
Lecture 8

1 Lagrangian dynamics

1.1 Overview

We now consider the important case of equations (or, rather, system of equations) derived
from a Lagrange principle. Let L = L(x, y1, . . . yp, y

(1)
1 , . . . y

(n)
p ) be any function of x and p

dependent variables Y := {y1, . . . yp} and their x derivative to order n. We shall denote such a
function by L = L(x, Y (n)). This Lagrangian induces an action on the set of orbits Y = Y (x)
defined on the interval x ∈ (α, β) which verify the end conditions Y(α) = Y1,Y(β) = Y2:

L(Y) =
∫ β

α
L

(
x,Y(n)(x)

)
dx .

A function Y in this set is called stationary of this Lagrangian if

δYL(Γ) :=
d

dt
L(Y(n) + tΓ(n))

∣∣∣∣
t=0

= 0 (1.1)

for any n−differentiable Γ = {γ1(x), . . . γp(x)} which verifies

Γ(n)(α) = Γ(n)(β) = 0 . (1.2)

Now, let Di is the complete derivative with respect to yi:

Dj = ∂x + y
(1)
j ∂yj + . . . .

Let

Ej :=
n∑

k=0

(−Dj)k∂
y
(k)
j

.

Here D0
j = 1.

Proposition 1.1. Y is a stationary solution of the Lagrangian L iff it satisfies the system
of equations (Euler-Lagrange equations)

Ei(L) = 0 , i = 1, . . . p . (1.3)

Proof. From (1.1) we get that

δY L(Γ) =
p∑

j=1

n∑

i=0

∫ β

α

∂L

∂y
(i)
j

diγj

dxi
dx

By integration by parts and (1.2) we get

δY L(Γ) =
p∑

j=1

n∑

i=1

∫ β

α
(−1)iDi

j

(
∂L

∂y
(i)
j

)
γjdx = 0

which implies the result (since Γ is, apart from condition (1.2), arbitrary).
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Example A mechanical Lagrangian is of the form

L(x, Y (2)) =
p∑

1

mi(y
′
i)

2 − U(x, Y )

where mi are constants (inertia masses) and U the interaction potential. the equation Ei(L) =
o takes the form

miy
′′
i + Uyi = 0

In particular, the equation for the single pendulum of mass m and length l in a gravitational
field g, given by L = m(y

′
)2/2− (1− gl cos(y)) takes the form

y
′′

= (gl/m) sin(y) .

1.2 Transformations of the Lagrangian

Let now a symmetry group G acting on a domain in Rp+1 parameterized by (x, Y ) =
(x, y1, . . . yp). The action is denoted by Ψ : Rp+1 → Rp+1 where Ψ := (ψ(x), ψ(Y )).

x → x̃ = ψ(x)(x, Y ) , Y → Ỹ = ψ(Y )(x, Y ) .

This action induces an action on the graph of a dependent variable Y = Y (x) as defined in
lecture 3. It can also be prolonged into the graph of Y (n), The prolonged action is denoted
by Ψ(n) : (x, Y (n)) → x̃, Ỹ (n).

Such an action induces a transformation on a Lagrangian L in the following, natural way:

L̃(Ỹ ) = L(Y ) (1.4)

It follows that the Lagrangian function L : (α, β) × Rp(n+1) → R is transformed into
L̃ : (α̃, β̃) × Rp(n+1) → R where (α̃, β̃) =

(
ψ(x)(α, Y1), ψ(x)(β, Y2)

)
. From (1.4) we get the

form of the transformed Lagrangian by change of variables formula:

L̃
(
x̃, Ỹ (n)

)
Dxψ(x)(x, Y ) = L(x, Y (n)) (1.5)

where Dx := ∂x +
∑p

i y
(1)
i ∂yi .

How does the Euler-Lagrange equations look like for the transformed Lagrangian? Let us
consider a variation Y → Y + tΓ and x(t), Y(t) given by

x̃ = ψ(x)

(
x(t), Y (x(t)) + tΓ(x(t))

)
, Ỹ(t) = ψ(Y )

(
x(t), Y (x(t)) + tΓ(x(t))

)
.

By this convention, x̃ is independent of t. Hence

0 = Dxψ(x)

dx(t)

dt
+∇Y ψ(x) · Γ .

So
dx(t)

dt
= −∇Y ψ(x) · Γ/Dxψ(x)
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dỸ(t)

dt
= ∇Y ψ(Y ) · Γ + Dxψ(Y )

dx(t)

dt
= ∇Y ψ(Y ) · Γ− (Dxψ(x))

−1Dxψ(Y )∇Y ψ(x) · Γ
Consider now

Fi,j :=
(

Dxψ(x) ∂yiψ(x)

Dxψ(yj) ∂yiψ(yj)

)

Then
dỹj

dt
= (Dxψ(x))

−1
∑

i,j

det(Fi,j)γi .

Since, by definition

d

dt
L̃(Ỹ )

∣∣∣∣
t=0

=
∫ β̃

α̃

(
p∑

i=1

Ẽi(L̃)
dỹi

dt

)
dx̃ =

∫ β

α
Dxψ(x)

(
p∑

i=1

Ẽi(L̃)
dỹi

dt

)
dx

=
p∑

i=1

p∑

j=1

∫ β

α
det(Fi,j)Ẽi(L̃)γidx =

d

dt
L(Y )

∣∣∣∣
t=0

=
p∑

i=1

∫ β

α
Ei(L)γidx .

