Home Exercise 2

- 1. i) Determine the (8th parameter) transformation group of the equation y'' = 0. See Lecture 5, p.2 for the corresponding vector fields $\mathbf{X}_1, \ldots \mathbf{X}_8$.
 - ii) Prove that $y^{(n)} = 0$ have n + 4 dimensional point symmetry for n > 2.
 - iii) Prove that there are at most n + 4 dimensional point symmetry for n th order ODE if n > 2. Why does it differ from n = 2?
 - iv) Prove that $y'' = xy + e^{y'} + e^{-y'}$ have no point symmetry whatsoever!
- 2. Find the point symmetries of the equations below and use them to reduce the order. Whenever possible, give the general solutions.
 - i) $3yy'' = 5y'^2$.
 - ii) $4y^2y''' 18yy'y'' + 15y'^3 = 0.$
 - iii) $y'''(1+y'^2) = (3y'+a)y''^2$.
 - iv) $y'' = 2(xy' y)/x^2$.
- 3. (lecture 10)
 - i) Find the generators of the point symmetries of the PDE $u_t = u_{xx} + u_x^2$. Compare it to the symmetries of the heat equation (lecture 10).
 - ii) The non-linear heat equation is $u_t = (h(u)u_x)_x$. Find relations between the point-symmetries of this equation and the function h.
 - iii) Show that the equation $u_t = u_{xxx} + uu_x$ has a symmetry group of 4 generators. Find these generators and the transformations induced by them.
- 4. (lecture 5-6)

Find an action on \mathbb{R}^2 which realizes the group generated by

$$[\mathbf{X}_1, \mathbf{X}_2] = \mathbf{X}_3$$
, $[\mathbf{X}_2, \mathbf{X}_3] = \mathbf{X}_1$, $[\mathbf{X}_3, \mathbf{X}_1] = \mathbf{X}_2$

Hint: use the generators of SO(3) on \mathbb{R}^3 : $x\partial_y - y\partial_x$, $x\partial_z - z\partial_x$, $z\partial_y - y\partial_z$.

5. (Lect. 9): Prove that any function $H = H(x, y, \tilde{x}, \tilde{y})$ induces a contact transformation, provided $\tilde{x}, \tilde{y}, \tilde{y}_1$ can be factored out from

$$H = 0$$
, $H_x + y_1 H_y = 0$, $H_{\tilde{x}} + \tilde{y}_i H_{\tilde{y}_1} = 0$

Prove that a v-f ${\bf X}$ generates a contact transformation if

$$\mathbf{X} = \xi(x, y, y_1)\partial_x + \eta(x, y, y_1)\partial_y + \eta^{(1)}(x, y, y_1)\partial_{y_1}$$

where

$$\xi = \frac{\partial \Omega}{\partial y_1}$$
, $\eta = y_1 \frac{\partial \Omega}{\partial y_1} - \Omega$, $\eta^{(1)} = -\frac{\partial \Omega}{\partial x} - y_1 \frac{\partial \Omega}{\partial y}$

for some function $\Omega(x, y, y_1)$.