.

Xi,j = yiayj - yjayl P { 7éj )

4



X4:8x )
9 3
X5 = 20, + Szlzyiayi

The v.f X, ; represents the symmetry of the system with respect to rotation in space SO(3).
We readily see that its prolongation Pr(l)Xm = yiOy; — Yj0y, + yl’ e y}@y{ preserves the
Lagrangian ’

PriYX; (L) =0.

Evidently, the prolongation of X, (which is Xy itself) preserves to Lagrangian as well. How-
ever, PriVXs = 20, + %Z:{’ YiOy, — %Z‘z’ yi(l)ﬁy(l) verifies

3
MWXMD—DA@L:2<M—§:@PY>#Dﬁﬁ

1

We shall see later that X; ; induces an invariant L; ; = yiy;- — yjy; of the Kepler system.
It is nothing but the angular momentum of this system in the direction perpendicular to the
(vi,y;) plan. Similarly, X4 induces the invariant

1

&= 5 (1) + 62 + (6)°) + — e

Vyi+ s+ 3

which is to energy of the system. The v-f X5 is a manifestation of the third law of Kepler: It
induces the transformation = — efx , y; — e2t/ 3y; which implies, between other, the power
law of 2/3 between the period and the radius of a planet’s orbit. It does not correspond,
however, to a conservation law.



