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The classical theory of the shape of liquid drops
is related to the theory of surfaces with a pre-
scribed mean curvature (PMC). The beginning
of the modern theory of PMC is dated back to
the early 19th century, and is known today as
the Young-Laplace theory

• T. Young, An essay on the cohesion of
fluids, In Miscellaneous Works, (G. Pea-
cock, ed.) ,I, John Murray, London, (1855),
418-453

• P.L Laplace, Traité de Mécaniqe Céleste;
supplémes au Livre X, 1805 and 1806 resp.
in Euvres Complete Vol. 4. Gauthier-
Villars, Paris

A great progress in the understanding of PMC
and their rich structure was achieved in the
second half of the 20th century, together with
the development of BV theory and the geo-
metric measure theory.
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A particular aspect of this theory is the incli-

nation angle of the liquid-solid phases at the

intersection line of the liquid-solid-vapor. This

angle attract a lot of attention in the physics

and chemistry literature because it is deter-

mined by the chemical properties of the liquid

and solid phases, and may serve as a practical

device for the actual measurements of such pa-

rameters for different solids.

However, the details of the interaction energy

at the interaction line is still controversial. Sev-

eral corrections were suggested to the classical

Young-Laplace theory in the vicinity of the in-

teraction line, where the liquid phase is very

thin.
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The effect of roughness of the solid surface

on the contact angle was studied theoretically

by several authors. It seems, however, that

a rigorous understanding of the relation be-

tween the local and apparent inclination angle

for rough surfaces is still missing, even in the

context of the classical Young-Laplace theory.
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Solid = w(x, y),Liquid-vapor interface := u(x, y)

Liquid domain {x, y, z} ; w(x, y) ≤ z ≤ u(x, y) .

Tu =
∇u√

1 + |∇u|2
.

The equation describing the liquid-vapor inter-

face u in the domain u > w is given by

div(Tu) = h(u)

where h is a linear function of u if gravitation is

present, a constant in the absence of gravity,

or zero in the case of a minimal surface (soap

films). The free boundary condition at the

fluid-solid-vapour interface u = w is given by

1 +∇u · ∇w√
1 + |∇u|2

√
1 + |∇w|2

= γ = cos θact .

where γ is a physical parameter for the inter-

action energy between the liquid and the solid

phases.
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Free energy functional:

F(u) =
∫ ∫

H(u− w)
[√

1 + |∇u|2

+λ(u) + γ
√

1 + |∇w|2
]
dxdy

H(u) = 1 if u ≥ 0 , H(u) = 0 if u < 0 ; λ
′
= h .

Example: λ(u) = 1/2gu2 + µ, where µ is a

constant conjugate to the volume constraint.

Young [Y] stated that, for chemically homoge-

neous solid surface, the contact angle is con-

stant along the contact line. From a mathe-

matical point of view, the contact angle is a

problematic concept. If the surface z = w is

rough, as is the case in practical applications,

then the apparent angle given by

cos θapp =
(
1 + |∇u|2)

)−1/2

is very sensitive to ∇w.
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Rough boundary: w(x, y) = εω(x/ε, y/ε)

where ω is a periodic function in both variables.

∇w ≈ 1 ; w ≈ ε .

In this case, θγ is significantly different from

θapp.

A heuristic argument proposed by Wenzel and

others suggested a way to calculate the rela-

tion between the Young angle and the apparent

angle. By this argument, the apparent inclina-

tion angle of the global energy minimizer is

determined by the mean surface energy of the

rough surface. The roughness parameter:

r ≡<
√

1 + |∇w|2 > , γeff = rγ

Feff(u) =
∫ ∫

H(u− w)
[√

1 + |∇u|2

−λ(u) + γeff

]
dxdy .
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The inclination angle cos(θW ) = rγ, known as

”Wenzel rule”

Wenzel rule clearly fails when rγ > 1.

First result: There exists α ≤ 1 so that Wenzel

rule is valid if rγ < α.

What happen if rγ > α?

Second result: γeff is valid for any r. It satis-

fies

γeff(r) = rγ if γ ≤ α

but always

γeff(r) < 1 !
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Functions of bounded variation

Ω ⊂ R3 ; ∂Ω is Lipschitz .

