ON THE UNIQUENESS OF FOURIER JACOBI MODELS
FOR REPRESENTATIONS OF U(n,1)

EHUD MOSHE BARUCH AND STEPHEN RALLIS

ABSTRACT. We show that every irreducible unitary representation of
U(n, 1), has at most one Fourier Jacobi model.

1. INTRODUCTION

Fourier Jacobi coefficients and Fourier Jacobi models arise in the expan-
sion of automorphic forms on reductive groups G with a Heisenberg par-
abolic. A Heisenberg parabolic is a parabolic subgroup whose unipotent
radical is a Heisenberg group. The expansion is in terms of Jacobi forms
which are certain automorphic forms on this parabolic subgroup. The co-
efficients of these Jacobi forms are called Fourier-Jacobi coefficients. (For
the classical setting of Siegel modular forms expanded using Jacobi forms
see [3]). When this is done in an adelic setting ([5], [6], [13]), the expan-
sion leads to the Fourier Jacobi models which are certain induced spaces
on which the group G acts. A central ingredient in this approach is the
conjectural multiplicity free property of this induced space. This is equiv-
alent to a unique embeddings of certain irreducible unitary representations
into this space. Such an embedding is called a Fourier Jacobi model for the
given irreducible unitary representation. In this paper we consider the case
where G = U(n,1) = U(n,1)(R), a real reductive group of rank one. The
Heisenberg parabolic is the minimal (and only) parabolic of G and we prove
this uniqueness results for general Fourier Jacobi models. Such results were
obtained for certain classes of representations in ([12], [10],[9], [8], [7]). Our
method of proof, using invariant distributions as in the Whittaker case [15],
generalizes the result of [1] for the group U(2,1). (A similar p-adic result for
Sp(4) was obtained in [2]). Many of the ideas and techniques are the same as
in [1]. The main difference is that in general, the Levi subgroup of our para-
bolic is non abelian and is isomorphic to the compact group U(n—1) x U(1).
Hence we need to apply an induction process on centralizers of semisimple
elements in U(n—1) that did not appear in [1]. In particular we prove a new
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result on invariant distributions on U(n) x C™ which we think is interesting
by itself. This result is an analog of results of the second author in the p-adic
case.

Correction of Error: In [2] and [1] the uniqueness property is stated for
irreducible admissible representations. The proof, however, holds only for
irreducible admissible unitary representations and should have been stated
for these representations.

2. THE MAIN RESULT

Let I be the identity matrix of order k£ x k. Let

0O 0 1
Umn)={A€GL,(C) : A'A=T}andw= |0 I,—1 O
1 0 0

Let G = U(n, 1) be defined by G ={A € GL,1(C) : A'wA =w}. Let N
be a Heisenberg in G defined by

1 u z
N = 01 —a@t| :ueCtz2eC,242z=—utd
0 0 1
The center of N is
1 0 z
Z = 01 0] :2€C,2+2=0
0 0 1
Let
a O 0
M=<daX)=(0 X 0 raeC,XelUn—-1),p,
0 0 at!
and

Let P = M N be a minimal parabolic of G and let J = SN be a Fourier
Jacobi subgroup of G. We have that G = P J PwP.

Let 1 be a non-trivial character of Z and let 6, be the oscillator rep-
resentation of N with central character ¢». We shall use the Schrédinger
model (see ([11], 3.1) or [4]) for . The smooth part of 6, can be identified
with S(R"~1) which is the space of Schwartz functions on R*~. We put on
S(R™1) the usual Frechét topology.

The representation which is contragredient to the oscillator representation
with central character ¢» can be identified with 6,-1. It is well known that
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6y can be extended to an irreducible unitary representation of J. Let o
be an irreducible unitary representation of U(n — 1) on a finite dimensional
vector space V,, which we view as a representation of S. We extend o to J by
letting N act trivially. Then o ® 60y, is an irreducible unitary representation
of J.

Let (m, H) be an irreducible unitary representation of G on a Hilbert space
H. Let Hy, be the smooth part of H. Our main result in this paper is the
following.

Theorem 2.1.
dim(Homj(m, 0 @ 0y)) < 1.

Remark 2.2. Here Hom; denotes the space of continuous linear .J invariant
maps between the Frechét spaces Hy, and V, ® S(R*1).

If the dimension of the above Hom space is one then 7 can be embedded

in the space

Ind§ (o @ 0y).
We call this unique embedding, a Fourier Jacobi model for 7 corresponding
to the Fourier Jacobi data (o, ).

