
Kloosterman sums and Fourier coefficients

This note contains the slides of my lecture at Haifa, with some additional
remarks.

Roberto Miatello and I have worked for years on the sum formula in
various generalizations. At the miniconference, we both lectured on the
sum formula. I have stressed the spectral side.

Spectral theory on the upper half plane
In L2 (SL2(Z)\H) there is an orthonormal system u0, u1,

u2, . . . with u0(z) =
√

3
π
, and for j ≥ 1 Maass cusp

forms

uj(x+ iy) =
∑

n6=0

cn(j)e2πinxW0,νj(4π|n|y).

νj ∈ iR for j ≥ 1. Ordered such that j 7→ 1
4
− ν2

j is
increasing.
This system is not an orthonormal basis. The Eisenstein
series span the orthogonal complement. These Maass
forms depend on a complex parameter ν, and have a
Fourier expansion with a “constant term”:

Eν(x+ iy) = y
1
2

+ν + c0,0(ν)y
1
2
−ν

+
∑

n6=0

c0,|N |(ν)e2πinxW0,ν(4π|n|y).

The W·,· denotes the quickly decreasing Whittaker function, expressible in

the K-Bessel function: W0,ν(y) =
√

y
πKν(y/2).
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Sum formula
Kuznetsov, 1977, 1981; B. 1978
For suitably decreasing even holomorphic functions f ,
and n,m ∈ Z \ {0}:

∑

j≥1

f(νj)cn(j)cm(j)

+
1

4πi

∫

Reν=0

f(ν)c0,n(ν)c0,m(ν) dν

=
1

2
√
|nm|

∞∑

c=1

S(m,n; c)

c
f̃

(
4π
√
|nm|
c

)

− δm,n
2πm

1

2πi

∫

Reν=0

f(ν)2ν sin πν dν.

If nm > 0:

f̃(t) =
1

2πi

∫

Reν=0

f(ν)J2ν(t)2ν dν.

The idea of the sum formula is that although the individual Maass cusp
forms are not explicitly known, we can say much concerning their average.

In the left hand side of the sum formula, we see spectral data. The
first term contains products of Fourier coefficients of Maass cusp forms.
The second term contains Fourier coefficients of Eisenstein series. Since it
corresponds to the continuous spectrum, this term is given by an integral.

In the right hand side, we see a sum of Kloosterman sums.

S(m,n; c) =
∑∗

a mod c

e2πi(na+md)/c, ad = 1 mod c.

The last term is simpler. It occurs only if n and m are equal.
In the case that n and m have the same sign, the formula for the trans-

formation is as on the transparency. Otherwise, an I-Bessel function is used.
Kloosterman sums and Fourier coefficients of automorphic forms had

been connected before. Petersson gave a formula for Fourier coefficients of
one Poincaré series in terms of Kloosterman sums. As his Poincaré series
converges there is no need to average over many cusp forms. Selberg also
had used the relation between automorphic forms and Kloosterman sums to
get a bound for the lowest cuspidal eigenvalue.

One should also note the similarity with the Selberg trace formula.
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Weighted sum of eigenvalues
B. 1978

N∑

j=1

|cn(j)|2
cos πνj

∼ 3

π2|n|N (N →∞).

Non-trivial bound for sums of Kloosterman sums
Kuznetsov, 1980

X∑

c=1

S(m,n; c)

c
�m,n X

1
6 (logX)

1
3 (X →∞).

(More on sums of Kloosterman sums in the lecture by
Roberto Miatello.)

To obtain the weighted average of Fourier coefficients, take a Gaussian kernel
as the test function f .

The latter result requires a bit more work. One has to understand the
Bessel transformation. Actually, one can get quite far using only the behav-
ior of J2ν(t) as t approaches zero. Roberto Miatello will discuss that in his
lecture.

Bessel transformation
Under suitable conditions on ϕ or on f :

f(ν) =

∫ ∞

0

ϕ(t)
J−2ν(t)− J2ν(t)

sin πν

dt

t
,

ϕ(t) =
i

2

∫

Reν=0

f(ν)
J−2ν(t)− J2ν(t)

cos πν
ν dν

+
∑

b≥2, b≡0 mod 2

(−1)
b
2 (b− 1)

· f
(
b− 1

2

)
Jb−1(t).

Note that ν
cosπν

= 1
sinπν

· ν tan πν, where ν tanπν is the
density of the Plancherel measure on iR.

In the expression for ϕ, we cannot restrict ourselves to values of f on the
imaginary axis. In representational terms: we need one half of the discrete
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series besides the unitary principal series. So in a sense, one is forced by the
Bessel transformation to look further than the Maass forms. In a natural
version of the sum formula also the holomorphic cusp forms occur. Actually,
it is natural to consider not individual modular forms, but the automorphic
representation that they generate.

