Lecture 9

1 Differential forms (survival kit)

Let $D \subset \mathbb{R}^{m}$. We already know that a vector field \mathbf{X} on D is an operator on $C^{\infty}(D)$. So, we can view a function $f \in C^{\infty}(D)$ as a co-vector, namely a linear operator on the space of vector fields: $d f(\mathbf{X}):=\mathbf{X}(f)$. In local coordinates $\mathbf{X}=\sum \xi_{i} \partial_{x_{i}}$ we get

$$
d f(\mathbf{X})=\sum_{1}^{m} \xi_{i} \partial_{x_{i}} f
$$

The linear space $\Omega^{(1)}$ is composed of all linear functionals on the space of vector-fields. In particular, every $f \in C^{\infty}(D)$ induces an element of $\Omega^{(1)}$ via $d f$.

More generally, for any $\alpha, f \in C^{\infty}(D), \alpha d f \in \Omega^{(1)}$ is defined by the multiplication $\alpha d f(\mathbf{X})=\alpha \mathbf{X}(f)$. If we choose f to be a coordinate x_{j} for $j \in\{1, \ldots m\}$ we get the representation $\omega:=\sum_{1}^{m} \alpha_{j}(x) d x_{j}$, acting via

$$
\omega(f)=\sum_{1}^{m} \alpha_{j}(x) \partial_{x_{i}} f
$$

The space $\Omega^{(2)}$ is defined as follows: Given $\omega \in \Omega^{(2)}$ and a vector field $\mathbf{X}, \omega(\mathbf{X}) \in \Omega^{(1)}$ is given by

$$
\omega(\mathbf{X})(\mathbf{Y}):=\omega(\mathbf{X}, \mathbf{Y})
$$

is a bi-linear operator on the pairs of fields \mathbf{X}, \mathbf{Y} which is, in addition- anti symmetric

$$
\omega(\mathbf{X}, \mathbf{Y})=-\omega(\mathbf{Y}, \mathbf{X})
$$

The way to obtain elements of $\Omega^{(2)}$ is via the wedge product. Given $\alpha, \beta \in \Omega^{(1)}$ then $\alpha \wedge \beta \in$ $\Omega^{(2)}$ is defined via

$$
\alpha \wedge \beta(\mathbf{X}, \mathbf{Y}):=\alpha(\mathbf{X}) \beta(\mathbf{Y})-\alpha(\mathbf{Y}) \beta(\mathbf{X}) .
$$

In local coordinates,

$$
\alpha \wedge \beta=\sum_{i, j} \alpha_{i} \beta_{j} d x_{i} \wedge d x_{j}=\sum_{i>j}\left(\alpha_{i} \beta_{j}-\beta_{i} \alpha_{j}\right) d x_{i} \wedge d x_{j}
$$

where $d x_{i} \wedge d x_{j}(\mathbf{X}, \mathbf{Y}):=\mathbf{X}\left(x_{i}\right) \mathbf{Y}\left(x_{j}\right)-\mathbf{X}\left(x_{j}\right) \mathbf{Y}\left(x_{i}\right)=-d x_{j} \wedge d x_{i}(\mathbf{X}, \mathbf{Y})$.
In a progressive way we define $\sigma \in \Omega^{(k)}$ as multi-linear anti-symmetric k form. In local coordinates

$$
\alpha=\sum_{i_{1}, \ldots i_{k}} \alpha_{i_{1}, \ldots i_{k}} d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}
$$

and the wedge product $\alpha \wedge \beta \in \Omega^{(k+l)}$ for $\alpha \in \Omega^{(k)}, \beta \in \Omega^{(m)}$

$$
\alpha \wedge \beta\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k+m}\right)=\sum \pi\left(i_{1}, \ldots i_{k+m}\right) \alpha\left(\mathbf{X}_{i_{1}}, \ldots \mathbf{X}_{i_{k}}\right) \beta\left(\mathbf{X}_{k+1}, \ldots \mathbf{X}_{k+m}\right)
$$

where $\pi=+1$ for an even permutation, $\pi=-1$ for odd permutation.
In addition, we extend the operator $d: \Omega^{(k)} \rightarrow \Omega^{(k+1)}$ from its definition on C^{∞} (identified with $\left.\Omega^{(0)}\right)$ to $\Omega^{(1)}$ as follows:
a) $d^{2} \equiv 0$
b) If $\alpha \in \Omega^{(k)}$ then $d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta$.
c) For $\phi \in C^{\infty}, \alpha \in \Omega^{(k)}, d(\phi \alpha)=d \phi \wedge \alpha+\phi d \alpha$.