In order to prove Theorem 2.1 we notice that there is a natural injection
from Hom (7,0 ® 0y) to Hom ja (7 ® (x ® 0y)",1) where 7 ® (0 ® 0y)" is
a representation of G x J, J% is the diagonal embedding of .J into G x J
and (o ®0y)" is the representation which is J contragredient to o ® 6. By
the remarks above on the oscillator representation we have that

(0®@0p) =6® 0,1
Hence
dim(Hom (7,0 ® 0)) < dim(Hom ja (7 ® (6 ® 0,-1),1)).
Thus, Theorem 2.1 will follow from
Theorem 2.3.
dim(Homja(m ® (0 ® 6y),1)) < 1.
for every irreducible unitary representations w of G and o of S and every

nontrivial character i of Z.

To prove Theorem 2.3 we will need the following: Let Q = G x J and let
7 be an anti involution on () defined by

7(9,9) = (g7 7).
For a function f € CZ°(Q) we let (pi(q)f)(z) = f(g'2), (pr(0))f(x) =
f(zq) and f7(z) = f(r(z)). If D is a distribution on @ then we define

(r(@)D)(f) = D(pila ) f)s (pr(@)D)(f) = D(pr(q)f) and D7(f) = D(f7).
Let O be the Casimir differential operator associated to G. Then 1® 1 is a
differential operator on @) that acts on the G variable in (). The main result
that we need to prove Theorem 2.3 is:
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Theorem 2.4. Let D be a distribution on Q. Assume that
(a) p(j)D =D = p:(j)D, j € J>.

(b) pr(e,2)D =(z)D, z € Z.

(¢) (O®1)D = BD for some scalar B € C.

Then D™ = D.

This Theorem will imply Theorem 2.3 as in ([15], p.183-185). For the
sake of completeness we repeat the proof here. Our version of the proof is
slightly different then in [15]. We recommend that the reader skip the next
section and return to it only if it is needed.

3. PROOF OF THEOREM 2.3 FROM THEOREM 2.4

The argument goes as follows: We denote by Il =11, = 7 ® (0 @ 0y)
the irreducible unitary representation of Q = G x J on a Hilbert space Hyy
obtained as above. We let H = {II(f)v : f € C*(Q),v € Hp} with the
usual Freché topology which is defined as follows. Let q = Lie(Q). Let U(q)
be the universal enveloping algebra of q For every Y € U(q) we define a
seminorm ay on H® by ay(v) = ||Y(v)||,v € H. Then the topology is
given by this set of seminorms.

The contragredient representation IT = Il 5.1 is defined on Hpj. That
is, if L is a continuous functional on Hy then we set

(ﬁ(q)L)(v) = L(H(qil)v), v € Hyp.

Since II is unitary we can identify the representation IT with the representa-
tion IT which is defined on Hy. Here Hyy is a vector space which is identified
as an additive group with Hyy. Scalar multiplication is defined by A(v) = v
where v € H, A € C. The action of Q on Hyy is defined by II(q)v = II(q)v.
If <wu,v > is an Q invariant inner product on Hy then < u,v > =< v,u >
is an @ invariant inner product on Hiy.

Let L be a continuous functional on H. For f € CX(Q) we let TI(f)L
be a functional on Hyj. That is, let f(¢) = f(¢~'). Then

(I()L)(w) = LAI(f)u), € H.
Lemma 3.1. ([15], Proposition 3.2) TI(f)L is continuous on Hy.

Proof. Let v, € Hyp and assume ||v,|| — 0. Then a(II(f)v,) — 0 for every

seminorm « that defines the topology on Hf®, hence II(f)v, — 0 in Hf.

Since L is continuous on H{y it follows that L(II(f)v,) — 0 which means
that (II(f)L)(v,) — 0 and II(f)L is bounded on H. O

Let <, > be a fixed @) invariant inner product on Hy. Then by the above
lemma there exists a unique v = Vit € Hip such that

(3.1) (TI(f)L)(u) =< u,vyypy, > for all u € Hy.
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Let f(g) = f(g). If v € Hy = Hy then II(f)(v) = I(f)(v). If L is a
continuous functional on H” then L is a continuous functional on H. It
is easy to see that

Lemma 3.2. Let f1, f2 € C2°(Q), L a continuous functional on HF" and
be a continuous functional on Hg. Then

(@) vit(frepyr = DD VR( )L
(b) a(gigapo)n) =< V(o Vi) >

Proof. (a) Let u € Hyy. Then

< U Vi (fyf) L /fl*fQ (I(g~")u)dg

://fl(q:c_ )fg(x)L(H(q_l)u)dxdq

/ fola / (f1(gz~1)TI(g ™" )u)dgda

- [ pie ( / f1<q>n<x—1q—1>u) dqd
o o )

H(f2) L) (I (f1>
—< H(fl)uvvﬁ(fz)L =
=< u,H(fl)Uﬁ(fz)L >

(H(fl)vﬁ(fQ)L)

(f1) v gy L)

fi(fi)a VII(f2)L =~

O‘(vf[(fl*fg)L) =

A e ©

O

Let L be a nonzero continuous J2 invariant functional on H. Let o be

a nonzero continuous J* invariant functional on HEP. (For example a=1L.)
For f € C°(Q) we set

Da,r(f) = O‘(Uf[(f)L)

Lemma 3.3. D, is a distribution. It satisfies conditions (a),(b),(c) of
Theorem 2.4. (Hence it is invariant under 7).