Automorphic representation
Let G = PSL2(R) ⊃ Γ = PSL2(Z). Each modular cusp
form u generates an irreducible subspace of L2

cusp(Γ\G).
Instead of summing over an orthonormal system of cusp
forms, it is more natural to sum over an orthogonal sys-
tem {V$} of irreducible subspaces of L2

cusp (Γ\G).
Let n 6= 0. Each unitary irreducible representation
V is isomorphic to a unique Whittaker model W n(V ),
consisting of functions on G that satisfy F

((
1
0
x
1

)
g
)

=
e2πinxF (g). Taking the Fourier coefficient determines an
intertwining operator Fn : V$ → W n($). After normal-
ization, this gives coefficients cn($), which determine the
Fourier coefficients mentioned earlier.

In this way, we arrive at another formulation of the sum formula:

Sum formula
For f and ϕ related by the Bessel transformation, with
suitable growth behavior, and for all n,m 6= 0:

∑

$

cm($)cn($)f(ν$)

+
1

2π

∫ ∞

−∞
dm(ir)dn(ir)f(ir) dr

= 2

∞∑

c=1

S(m,n; c)

c
ϕ

(
4π
√
|mn|
c

)

+
δm,n
π

(
i

∫

Reν=0

f(ν)ν tan πν dν

+
∑

b≥2, b≡0(2)

(b− 1)f

(
b− 1

2

)
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The first sum is over an orthogonal system of cuspidal automorphic repre-
sentations. The integral in the second term corresponds to the continuous
part of the spectrum. The terms on the right we have seen before. The
delta term is given by the Plancherel measure.

Proofs
1. Scalar product of two Poincaré series
For function f on G satisfying f

((
1
0
x
1

)
g
)

= e2πinxf(g)
and suitable growth conditions,

Pf,n(g) =
∑

γ∈Γ∞\Γ
f(γg)

determines element of L2 (Γ\G).
Each Pf,n can be written according to the decomposi-
tion of L2 (Γ\G) as sum and integral of irreducible sub-
spaces. This gives a description of the scalar product
(Pf,n, Pf1,m).
This scalar product can also be computed by inserting
the sum defining Pf1,m and interchanging the order of
integration and summation.
The resulting equality is the basis of the sum formula.

A different flavor has the proof by Cogdell and Piatetski-Shapiro:

2. Fourier coefficient of one Poincaré series
Cogdell and Piatetski-Shapiro have based a proof on
the computation of the Fourier term of order m of the
Poincaré series Pf,n. This can be computed in two differ-
ent ways, yielding an equality that is formulated as an
equality for distributions with variable f .
The spectral side of this equality is formulated in terms
of the Kirillov model of the irreducible representations
occurring in it. The matrix

(
0
1
−1

0

)
acts as convolution

with a certain distribution, called the Bessel function of
the representation. It is used to describe the spectral
terms in the equality.
In this way, one arrives first at a version of the sum
formula with the independent test function in the sum
of Kloosterman sums.
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Some generalizations
Cofinite discrete subgroups of PSL2(R) and their cov-
erings inside the universal covering group of PSL2(R)
(Proskurin 1979, B. 1981)
Sum formula for Γ\H with Fourier coefficients along
closed geodesics and power series coefficients at points
of H (Good, 1984)
Cofinite discrete subgroups of Lie groups of real rank one,
and products of such groups (Miatello-Wallach, 1990)
This includes the case of discrete subgroups of PSL2(C)
(B.-Motohashi, 2003; Lokvenec, 2004)
Sum formula for PSL2 over a totally real number field
(B.-Miatello-Pacharoni, 2001)
Adelic version (Venkatesh, 2004)

As far as I know, the Bessel transformation has been inverted only for
groups infinitesimally isomorphic to SL2(R) and SL2(C).

Bessel inversion for SL2(C)
The groups infinitesimally isomorphic to PSL2(R) or
PSL2(C) are the sole ones for which the inversion of
the Bessel transformation is known. For PSL2(C), and
(ν, p) 7→ f(ν, p) and ϕ : C∗ → C suitable:

ϕ(u) =
1

2πi

∑

p∈Z

∫

∈µ=0

K∗ν,p(u)h(ν, p)

· (p2 − ν2) dν,

f(ν, p) =
π

2

∫

C∗
ϕ(u)K∗ν,p(u) d∗Cu,

K∗ν,p(u) =
∣∣u

2

∣∣−2ν
(
iu
|u|

)2p

J ∗−ν,−p(u)−
∣∣u

2

∣∣2ν
(
iu
|u|

)−2p

J ∗ν,p(u)

sin π(ν − p) ,

J ∗ν,p(u) = J∗ν−p(u)J∗ν+p(ū) ,

J∗µ(u) =
∞∑

n=0

(−1)n

n! Γ(µ+ n+ 1)

(u
2

)2m

.
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PSL2 over totally real number field F
Γ = Γ0(I), I 6= {0} ideal in ring of integers O of F is

discrete subgroup of
∏d

j=1 PSL2(R), where d = [F : Q].