So, the exterior differential d always raise the order of a differential form form $\Omega^{(k)}$ to $\Omega^{(k+1)}$. There is a natural operation which lower the order of the differential form: If $\alpha \in \Omega^{(k)}$ and \mathbf{X} is some vector field, then $\mathbf{X}\lrcorner \alpha \in \Omega^{(k-1)}$ where

$$
\mathbf{X}\lrcorner \alpha\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{k-1}\right):=\alpha\left(\mathbf{X}, \mathbf{X}_{1}, \ldots \mathbf{X}_{k-1}\right) .
$$

Next, we define the derivative of a differential form in the direction of a given vector field \mathbf{X}. This is the Lie derivative, denoted as $\mathcal{L}_{\mathbf{X}}: \Omega^{(k)} \rightarrow \Omega^{(k)}$. First, we define it on the space $\Omega^{(0)}:=C^{\infty}(D)$ as follows:

$$
\mathcal{L}_{\mathbf{X}}(f):=\mathbf{X}(f)
$$

Then, for a given form $\alpha \in \Omega^{(k)}$ we define

$$
\begin{equation*}
\left.\left.\mathcal{L}_{\mathbf{X}} \alpha:=\mathbf{X}\right\lrcorner d \alpha+d \mathbf{X}\right\lrcorner \alpha \tag{1.1}
\end{equation*}
$$

From (1.1) we get that the Lie derivative commutes with d :

$$
\mathcal{L}_{\mathbf{X}} d \alpha=d \mathcal{L}_{\mathbf{X}} \alpha
$$

We may also define the lie derivative on another vectorfield

$$
\mathcal{L}_{\mathbf{X}} \mathbf{Y}=[\mathbf{X}, \mathbf{Y}]
$$

that is our old friend the commutator. With this definition, there is an alternative definition to (1.1) for the Lie derivative:

$$
\begin{equation*}
\left[\mathcal{L}_{\mathbf{X}} \alpha\right]\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right):=\mathbf{X}\left(\alpha\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right)\right)-\sum_{j=1}^{k} \alpha\left(\mathbf{X}_{1}, \ldots, \mathcal{L}_{\mathbf{X}} \mathbf{X}_{j}, \ldots, \mathbf{X}_{k}\right) \tag{1.2}
\end{equation*}
$$

The Lie derivative verifies the Leibnitz rule applies for both exterior (wedge) and contraction products:

$$
\left.\left.\left.\mathcal{L}_{\mathbf{X}}(\alpha \wedge \beta)=\left(\mathcal{L}_{\mathbf{X}} \alpha\right) \wedge \beta+\alpha \wedge\left(\mathcal{L}_{\mathbf{X}} \beta\right), \quad \mathcal{L}_{\mathbf{X}}(\alpha\lrcorner \beta\right)=\left(\mathcal{L}_{\mathbf{X}} \alpha\right)\right\lrcorner \beta+\alpha\right\lrcorner\left(\mathcal{L}_{\mathbf{X}} \beta\right)
$$

Consider a mapping $\Psi: D \rightarrow \tilde{D}$ where, as before, D is a domain in \mathbb{R}^{n}. We do not assume that this mapping is a diffeomorphism, neither that \tilde{D} had the same dimension as D. We assume, however, that Ψ is surjective on \tilde{D}, and that \tilde{D} is a domain in \mathbb{R}^{m} for $m \leq n$. Now, if $\alpha \in \Omega^{(k)}(\tilde{D})$, we can pull it back to a form in $\Omega^{(k)}(D)$ by Ψ as follows:

$$
\begin{equation*}
\Psi^{*}(\alpha)\left(\mathbf{X}_{1}, \ldots \mathbf{X}_{k}\right):=\alpha\left(\Psi_{*}\left(\mathbf{X}_{1}\right), \ldots, \Psi_{*}\left(\mathbf{X}_{k}\right)\right) \tag{1.3}
\end{equation*}
$$

where Ψ_{*} is the push forward, defined on vector field as in Lecture 1. It follows by definition that Ψ^{*} commutes with the exterior differential d :

$$
\begin{equation*}
d \Psi^{*}(\alpha)=\Psi^{*}(d \alpha) \tag{1.4}
\end{equation*}
$$