We finally get the relation between the Euler-Lagrange equations:

p∑

j=1

det(Fi,j)Ẽj(L̃) = Ei(L) . (1.6)

Example: In the case p = 1 we obtain

E(L) = det
(

∂xψ(x) ∂yψ(x)

∂xψ(y) ∂yψ(y)

)
Ẽ(L̃)

Why did we replaced Dxψ(x) by ∂xψ(x)?
Let now (x, y) → (y, x) so ψ(x)(x, y) = y, ψ(y)(x, y) = x. In this case we obtain

E(L) = −Ẽ(L̃) .

Can you verify it directly from the Lagrangian formulation?

1.3 Lagrangian preserving transformations

A transformation ψ is said to preserve a given Lagrangian L if L̃, as defined in (1.5), is equel
to L:

L
(
x̃, Ỹ (n)

)
Dxψ(x)(x, Y ) = L(x, Y (n)) . (1.7)

It is possible to generalize this definition and request the transformed Lagrangian to induce
the same Lagrangian action. Suppose there exists a function V = V (x, Y (n−1)) such that the
transformed Lagrangian takes the form L + DxV . Evidently, this Lagrangian generates the
same action as L, up to an irrelevant constant, for

∫ β

α
[L + DxV ]dx =

∫ β

α
Ldx + V (β, Y (n)(β))− V (α, Y (n)(α))
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Exercise: Prove directly, using (1.1), that the Euler Lagrange equations for L and L+DxV
are identical. For this, you need to show the identity EiDx ≡ 0 for any i.

We now generalize the notion of a transformation which preserves the Lagrangian, to a
transformation which preserves the Lagrangian action. Thus

L
(
x̃, Ỹ (n)

)
Dxψ(x)(x, Y ) = L(x, Y (n)) + DxV (1.8)

for some function V = V (x, Y (n−1)).
Next, consider a symmetry generated by a vector field

X := ξ∂x +
p∑

j=1

ηj∂yj

acting on the domain (x, Y ) of a Lagrangian action induced by L(x, Y (n)).
Example: The v-f ∂x preserves any Lagrangian of the form L = L(Y (n)).
The v-f ∂yj preserves any Lagrangian which is independent of yj (but may depend on its
derivatives).

If we substitute x + tξ for x̃ := ψ(x)(x, Y ), y
(k)
j + tη

(k)
j for ỹ

(k)
j and tV for V in (1.8) and

differentiate the equality at t = 0 we get

Pr(n)X(L) + LDx(ξ) = DxV .

Example: Let L =
√

1 + (y′)2 and consider X = −y∂x + x∂y. We already met the prolon-
gation of this field Pr(1)X = −y∂x + x∂y + (1 + y2

1)∂y1 . Then

Pr(1)X(L) + LDxξ =
(
1 + (y

′
)2

)
Ly

′ − y
′
L ≡ 0

as we could expect. Since the action of this Lagrangian is the arc-length of the graph of y, it
is not surprising that a rotation in the plane preserves this arc-length.

A natural conclusion is

Corollary 1.1. If X preserves the Lagrangian action, it also induces a symmetry of the
corresponding Euler-Lagrange equation E(L) = 0.

The inverse claim is not true, in general.
Example: The Kepler problem (point mass under inverse square law): We consider the
Lagrangian

L(Y, Y (1)) =
1
2

(
(y
′
1)

2 + (y
′
2)

2 + (y
′
3)

2
)
− M√

y2
1 + y2

2 + y2
3

The EL equations are

y
′′
i = − Myi

y2
1 + y2

2 + y2
3

, i = 1, 2, 3 .

Direct computation implies that this equation is invariant under the first prolongation of

Xi,j = yi∂yj − yj∂yi , i 6= j ,

4



X4 = ∂x ,

X5 = x∂x +
2
3

3∑

1

yi∂yi

The v.f Xi,j represents the symmetry of the system with respect to rotation in space SO(3).
We readily see that its prolongation Pr(1)Xi,j = yi∂yj − yj∂yi + y

′
i∂y

′
j
− y

′
j∂y

′
i

preserves the
Lagrangian

Pr(1)Xi,j(L) = 0 .

Evidently, the prolongation of X4 (which is X4 itself) preserves to Lagrangian as well. How-
ever, Pr(1)X5 = x∂x + 2

3

∑3
1 yi∂yi − 1

3

∑3
1 y

(1)
i ∂

y
(1)
i

verifies

Pr(1)X5(L)−Dx(x)L =
2
3

(
M −

3∑

1

(
y

(1)
j

)2
)
6= DxV .

We shall see later that Xi,j induces an invariant Li,j = yiy
′
j − yjy

′
i of the Kepler system.

It is nothing but the angular momentum of this system in the direction perpendicular to the
(yi, yj) plan. Similarly, X4 induces the invariant

E =
1
2

(
(y
′
1)

2 + (y
′
2)

2 + (y
′
3)

2
)

+
M√

y2
1 + y2

2 + y2
3

which is to energy of the system. The v-f X5 is a manifestation of the third law of Kepler: It
induces the transformation x → etx , yi → e2t/3yi which implies, between other, the power
law of 2/3 between the period and the radius of a planet’s orbit. It does not correspond,
however, to a conservation law.
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