Home Exercise 2

1. i) Determine the (8th parameter) transformation group of the equation $y^{\prime \prime}=0$. See Lecture 5, p. 2 for the corresponding vector fields $\mathbf{X}_{1}, \ldots \mathbf{X}_{8}$.
ii) Prove that $y^{(n)}=0$ have $n+4$ dimensional point symmetry for $n>2$.
iii) Prove that there are at most $n+4$ dimensional point symmetry for $n-t h$ order ODE if $n>2$. Why does it differ from $n=2$?
iv) Prove that $y^{\prime \prime}=x y+e^{y^{\prime}}+e^{-y^{\prime}}$ have no point symmetry whatsoever!
2. Find the point symmetries of the equations below and use them to reduce the order. Whenever possible, give the general solutions.
i) $3 y y^{\prime \prime}=5 y^{\prime 2}$.
ii) $4 y^{2} y^{\prime \prime \prime}-18 y y^{\prime} y^{\prime \prime}+15 y^{3}=0$.
iii) $y^{\prime \prime \prime}\left(1+y^{\prime 2}\right)=\left(3 y^{\prime}+a\right) y^{\prime \prime} 2$.
iv) $y^{\prime \prime}=2\left(x y^{\prime}-y\right) / x^{2}$.
3. (lecture 10)
i) Find the generators of the point symmetries of the PDE $u_{t}=u_{x x}+u_{x}^{2}$. Compare it to the symmetries of the heat equation (lecture 10).
ii) The non-linear heat equation is $u_{t}=\left(h(u) u_{x}\right)_{x}$. Find relations between the pointsymmetries of this equation and the function h.
iii) Show that the equation $u_{t}=u_{x x x}+u u_{x}$ has a symmetry group of 4 generators. Find these generators and the transformations induced by them.
4. (lecture 5-6)

Find an action on \mathbb{R}^{2} which realizes the group generated by

$$
\left[\mathbf{X}_{1}, \mathbf{X}_{2}\right]=\mathbf{X}_{3}, \quad\left[\mathbf{X}_{2}, \mathbf{X}_{3}\right]=\mathbf{X}_{1}, \quad\left[\mathbf{X}_{3}, \mathbf{X}_{1}\right]=\mathbf{X}_{2}
$$

Hint: use the generators of $S O(3)$ on $\mathbb{R}^{3}: x \partial_{y}-y \partial_{x}, x \partial_{z}-z \partial_{x}, z \partial_{y}-y \partial_{z}$.
5. (Lect. 9): Prove that any function $H=H(x, y, \tilde{x}, \tilde{y})$ induces a contact transformation, provided $\tilde{x}, \tilde{y}, \tilde{y}_{1}$ can be factored out from

$$
H=0 \quad, \quad H_{x}+y_{1} H_{y}=0, \quad H_{\tilde{x}}+\tilde{y}_{i} H_{\tilde{y}_{1}}=0 .
$$

Prove that a v-f \mathbf{X} generates a contact transformation if

$$
\mathbf{X}=\xi\left(x, y, y_{1}\right) \partial_{x}+\eta\left(x, y, y_{1}\right) \partial_{y}+\eta^{(1)}\left(x, y, y_{1}\right) \partial_{y_{1}}
$$

where

$$
\xi=\frac{\partial \Omega}{\partial y_{1}}, \quad \eta=y_{1} \frac{\partial \Omega}{\partial y_{1}}-\Omega, \quad \eta^{(1)}=-\frac{\partial \Omega}{\partial x}-y_{1} \frac{\partial \Omega}{\partial y}
$$

for some function $\Omega\left(x, y, y_{1}\right)$.