There is another useful interpretation of a differential form. Consider a smooth orbit $\boldsymbol{x}:[0,1] \rightarrow \Gamma \subset \mathbb{R}^{m}$. We view this orbit as a mapping from $[0,1]$ to \mathbb{R}^{m}, and use it to pull back a one form $\omega \in \Omega^{(1)}\left(\mathbb{R}^{m}\right)$ to a form $\boldsymbol{x}^{*}(\omega)=f(x) d x \in \Omega^{(1)}([0,1])$. Then, the integral of ω on Γ is defined by

$$
\begin{equation*}
\int_{\Gamma} \omega:=\int_{0}^{1} f(x) d x . \tag{1.5}
\end{equation*}
$$

It can be shown that this definition is independent of the particular parameterizations \boldsymbol{x} of Γ. Similarly, k-forms can be integrated on k-dimensional surfaces.

Remark 1.1. Differential forms act on vector fields only locally. In coordinate representation it means that a differential form acts linearly only on the coefficients of the vector fields (and not, e.g., on the spacial derivatives of these coefficients). Note, in particular, that the definitions of $d \alpha, \mathbf{X}\lrcorner \alpha$ and $\mathcal{L}_{\mathbf{X}} \alpha$ preserve this property, as both are differential forms by definition. However, $\mathcal{L}_{\mathbf{X}} \alpha$ does depend on the derivatives if the coefficients of \mathbf{X} (as this form is not acting on \mathbf{X}).

2 Contact forms

We now consider differential forms on the space \mathbb{R}^{n+2} obtained from the prolongation of \mathbb{R}^{2} into the $n-t h$ order derivatives. In particular, $\alpha \in \Omega^{(1)}$ is represented in these coordinates as

$$
\alpha=\alpha_{(x)} d x+\alpha_{(y)} d y+\sum_{j=1}^{n} \alpha_{j} d y_{j}
$$

where we identify, as usual, y_{j} with the $j-t h$ derivative of a function $y=y(x)$. The coefficients are functions of the variables $x, y, y_{1}, \ldots, y_{n}$.

Any such function induces a natural local embedding of the real line \mathbf{X} into \mathbb{R}^{n+2} vis

$$
Y^{(n)}(x):=\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right) .
$$

By (1.3) we may pull this α back into a one-form on \mathbb{R} :

$$
Y_{*}^{(n)}\left(\partial_{x}\right)=\partial_{x}+y^{\prime} \partial_{y}+y^{\prime \prime} \partial_{y_{1}}+\ldots+y^{(n+1)} \partial_{y_{n}}
$$

so

$$
\begin{equation*}
\left[T^{(n)}\right]^{*}(\alpha)=\left[\alpha_{(x)}+\alpha_{(y)} y^{\prime}+\sum_{j=1}^{n} \alpha_{j} y^{(j+1)}\right] d x \tag{2.1}
\end{equation*}
$$

Definition 2.1. A contact form is a one-form $\alpha \in \Omega^{(1)}\left(\mathbb{R}^{n+2}\right)$ which is pulled back by any embedding $x \rightarrow Y^{(n)}(x)$ of \mathbb{R} into \mathbb{R}^{n+1}, to the zero form in $\Omega^{(1)}(\mathbb{R})$.

From (2.1) we obtain that a contact form of first order must satisfy $\alpha_{(x)}=-y_{1} \alpha_{(y)}$, that is, a multiple of $d y-y_{1} d x$. Similarly, any $n-t h$ order contact form must be a combination (with function coefficients) of the forms $\theta_{k}:=d y_{k-1}-y_{k} d x$.

Definition 2.2. A contact transformation $\Phi: \mathbb{R}^{n+2} \rightarrow \mathbb{R}^{n+2}$ is such that preserves contact forms.