A function φ ∈ L1(Ω) is of bounded variation

in Ω if
∫
Ω |∇φ| :=

sup
w

{∫

Ω
φdiv(~w) ; ~w ∈ C∞0 (Ω;Rn), |~w|∞ ≤ 1

}
< ∞

The space of functions of bounded variation in

Ω is BV (Ω). The BV−norm is

||φ||BV ≡
∫

Ω
|∇φ|+ |φ|1

where |φ|1 :=
∫
Ω |φ|.

Per(E) :=
∫

Ω
|∇φE| .

The collection of sets E ⊂ Ω of a prescribed

volume |φE|1 = q, 0 < q < V is denoted by Λq.

The Free-Energy

F0
γ (φ) =

∫

Ω
|∇φ|+

∫

Γ
γφdHn−1

We shall also refer to F0
γ (E) = F0

γ (φE).
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It is known that for any Lipschitz surface S ⊂
Ω, the trace of a BV function on S is defined

in L1(S). In particular, the trace of a finite

perimeter set E is defined on S. Moreover,

φE|S ∈ L∞(S) and 0 ≤ φE ≤ 1 a.e on S.

We recall the compactness property of BV func-

tions:

Compactness: A sequence φj ∈ BV (Ω) bounded

uniformly in the BV norm contains an L1−
converging subsequence to some φ ∈ BV (Ω).

Moreover,
∫

Ω
|∇φ| ≤ lim inf

j→∞

∫

Ω

∣∣∣∇φj

∣∣∣ .

If φj are characteristic functions of finite perime-

ter sets Ej, then any limit φ is also a finite

perimeter set E ⊂ Ω.
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First difficulty: The trace is neither upper

semi-continuous, nor lower semi-continuous in

the underlying space. In general

lim inf
n→∞ F0

γ

(
φEj

)
6≥ F0

γ (φE)

whenever φEj
→ φE.

To handle the trace, the following perimetric

inequality is applied

Lemma 1: If L is the minimal Lipschitz con-

stant of Λ then for any δ > 0 we may choose

C = 1 + L + δ and a corresponding β = β(δ)

for which
∫

Γ
|φ| ≤ C

∫

Ω
|∇φ|+ β|φ|1

holds for any φ ∈ BV (Ω).
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Theorem 1: If the perimetric inequality holds
with |γ| ≤ 1/C then there exists a minimizer
E0 of F0

γ in Λq for any 0 < q < V .

The main step is the inequality∫

Γ
γ|φ| <

∫

Ω
|∇φ|+ β

′|φ|1
together with the assumptions of the theorem.
This yields, essentially, that F0

γ is lower-semi-
continuous in the underlying spaces.

A remarkable fact: If Ω is smooth enough,
so there exists a vector-field ~v ∈ C1(Ω) so that

|∇ · ~v|∞ < ∞ ; |~v|∞ ≤ 1 ; ~v = ~n on Γ ,

where ~n is the outward normal to Γ, then the
perimetric inequality can be improved:∫

Γ
|φ| ≤

∫

Ω
|∇φ|+ β|φ|1

for some β > 0.
Hence Theorem 1 implies, for a smooth do-
main Ω, the existence and smoothness of a
minimizer for |γ| < 1 (i.e for any inclination
angle −π < θ < π).
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Rough Domains

Ωε → Ω under the above Assumptions:

A1. For every ε > 0, Ωε ⊂ Ω is a Lipschitz
domain.

A2. limε→0 Ωε = Ω

A3. γε is a continuous function on Γε which
satisfies either 0 ≤ γε ≤ 1 or −1 ≤ γε ≤ 0 at
any point on Γε. There exists γeff ∈ L∞(Γ)
such that for any φ ∈ BV (Ω)

lim
ε→0

∫

Γε

γεφ =
∫

Γ
γeffφ

A4. The domain Ω is smooth. Let ~v be the
corresponding C1 vector-field. Then

sup
x

{ |γε|(x)
~nε(x) · ~v(x)

; x ∈ Γε

}
≤ 1 .
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Theorem 2: If either Ωε is a smooth domain

and γε ≤ 1 or assumptions A.1 and A.4 are

satisfied, then there exists a minimizer of F ε
γε

in Λε
q for any 0 < q < vol(Ω).

Complete wetting:

By Theorem 2 we have the existence of the

set of minimizers to F ε
γε

in Λε
q. Denote this set

by Eε
γε
⊂ Λε

q.