6 EHUD MOSHE BARUCH AND STEPHEN RALLIS

Proof. We first prove that D, 1, is a distribution. To do that we will show
that if f,, € C°(Q) and f,, — 0 then Dy, 1.(fn) — 0. Do r(fn) = O‘(Uﬁ(fn)L)-
Since « is continuous it is enough to show that g,y — 010 H>*. To show
that we will show that oy (vyy(s,y,) — 0 for every Y € U(q). ay (vyy,) =
Yvaerool = llvags,)cll Since fr — 0 we have that Y f, — 0 hence
(Y fo)L — 0 and vy, y;, — 0.

. /A . _ . . . _ .

It j € J% then vy, 5y )y = H)rigy 2 20d Wiy, () (r)r = Vrigp)r, Where
p1, pr are left and right translations respectively. It follows that D, j, is
invariant on the left and right by J%. Also if z € Z then Vit (o0 (1) ()L =
Pt (2)vgy(f)r, hence Do, 1 is (1, Z), %) equivariant. The action of the Casimir
on the left variable is also clear. U

Define another representation IT* of @ on Hyy by IT*(q) = I1(g), ¢ € Q.
Here ¢ is defined as follows: If ¢ = (g,j) then g = (g,7). For f € C°(Q) we
define f*(¢) = f(q). It is easy to see that II*(f) = II(f*). We will show as

in [15] that II is equivalent to IT*.

Lemma 3.4. Let L and o be as in the Theorem above. Let fi, fa € CX(Q).
Then

(3-2) < Yfi(rrya VI(R)L ~ T < Yi(gg)e V(AL 7
Proof. By Lemma 3.3 and Theorem 2.3 we have that D(f) = D(f"). Apply-

ing this to f = f] * fa we get that D(f]  fo) = D(f * f1). Since (f7) = f*
we can apply Lemma 3.2 (b) to get the result. O

Remark 3.5. Let K1 = U(n) x U(1) be a maximal compact subgroup in G
and let Ko = U(n — 1) be a subgroup of J. Let K = K; X K2 be a compact
subgroup in Q). Let (II, Hy) be a representation of () obtained as above.
It is clear that the set of K finite vectors in Hyy is dense in Hp. It follows
that the set of vectors of the form II(f)v, where f € C°(Q) and v € Hyy is
nonzero and dense in Hiy.

Theorem 3.6. Assyme that H® has a monzero continuous J2 invariant
functional L. Then 11 is equivalent to IT*.
Proof. Let W = {vgy(4);, : f € CZ°(Q)}. W is nonzero otherwise (f)L =0

for every f € C°(Q) hence L(II(f)v) = 0 for every v € Hyy and every f €
C°(Q). Thus, it follows from the remark above that L = 0, a contradiction.
Since vy, (e = H(@)vpp), it follows that W is a dense II invariant

subspace of Hr;. We define a mapping I : W — Hp by I(vﬂ(f)L) = Vg
By choosing a = L, and f; = fo in (3.2) we get that

L
2 B 5 - . . _ . 2
1ot l1” = <ngmps v > = < Vagsz Yagne > = agsnzll

This implies that I is well defined and that I preserves norms. It is also
easy to see that I intertwines II and IT*, that is, I(II(q)w) = IT*(¢)(I(w)) for
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every ¢ € Q,w € W. Hence I extends to a unitary GG isomorphism between
Hy = Hy and Hyp~ = Hpg. O

We will also need the following property of I which follows from (3.2):
(3.3) <IWw),w>=<wv,I(w)>
for every v,w € Hf = Hp.

3.1. Proof of Theorem 2.3. Let (II, Hy) be as above and assume that HP
has a nonzero continuous J* invariant functional L. Let o be a nonzero
continuous J2 invariant functional on ];_Iﬁo . We will prove that the vector
I(vpy(py,) is proportional (with the same proportionality constant) to the
vector () for every f € C2°(Q). This means that « is determined by

L up to a constant, hence o = cL for some constant c. If there would be
another linearly independent J# invariant functional L; on Hy then we
could take ae = L; which is a contradiction to the uniqueness of .

Let W' = {vg(pe)o : f € C2°(Q)}. W' is II* invariant and dense in Hiy.
We define a map R : W — Hy by R(Uﬁ(f*)a) =
is easy to show that R is a well defined. It is easy to see that R is an @
invariant linear mapping between (IT*, W’) and (II, Hyy). By (3.2) it satisfies

(3.4) < Ru,v>=<u,Rv> wuveW.