We claim that a point transformation, that is, a transformation prolonged into \mathbb{R}^{n+2} from a transformation in the point coordinates x, y of \mathbb{R}^{2}, is a contact transformation. Let us check this for the case $n=1$. In that case we know that

$$
\tilde{x}=\tilde{x}(x, y), \quad \tilde{y}=\tilde{y}(x, y), \quad \tilde{y}_{1}=\frac{d \tilde{y}}{d \tilde{x}}=\frac{\tilde{y}_{y} y_{1}+\tilde{y}_{x}}{\tilde{x}_{y} y_{1}+\tilde{x}_{x}}
$$

Hence $d \tilde{y}=\tilde{y}_{x} d x+\tilde{y}_{y} d y, d \tilde{x}=\tilde{x}_{x} d x+\tilde{x}_{y} d y$ so

$$
\Phi^{*}\left(d \tilde{y}-\tilde{y}_{1} d \tilde{x}\right)=\frac{\tilde{x}_{x} \tilde{y}_{y}-\tilde{x}_{y} \tilde{y}_{x}}{\tilde{x}_{y} y_{1}+\tilde{x}_{x}}\left(d y-y_{1} d x\right) .
$$

However, there are contact transformations which are not point transformation.
Example: Legendre transform: $\tilde{x}=y_{1}, \tilde{y}=y-x y_{1}, \tilde{y}_{1}=-x$. It satisfies

$$
d \tilde{y}-\tilde{y}_{1} d \tilde{x}=d y-y_{1} d x
$$

Exercise: Prove that any function $H=H(x, y, \tilde{x}, \tilde{y})$ generates a contact transformation, provided $\tilde{x}, \tilde{y}, \tilde{y}_{1}$ can be factored out from

$$
H=0 \quad, \quad H_{x}+y_{1} H_{y}=0, \quad H_{\tilde{x}}+\tilde{y}_{i} H_{\tilde{y}_{1}}=0
$$

As an example, $H=x \tilde{x}+y \tilde{y}$ generates the Legendre transformation.
Exercise: Prove that a v-f \mathbf{X} generates a contact transformation if

$$
\mathbf{X}=\xi\left(x, y, y_{1}\right) \partial_{x}+\eta\left(x, y, y_{1}\right) \partial_{y}+\eta^{(1}\left(x, y, y_{1}\right) \partial_{y_{1}}
$$

where

$$
\xi=\frac{\partial \Omega}{\partial y_{1}}, \quad \eta=y_{1} \frac{\partial \Omega}{\partial y_{1}}-\Omega, \quad \eta^{(1)}=-\frac{\partial \Omega}{\partial x}-y_{1} \frac{\partial \Omega}{\partial y}
$$

for some function $\Omega\left(x, y, y_{1}\right)$.

2.1 Symmetry transformations

Let us consider now 1 -form in \mathbb{R}^{n+2} which has only non-zero component in $d x$. Such a form is called horizontal (or Lagrangian density) and has the general form

$$
\omega=L\left(x, y, y_{1}, \ldots, y_{n}\right) d x
$$

A contact transformation Ψ is said to be a symmetry of $\omega=L d x$ if it preserves ω up to a contact transformation, that is,

$$
\Psi^{*} \omega=\omega+\Theta
$$

for some contact transformation Θ. In particular, for a point transformation $\tilde{x}=\tilde{x}(x, y)$, $\tilde{y}=\tilde{y}(x, y)$ we get $d \tilde{x}=\tilde{x}_{x} d x+\tilde{x}_{y} d y$. In particular we get

Theorem 1. A point transformation $\tilde{x}=\tilde{x}(x, y), \tilde{y}=\tilde{y}(x, y)$ is a symmetry for $\omega=L d x$ iff

$$
L\left(x, y, y_{1}, \ldots, y_{n}\right)=L\left(\tilde{x}, \tilde{y}, \tilde{y}_{1}, \ldots, \tilde{y}_{n}\right)\left(\tilde{x}_{x}+\tilde{x}_{y} y_{1}\right)
$$

where $\tilde{y}_{1}, \ldots \tilde{y}_{n}$ is determined from \tilde{x}, \tilde{y} by prolongation.
Remark 2.1. Compare this Theorem with (1.7) in Lecture 8.
We now invert the question upside down. Given a contact transformation Ψ, what is the most general Lagrangian density which is preserved by this transformation?