We denote the limit set of Eε
γε

by E0, i.e

E0 ≡
{
E ∈ BV (Ω) ; ∃εj → 0 and

Ej ∈ E
εj
γεj

where φE = lim
j→∞φEj

in L1(Ω)

}

(1)
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Theorem 3 If Ω is a smooth domain and {Ωε}
satisfy assumptions (A1-A4), then E0 ⊂ Eγeff .

If γε = γ ≥ 0 is a constant and Ωε are smooth

domains, then assumptions A3-A4 can be re-

placed by

A’3. Let B(x, δ) be the ball of radius δ cen-

tered at x. Then there exists a function

r ∈ −→L∞(Γ) such that

lim
δ→0

lim
ε→0

|Γε ∩B(δ, x))|
|(Γ ∩B(δ, x))| = r(x)

holds uniformly on Γ.

A’4. α(x) :=

lim
δ→0

lim
ε→0

[inf {~n(x) · ~nε(y) ; y ∈ Γε ∩B(δ, x)}]

and γ ≤ inf {α(x) ;x ∈ Γ}.
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Corollary: Assume (A1-A4) and, assume, in
addition, that the minimum of F0

γeff
is obtained

at a unique set E0 (i.e Eγ = {E0}). Then E0 =
{E0} and, in particular,

lim
ε→0

Eε = E0

holds for any choice of Eε ∈ Eε
γε
.

Method of proof:

Lemma (Γ-convergence): Suppose:
a) For any sequence Eε ∈ Λε

q which converge
in measure to E0,

lim inf
ε→0

F ε
γε
(Eε) ≥ F0

γeff
(E0)

b) There exists such a sequence E
′
ε ∈ Λε

q which
converges in measure to E0 and

lim
ε→0

F ε
γε
(E

′
ε) = F0

γeff
(E0)

Then, any converging subsequence of minimiz-
ers of F ε

γε
in Λε

q converges in measure to a min-
imizer of F0

γeff
in Γq.
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Partial Wetting

Ω ⊂ R2. Let ~k : [0,1] → R2 be a periodic

function, ~v(s) · ~k(s) = 0 and |~v(s)| ≡ 1. Let

Γ :=
{
~k(s) ; 0 ≤ s ≤ 1

}

Let ζ ≥ 0 a smooth periodic function on R.

∂Ωj := Γj :=

{
~k(s)− 1

j
ζ(js)~v(s) ; 0 ≤ s ≤ 1

}
.

Assume ζ is even, monotone on the semi-period

[0,1/2]. Let x = h(y) the inverse of ζ. h is de-

fined on the interval [0, Y ]. Define

g(y) = h(y) + γ
∫ y

0

√
1 + |h′|2 .

γeff := 2 inf
y∈[0,Y ]

g(y) = 2g(y0) .

D = (x, y); y0 ≤ y ≤ Y, −h(y) ≤ x ≤ h(y)

∂D = Γ1 ∪ Γ2
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where

Γ1 = {−h(y0) ≤ x ≤ h(y0)} , y = y0 ; Γ2 = ∂D−Γ1

We now replace assumption A4 by the follow-

ing: FD(A) :=
∫

D
|∇φA| −

∫

Γ1

φA + γ
∫

Γ2

φA ≥ 0 ∀A ∈ BV (D)

(A6)

To make condition (A6) more explicit, we pose

the following

Proposition: Suppose there exists a vector-

field (w1, w2) := ~w ∈ C1
(
D;R2

)
with the fol-

lowing properties:

a) supD |~w| ≤ 1

b) ∇ · ~w ≥ 0 on D

c) ~w · ~ν ≤ γ on Γ2 where ~ν is the outer normal

to ∂D.

d) w1 = 1 on Γ1 (i.e ~w · ~ν = −1 on Γ1).

Then (A6) follows.
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Theorem 4: Let

γeff := 2 inf
y∈[0,Y ]

g(y) = 2g(y0) .

Assume (A6) is satisfied. Then

E0 ⊂ Eγeff

where

E0 ≡
{
E ∈ BV (Ω) ; ∃εj → 0 and

Ej ∈ E
εj
γεj

where φE = lim
j→∞φEj

in L1(Ω)

}

(2)
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