We let T = I o R. Then T is a II* invariant linear map from W’ to Hy. We

let S = Rol. Then S is linear map from I=*(W’) (which we think of as a

subspace of Hyr) to Hyp. By (3.3) and (3.4) we have that
<Tu,v>=<u,Sv> ueW,vel YW

Hence, by [16], Proposition 1.2.2 applied with D = W', D" = I-Y(W’) we
have that 7" is a multiple of the identity. It follows that « is determined by
L up to a scalar.

4. PRELIMINARIES

4.1. Group actions. Let X be a real analytic manifold. We denote by
C2°(X) the space of compactly supported and smooth functions on X. If a
Lie group G acts smoothly on X then G acts on C°(X) by

9(¢(x) = (g '), geG,ze X, ¢eCX(X).
In particular, if X is a subset of G and if x € X and g € GG then we denote:

pi(g)(x) = gx
pr(g)(z) = xg™"
g(z) = gug™!

G acts on distributions by duality.
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We let G =U(n, 1) and g = Lie(G) be the Lie Algebra of G given by
g={A€M(n,C) : Alw+wA=0}.

g acts on C2°(G) by left invariant (resp. right invariant) differential opera-
tors as follows. Let ¢ € C°(G), v € G, A € g. We denote:

(Lad)(@) = 042 imo

(R6)(z) = (e img

These actions extend to the universal enveloping algebra of G. Let U be the
Casimir element in the universal enveloping algebra. Then L is defined as
above.

4.2. An equivalent statement of the main result. Our main theorem,
Theorem 2.4 is about invariant distributions. The main tools for study-
ing these invariant distributions are Harish-Chandra’s submersive maps and
Frobenius reciprocity. A rough and short statement of these principles to-
gether with references to the precise statements can be found in ([2], Lemma
2.3 and Lemma 2.2).

For g € G we let 7(g) = g~!. Applying Frobenius reciprocity (see [2],
Theorem 2.5 and Theorem 2.6 for a similar situation) to the space of in-
variant distributions satisfying the conditions of Theorem 2.4 we get that
Theorem 2.4 is equivalent to

Theorem 4.1. Let T be a distribution on G. Assume that
(b) ()T = ¥()T, =€ 2.
(¢) LoT = BT for some scalar € C.
Then T™ =T.

Notice that the action of j on T denoted by j(T') above is the action
induced by conjugation. To prove Theorem 4.1 we will assume that 7T is a
distribution on G satisfying (a), (b), (c) above and that 7' is skew invariant
under 7, that is, 77 = —T', and we will show that T = 0.

5. INVARIANT DISTRIBUTIONS ON U(n) x C"

Our strategy for the proof of Theorem 4.1 is to restrict our skew invariant
distribution T to the open cell of G and to show that it vanishes there. This
will lead us to invariant distributions on U(n) x C™ which we now describe.

The group U(n) acts on the space C" via the standard representation.
That is, if A € U(n) is a unitary matrix and v € C" is a column vector then
the action is matrix multiplication. U(n) acts on U(n) x C™ via the action

9(A,v) = (gAg™", gv)
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Let Y be smooth manifold. We extend this action to U(n) x C" x Y by
letting U(n) act trivially on Y. That is

(5.1) g(A,v,y) = (gAg~, gv,y), g, AcU(n),veCryecY.
We define an involution 7 on U(n) x C" x Y by

7(A0,y) = (A7, ~0,y)
Our main theorem of this section is the following:

Theorem 5.1. Let Q be a distribution on U(n) x C" XY and assume that
Q is invariant under the action of U(n). Then Q™ = Q.

We will proof this theorem by an induction process using centralizers of
elements in U(n) as in Harish-Chandra’s regularity theorem. To do that
we will need a more general statement. We let ni,ns,...,ni be positive
integers and let H = H(ni,n2,...,ng) = U(n1) x U(ng) x ... x U(ng). If
h € H then the centralizer of h, C'(h) is of the form H(ry,...,r;) with the
semisimple rank of H(ry,...,r;) less than or equal to the semisimple rank
of H = H(ni,na,...,n;) and equality holds if and only if h is a central
element in H. (The semisimple rank of H is ny +...nx — k). Let V =
C™M x C"™ x ... x C™. Then H acts naturally on V extending the above
action of U(n) on C". We extend (5.1) to an action of H on H xV xY. We
also extend the involution 7 to H x V' x Y. We shall prove the following:

Theorem 5.2. Let Q be a distribution on H X V XY and assume that Q
is invariant under the action of H. Then Q™ = Q.

