Home Exercise 1

1. Consider the vectorfields

$$\mathbf{X}_1 = x\partial_y - y\partial_x + z\partial_w - w\partial_z , \quad \mathbf{X}_2 = z\partial_x - x\partial_z + w\partial_y - y\partial_w$$

in the unite sphere $S^3 := \{x^2 + y^2 + z^2 + w^2 = 1\}.$

- a) Prove that this is an integrable system, and calculate the integrable surfaces in S^3 .
- b) Find the projection of $\mathbf{X}_1, \mathbf{X}_2$ on \mathbb{R}^3 given by $P_*\mathbf{X}_1, P_*\mathbf{X}_2$ where $P: S^3 \to \mathbb{R}^3$ is given by P(x, y, z, w) = (x, y, z). Show that this system is integrable on \mathbb{R}^3 , and find the corresponding integral surface in \mathbb{R}^3
- 2. Prove that the set of non-singular, upper triangular $n \times n$ matrices is a Lie group, and find the corresponding Lie algebra.
- 3. Show that $[\mathbf{X}, \mathbf{Y}]_{(x)} = -\left. \frac{d}{dt} \right|_{t=0} \exp(t\mathbf{X})_*(Y_{(\exp(-t\mathbf{X})\circ x)}).$
- 4. (*) A map $\psi : \mathbb{R}^m \to \mathbb{R}^m$ is *conformal* if for any $x \in \mathbb{R}^m$ and any vectorfield **X** on \mathbb{R}^m , $|\psi_*(\mathbf{X})| = \lambda(x)|\mathbf{X}|$ where λ independent of **X**. Prove that if $m \ge 3$:
 - (a) Any conformal v.f $\mathbf{X} = \sum \xi_i \partial_{x_i}$ must satisfy

$$\frac{\partial \xi_i}{\partial x_j} + \frac{\partial \xi_j}{\partial x_i} = 0 , \quad i \neq j , \quad \frac{\partial \xi_i}{\partial x_i} = \mu(x) \quad , \quad i = 1, \dots m .$$

- (b) Show that the set of all conformal mappings on \mathbb{R}^m is a finite dimensional Lie group, isomorphic to SO(m+1) if $m \ge 3$, and find its generators. What about m = 2?
- 5. Prove that, for $\phi = \phi(x, y, \dots, y_n)$ and $\mathbf{X} = \xi \partial_x + \eta \partial_y$ on \mathbb{R}^2 , where ξ, η are functions of x, y:

$$Pr^{(n+1)}\mathbf{X}(D_x\phi) = D_x\left(Pr^{(n)}\mathbf{X}(\phi)\right) - D_x\phi\cdot D_x\xi$$

6. Use this to prove Theorem 1 in Lec. note # 4.