Test function f(ν) =
∏d

j=1 fj(νj), fj holomorphic on

|Re ν| ≤ τ ∈
(

1
4
, 1

2

)
and also defined on 1

2
+ Z, with

suitable decay.
Fourier term orders r, r′ ∈ O′ \ {0}.

∑

$

cr($)cr
′
($)f(ν$)

+
∑

κ

cκ
∑

µ∈Λκ

∫ ∞

−∞
Dr(κ; iy, iµ)

·Dr′(κ; iy + iµ)f(iy + iµ) dy

=
α(r, r′)

√
|DF |

(2π)d

∫
f(ν) dPl(ν)

+
∑

c∈I\{0}

S(r′, r; c)

|N(c)| Bf
(

4π
√
|rr′|/c

)
.

For SL2 over a number field, and the discrete subgroup Γ0(I), the Fourier
term orders r and r′ are elements of O′, the inverse fractional ideal of the
different of the field F over Q.

Note that the test functions have product form. The Bessel transfor-
mation is computed place by place. If r and r ′ have the same sign at an
archimedean place, we use the formulas mentioned above. At places with
an opposite sign, I-Bessel functions are used.

The spectral parameter ν$ is now a vector of dimension d.
On the geometric side, α replaces δ. It is equal to 2 if r ′/r is the square

of a unit; it is zero otherwise.
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Weighted density
For a totally real number field F :
λ$,j eigenvalue of Casimir operator at real place j
r ∈ O′ \ {0} Fourier term order
Choose a sequence (Bn) of boxes

Bn =
∏

j

[
a

(n)
j , b

(n)
j

]

in Rd, with the restriction: a
(n)
j and b

(n)
j not of the form

b
2

(
1− b

2

)
with b ≥ 2 even

Define

N r(Bn) =
∑

$,λ$∈Bb

|cr($)|2

Additional requirements: There is ε > 0 such that for all
j and all n:

b
(n)
j − a(n)

j > ε

(√
|a(n)
j |+

√
|b(n)
j |
)
,

and
lim
n→∞

max
j

max
(∣∣∣a(n)

j

∣∣∣ ,
∣∣∣b(n)
j

∣∣∣
)

=∞.

Then

N r (Bn) ∼ 2
√
|DF |

(2π)d
P l (Bn) ,

as n→∞, with the Plancherel measure:

P l (Bn) =
∏

j

P lj

(
[a

(n)
j , b

(n)
j ]
)
,

P l (Bn) =∫

[a
(n)
j ,b

(n)
j ]∩[1/4,∞)

tanh
(
π
√
y − 1/4

)
dy

+
∑

b ≥ 2, b ≡ 0(2)

a
(n)
j < b

2

(
1− b

2

)
< b

(n)
j

(b− 1).
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Here we have not used the spectral parameter ν, but the eigenvalue λ =
1
4 − ν2.

These density results by Roberto Miatello and me are a bit stronger than
those published a few years ago. We work on strengthening them.

Consequences

1) Keep [aj, bj] fixed for all j 6= j0, and let [a
(n)
j0
, b

(n)
j0

]
grow. The result shows that there are infinitely many $
with aj ≤ λ$,j ≤ bj for j 6= j0, provided

∏
j 6=j0[aj, bj] has

positive Plancherel measure.

2) Take a
(n)
j = n and b

(n)
j = n +

√
n for all j. Then

N r (Bn) ∼ 2
√
|DF |

(√
n

2π

)d

as n→∞.

In a family of boxes with the Plancherel measure tending to∞, the eigen-
value count is proportional to the Plancherel measure. So there are infinitely
many automorphic representations for which all but one of the eigenvalue
coordinates are in a fixed interval with positive Plancherel measure.

If we prescribe at one coordinate an interval of exceptional eigenvalues,
the Plancherel measure of the boxes is zero. So exceptional eigenvalues are
rare.

In the second application we let all coordinates go off to∞. The number
of eigenvalue vectors in this family of boxes increases. Formulated in terms
of the spectral parameters ν, the area of these moving boxes stays finite.

Roelof Bruggeman
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