We first consider the case where the semisimple rank of H is zero, that
is, n1 =no = ... =mn; = 1. In that case, the action of H is trivial on H and
the involution is trivial on H, hence we can move H into Y. Therefor, our
theorem reads:

Theorem 5.3. Let Y be a smooth manifold and let Q) be a distribution on
C"xY. Let H= (U(1))" act on C" and on C" x Y as above. Assume that
Q is invariant under this action. Then @ is invariant under the involution
T where T(v,y) = (—v,y), v C",y € Y.

When n = 1, that is, @ is a distribution on C x Y, this theorem is proved
in ([1], Lemma 4.2). The general case is similar. We prove here the case
n = 2 in detail and indicate how to prove the general case.

Proof. We assume that @ is a U(1)xU(1) invariant distribution on CxCxY'.
We also assume that Q™ = —Q. We will prove that Q = 0.

Let R* = R—{0}, C* = C— {0} We restrict @ to C* x C* x Y which is an
open set . We define a map from U(1) x U(1) x R* xR* x Y to C* x C* x Y
by

(/\1,)\27951,362,y) — ()\1’i$1,)\2i:r2,y), /\1,)\2 S U(l),xl,xg c ]R*,y cY.
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Here i = /—1. It is easy to check that this map is submersive onto C* x C* x
Y. It induces a map from C°(U (1) xU (1) xR*xR*xY") to C°(C*xC*xY).
Using the U(1) x U(1) invariance we can attach to @ a distribution og on
R* x R* x Y. og determines () and o is skew invariant under the induced
involution. It is easy to check that the induced involution is trivial on
R* x R* x Y hence og = 0 and Q = 0 on C* x C* x Y. (See the proof of
([1], Lemma 4.2) for a more detailed explanation.)

We now restrict () to the open set C x C* x Y. By our previous argument
it follows that on this set @ is supported on 0 x C* x Y. Let z; + iy; be
coordinates on the first copy of C. Then by a well known theorem of L.
Schwartz, [14], there exist distributions Q) j on C* x Y such that

o1 oF
Q= Qi

3,k=0

Here @Q; 1 = 0 for all but a finite number of indices (j, k). Let Z; = g—; + 59722
1 1

Since @ is invariant under the action by U(1) in the first component it follows
that there exist distributions R; on C* x Y and a positive integer N such
that

N
Q=> (Z1YR;.
§=0

Since the involution sends 8%1 to _6%1 and 6%1 to 3% it follows that the

involution fixes the differential operator Z; . Hence the distributions R; are
invariant under the action of U(1), (the second U(1)) and skew invariant
under the involution on C x Y. By the n = 1 case it follows that R; = 0 for
all j hence Q = 0 on C x C* x Y. The same argument shows that () is zero
on C* x C x Y. It follows that @ is supported on 0 x 0 x Y.

We let 29 +1iys be coordinates on the second copy of C and Zs = 88—;% +

It follows that there exist distributions R;j on Y such that

Q=Y (Z1)(Z:)"Rju.

J:k=>0

82
9y3°

Since 7 fixes Z; and Z, it follows that Q7 = ). But we assumed that
Q" = —Q hence Q = 0.

The general case follows in the same way. The proof is by induction on
n. We are given a distribution @ on C™ x Y which is (U(1))™ invariant and
satisfies Q7 = —Q. We restrict @ to (C*)™ x Y and show that it vanishes
there. After that we perform n steps. In the kth step we restrict @ to sets
of the form CF x (C*)"* x Y (after permutation) and use the induction
assumption on n — k to show that () vanishes on such sets. ([
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5.1. Proof of Theorem 5.2. We shall prove Theorem 5.2 by induction on
the semisimple rank of H = H(ny,...,ng). If the semisimple rank is zero,
that is, n; = 1, i = 1,...,k, then we are in the situation of Theorem 5.3.
So assume that the semisimple rank is positive. Let Z(H) be the center
of H. We will show that our distribution Q on H x V x Y is supported
on Z(H) x V xY. To do that we will need to show that @) vanishes on
every element (h,v,y) such that h ¢ Z(H). Since every element in H is
conjugate to a diagonal element and since ) is invariant under the action
of H, it is enough to show that () vanishes on every element of the form
(s,v,y) where s is diagonal and not in Z(H). Let sp be such element and
let C' be the centralizer of s. That is, C = {h € H : hsg = soh}. Then C
is block diagonal in H and is isomorphic to H(rq,...,r;) for some positive
integers rq,...,7;. The semisimple rank of C' is smaller than the semisimple
rank of H. Let ¢ be the Lie algebra of C' inside b, the Lie algebra of H.
We can write h = ¢ @ B with B an Ad(C) invariant subspace of h. (It is
easy to describe B in matrix form: ¢ is given by diagonal blocks in h and
B is given by the off diagonal blocks that complement these blocks). Set
C" ={ce C: det((Ad(c) — I)g) # 0}. Set ©(h,c,v,y) = h(c,v,y) for
he HceC" veV,yeYY. Then v is a submersion of H x C" x V x Y
onto an open subset U of H x V x Y. It is easy to see that U is invariant
under the action of H and under the involution 7. Since sg is in C” it follows
that the set so x V x Y is in U. By Hairsh-Chandra’s submersion principle
([16], 8.A.2.6) there is a one to one linear mapping between H invariant
distributions Q on U and C invariant distributions Q on C” x V x Y (Q is
denoted by ¥°(Q) in [16], 8.A.3.2 (2)). Moreover, it is easy to check that a
distribution Q which is skew invariant under 7 is mapped to a distribution Q
which is skew invariant under the restriction of 7 to C” x V x Y. We would
like to use the induction assumption to argue that such distributions Q are
identically zero. To do that we need to move from C' invariant distributions
on C" x V x Y to C invariant distributions on C x V x Y. Let Q be
a distribution on C” x V x Y. Let ¢ € CX(R*). For a function f €
C*(C x V xY) we attach a function f, € C°(C"” x V xY) by