Assume $I=I\left(x, y, y_{1}, \ldots, y_{n}\right)$ is an invariant function of Ψ, that is

$$
\begin{equation*}
\Psi^{*}(I):=I \circ \Psi=I \tag{2.2}
\end{equation*}
$$

Then, $L:=D_{x} I$ is an example of a "trivial" Lagrangian which for which Ψ is a symmetry. To see this we first observe that, for any function $I \in C^{\infty}\left(\mathbb{R}^{n+2}\right)$, the Lagrangian density $D_{x} I d x$ is the horizontal part of the one form $d I$. Indeed

$$
\begin{align*}
d I:= & I_{x} d x+I_{y} d y+I_{y_{1}} d y_{1}+\ldots+I_{y_{n}} d y_{n} \equiv\left(I_{x}+y_{1} I_{y}+\ldots+y_{n} I_{y_{n-1}}\right) d x \\
& +I_{y}\left(d y-y_{1} d x\right)+I_{y_{1}}\left(d y_{1}-y_{2} d x\right)+\ldots+I_{y_{n}}\left(d y_{n}-y_{n+1} d x\right)=D_{x} I d x+\Theta \tag{2.3}
\end{align*}
$$

where Θ is a contact form. From $(2.2,1.4)$ we get

$$
\Psi^{*}\left(D_{x} I d x\right)=\Psi^{*}(d I-\Theta)=\Psi^{*}(d I)-\Psi^{*}(\Theta)=d \Psi^{*}(I)-\Psi^{*}(\Theta)=d I-\Psi^{*}(\Theta)=I_{x} d x+\Theta-\Psi^{*}(\Theta)
$$

and $\Psi^{*}(\Theta)$ is a contact form since Ψ is a contact transformation.
Remark 2.2. There is another point of view for the last claim. If Γ is an orbit in the space \mathbb{R}^{n+2}, then the action of a Lagrangian density $\omega=L d x$ on Γ is just the integral $\int_{\Gamma} \omega$ as introduced in (1.5). If $L=D_{x} I$ then $\int_{\Gamma} \omega=I\left(\Gamma_{1}\right)-I\left(\Gamma_{2}\right)$ where Γ_{1}, Γ_{2} are the end-points of the orbit. If Ψ is a contact transformation, then the Lagrangian action is transformed into

$$
\int_{\Psi(\Gamma)} \Psi^{*}(\omega)=I\left(\Psi\left(\Gamma_{2}\right)\right)-I\left(\Psi\left(\Gamma_{1}\right)\right)
$$

However, if I is an invariant function of the transformation Ψ then $I\left(\Psi\left(\Gamma_{i}\right)\right)=I\left(\Gamma_{i}\right)$ for $i=1,2$ so we understand the notion of the invariance of $D_{x} I$ as the invariance of the corresponding Lagrangian action on orbits (see Lect. 8).

We now turn to the general complete result which characterize all Lagrangian densities which are invariant with respect to a given contact transformation Ψ :
Theorem 2. If Ψ is a contact transformation and ω_{0} is a Lagrangian density invariant under Ψ (e.g. $\omega_{0}=D_{x} I_{0} d x$ for some invariant function I_{0} of Ψ), then ω is a Ψ invariant Lagrangian density if and only if $\omega=I \omega_{0}$ for some invariant function I of Ψ.
Example: Consider the action $S O(2)$ on \mathbb{R}^{2}. We know that $I_{0}=x^{2}+y^{2}$ and $I_{1}=\frac{x y_{1}-y}{x+y y_{1}}$. We define $\omega_{0}=(1 / 2) D_{x} I_{0} d x=\left(x+y y_{1}\right) d x$. So, the most general Lagrangian which is invariant under the action of $S O(2)$ is

$$
L\left(x, y, y_{1}\right)=\left(x+y y_{1}\right) F\left(x^{2}+y^{2}, \frac{x y_{1}-y}{x+y y_{1}}\right)
$$

for some function $F($,$) .$

Remark 2.3. Since we already know that the Euclidian arc-length $L=\sqrt{1+y_{1}^{2}}$ is a Lagrangian invariant under $S O(2)$ (see Lect. 8) then the example above shows that there must be a function F for which

$$
\left(x+y y_{1}\right) F\left(x^{2}+y^{2}, \frac{x y_{1}-y}{x+y y_{1}}\right)=\sqrt{1+y_{1}^{2}} .
$$

Can you find this F ?