folc,v,y) = fle,v,y)p(det((Ad(c) —I)B), c€ C" veV,yeY.

We define a distribution Q4 on C' x V x Y by Qu(f) = Q(fs). (The distri-
butions Q¢ are approximating Q). It is easy to see that if Q is C invariant
then Q is C invariant. Tt is easy to check that det((Ad(c)—1I)p) is invariant
under 7(c) = ¢ hence if Q is skew invariant under 7 then Qg is skew invari-
ant under 7. By the induction assumption Q¢, = 0 for every ¢ € C°(R").

It follows that Q = 0 and that Q = 0. We have just proved that our original
@ vanishes on the open subset U defined above hence on the set of elements
so XV xY.
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Let su(n) = {A € M,(C) : A® = —A tr(A) =0}. Let s = su(ny) ® ...
su(ny) which we view as a Lie subalgebra of h. We let 3 be the Lie algebra
of Z(H). Then h = 3@ s. Let U(s) be the universal enveloping algebra of
s and ((s) be the center of U(s). Let s € Z(H). Since @ is supported on
Z(H) x V xY, it follows from the theory of distributions of L. Schwartz
[14] (see Lemma 2.4 in [15] for the relevant formulation) that there exist an
open set U; of H around sy and differential operators Di,...,D; € U(s)
such that

t
(5.2) Q=> Lp,Q;
j=1

on Uy x V x Y. Here Q; are distributions on (Z(H) NU;) x V x Y. Since
both 7 and H fix Z(H) we will move Z(H) NU; into Y and view Q; as
distributions on V' x Y. Moreover, if we write D; using a basis of s as in
[14] we get a unique expression for Q). Applying the action of h € H to @
using the sum in (5.2) we get that

t

(5.3) Q= Lyp,)h(Q;)

j=1

on the set h(Uy x V xY) = hUih™! x V x Y. Here H acts via the Adjoint
action on s and U(s). H acts on V x Y as above and consequently on
distributions on V x Y. Since hsoh™! = s it follows that h(U; x V x Y)) N
Uy xV XY # (). Hence (5.2) is the same as (5.3) on the open set which is the
intersection of these open sets. It follows from uniqueness that the action of
H fixes combinations of the differential operators appearing in (5.2). Hence
there exist differential operators Ey, ... E; € ((s) so that

!
(5.4) Q=> LgP
j=1

on Uy xV xY where P; are distributions on V x Y. The involution 7(h) = h’
induces an involution 7(A) = A’ on h and on s. It is easy to see that
stabilizes ((s). We claim that 7 fixes every element in ((s). To see that let
¢ be the diagonal Cartan subalgebra in s and consider the Harish Chandra
isomorphism ([16], 3.2.3) from ((s) to U(c)". (Here W is the Weyl group.)
Then 7 is moved by this isomorphism to an involution 7 of U(¢)". By the
explicit description of the Harish Chandra isomorphism it follows that 7 is
obtained by restricting 7 to ¢ and extending it to U(c). But 7 fixes every
element in ¢ hence in U(c)".
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We now apply 7 to Q. By our assumption Q7 = —(). On the other hand
applying 7 to (5.4) we get that

l l
55) Q= L 7 =Y L P,
i=1 j=1

on the set 7(U; x V xY) = (7(U;) x V xY). Here P/ is a distribution
on V x Y which is obtained by applying the involution 7(v,y) = (-9, y) to
P;. Since 7(sg) = s, it follows that 7(U3 x V xY)N (U x V xY) # (.
Hence the expansions (5.4) and (5.5) are equal. By the uniqueness we get
that P] = —P;. By the action of H we get that hP; = P; for every h € H.
Since H D (U(1))™ where m = n; + ... + ny we get that each P; satisfies
the assumptions of Theorem 5.3. Hence P; =0, j =1,...,l and ) =0 on

so x V x Y. It follows that Q = 0 and we are done.

6. DISTRIBUTIONS ON THE OPEN BRUHAT CELL

Our strategy in the proof of Theorem 4.1 is to restrict our skew-invariant
distribution T' to the open Bruhat cell and show that it vanishes there.
Let X = PwP be the open Bruhat cell.

Proposition 6.1. Let T be a distribution on X and assume that T satisfies
(a) and (b) of Theorem 4.1 and that T™ = —T. Then T = 0.

Proof. We define a map from N x P to X = PwN by

(n, p) — npwn !

It is easy to check that this map is submersive hence by ([2], Lemma 2.3)
it induces an onto mapping (which in this case is an isomorphism) from
C(N x P) to C(X). In particular, if a € C°(N) and § € C°(P) then
a® B e CX(N x P) is mapped to fogs € Co°(X) which is given by

fawp(bwn) = a(n)B(nb)

Since T is invariant under conjugation by N we get that there exist a dis-
tribution o7 on P such that

T(faes) = ( [ atwyin) o2

for every a and 8 as above. We will show that op = 0. Since P is isomor-
phic to N x M via multiplication it follows that we can identify o with a
distribution which we again call o7 on N x M. Since T is invariant under
conjugation by S it follows that or is invariant the following action of .S on

N x M:

1

s(n,m) = (sns" !, sms™!), s€S,neNmeM.
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Since T is skew-invariant under 7 it follows that o7 is skew invariant under
7 where T is given by

F(n,m) = (n"t,m)
We identify N with C"~! x R in the following way: For u € C" and z € R
we let n(u,z) € N be defined by

1w —d'u/2+wi
n(u,z) =0 I -1
0 0 1

This mapping between C* ! xR and N is an isomorphism of manifolds. Thus
we can identify o with a distribution Q on U(n — 1) x U(1) x C* 1 xR =
Un—1)xC ! xY withY =U(1) x R.

The invariance of o7 under S implies the invariance of () under the action
of Son U(n —1) x C" ! x Y given by

d(1, X)(A,u,y) = (XAX ' Xu,y), X, AcUmn—-1),uecC"yeY.

The skew invariance of o under 7 implies that @ is skew invariant under

(A7 U, y) = (_Aa —1u, y)

Hence our Proposition follows from Theorem 5.1. ([l

7. DISTRIBUTIONS SUPPORTED ON THE CLOSED BRUHAT CELL

Our strategy in the proof of Theorem 4.1 is to restrict the skew-invariant
distribution 7" to the open Bruhat cell and show that it vanishes there. After
that we would like to show that invariant eigendistributions 7" with support
in the closed Bruhat cell vanish identically.

We shall need to define some elements in

g=u(n,1)={A € M,11(C): A'w +wA = 0}.

Let Ejj be the (n + 1) x (n + 1) size matrix whose (j,k)th entry is 1
and all other entries are 0. We reserve the letter i for i = /—1. Let
Xj = El,j+1 - Ej+17n and Y} = i(El,j—‘rl + Ej—l—l,n) J=1,....n—1. Let
Z = il py1. It is easy to check that all these elements are in g. Moreover,
they form a basis for n = Lie(N). We let n' be the Lie subalgebra of
g obtained by taking transpose on all the elements of n. Then X]t-,th,
j=1,...,n—1 together with Z! form a basis for n’. Let m = Lie(M) and
let U(m) be the universal enveloping algebra of m. Let [0 be the Casimir
element of U(g). Then there exist D € U(m) so that

n—1 n—1
O=V2Z'Z+ > X}, Xy =Y YiYn+D
m=1 k=1
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Proposition 7.1. Let T be a distribution on G satisfying (a),(b),(c) in
Theorem 2.4. Assume that T is supported on P. Then T = 0.

Proof. The crucial observations for this proof are the following. We first
notice that by (b) of Theorem 2.4,

Lz;T =cT

for some nonzero ¢ € C depending on . Also, using (a) of Theorem 2.4 we
get that

LXmT = RXmT, LymT = RymT, m = 1, N 1.

It will turn out to be essential to replace Lx, with Rx, and Ly, with
Ry, as above. The reason is that Ryx,, commutes with all the differential

operators L4 for A € g while Ly,, does not.
We can now write the equation LT = (T in the form

n—1
(7.1) V2eZ'T =Y " (Ly: Ry, T — Lxt Rx,,T) + (3 — D)T.

m=1
Let p € P. Since T is supported on P and since g = p @ n’, it follows from
the theory of distributions of L. Schwartz [14] that there exists an open set
Uy around p such that

A - .
(7.2) T = Z LthLg;f ... L{,ﬁ_ll L;{ .. L Xz_llTl’ LK

on Uy. Here J = {j1,...,jn—1}, K ={k1,...,kn_1}, T}, K are distributions
on P. Also, Tj ;g are determined uniquely and at most a finite number
of them are nonzero. We shall think of the 7j ;jx as the coefficients of
the expression in (7.2) or the coefficients of T' at p. We notice that the
distribution that appears in equation (7.1) is also supported on P hence can
be written around a neighborhood of p as in (7.2) in a unique way. Our goal
is to show that if T is nonzero on Us then the left hand side and the right
hand side of (7.1) yield different coefficients contrary to the uniqueness of
(7.2). In particular we will show that if 7" # 0 around Us then a certain
coefficient of Q@ = v/2¢Z'T is nonzero on the left hand side of (7.1) while it
is zero on the right hand side of (7.1). Write
Q=>" LthLg}lt . L{V’:f—_llL’;gf . .LI;(”Z‘_IlQl, J K

around p as in (7.2). Then it is clear that
(7.3) Quix = V215K

where we set Tj j g = 0 if [ < 0. We now study the right hand side of (7.1).
We first notice that if A, B € g then L4 commutes with Rp. Hence we have
(7.4)

j i — k kn—
Ly, Bonyy T = Lty (3 LLfle o I L L (R, Thoi) )

n—1 n—1
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(7.5)

Ly Ry T = Ly (3 Lol D0 LRy L (R, Tho) )
We notice that Rx,., 11,0,k and Ry, 11,5,k are some new distributions on
P.

Let |[|J||=jd1+...+jn—1 and ||K|| = ki1 +...+ky—1. Wecall I({, ], K) =
L+ ||J]| + || K[| the index of the coefficient T j k.

We now compare coefficients on both sides of (7.1). If 7" # 0 around
Us then some coefficients T j g are nonzero. We consider the non zero co-
efficients for which their index is maximal. We will call them “maximal”
coefficients. Among these “maximal” coefficients we pick one (lg, Jo, Ko)
for which [y is maximal. It follows from (7.3) that Qy+1,5,.x, # 0. How-
ever, we claim that on the right side of (7.1), Qiy+1,7,,K, 1S zero which is a
contradiction.

To show that, we claim that on the right side of (7.1), each nonzero
coefficient Q) j i satisfies either I < lo+1 or I+ ||J||+||K|| < lo+1+||Jo||+
|| Ko||. To see this we must compute the contributions of each summand in
(7.4) and (7.5) and the contributions of (A — D)T.

First we notice that the distribution (A — D)T does not contribute non
zero coefficients Q; s x with [+||J||+ || K|| > lo+||Jo|| +||Ko||. This follows
from the fact that bracket of an element A € m and an element E of n’ is
an element of n’. Hence when we commute A across an element of the form

I 771 Jn—1 1k kn—1 : .
LZfLYf . "Li%_lelf . ani_l we never increase the size of [ + ||J|| + || K|].

We now compute the contributions of (7.4) (similarly with (7.5)).To do
that we need to commute Lx: . with the differential operators appearing

before L X”ZO in each summand in order to get the unique expansion. How-

mo
ever, X}, commutes with the elements Z*, X}, Y} except for Y, for which
we have [X! Y/ ] = —2Z"Hence LXTtnOLyr%0 = Lyﬂt@OLanO — 2L . Using
that it is possible to write explicitly the unique expression for

L 1J jn—1 1k K
(7.6) Lxi, (LZtLJYlf LT LR LR (R, T K)) .
In each summand of the unique expression for (7.6) the index is less than
or equal to lop + ||Jo]| + ||Ko|| + 1.This is true because | + |J| + | K| <
lo + |[Jol| + || Kol| and applying Lx: , can only increase the index by one.
In order to get a nonzero coefficient of index Iy + ||Jo|| + || Ko|| + 1 we need
to have | + |J| + | K| = lo + ||Jo|| + || Ko||- In that case there will be exactly
one coefficient with index lo + ||Jo|| + || Ko|| + 1 which is
1 in— kmg+1 kn—
Lyl - Iy IRy L™ L (R T ).

n—1

Since [ < Iy + 1 we get our conclusion.
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Hence we get a contradiction and 7' = 0 on p. Since T is supported on P
we get that T' = 0. O

7.1. Proof of Theorem 2.4. We are now ready to prove Theorem 2.4.
Let T be a distribution satisfying (a), (b), (¢) of Theorem 2.4 and such that
T™ = —T. We restrict T' to the open Bruhat cell BwB. By Proposition 6.1,
T =0 on BwB. Hence T is supported on B. By Proposition 7.1, T = 0.
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