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1. Gelfand pairs and Rankin-Selberg type identities

1.1. Preliminaries.

1.1.1. Automorphic representations. Let G be a real group and Γ ⊂ G a lattice. To
set the notations, we assume for simplicity that the automorphic space X = Γ \ G is
compact and is endowed with the invariant measure of mass 1. We fix (in order not to
deal with multiplicities) a decomposition L2(X) =

∑
κ(π

aut
κ , Laut

κ ) into irreducible unitary
representations of G and denote by V aut

κ ⊂ Laut
κ the space of smooth vectors. We denote

by prκ : L2(X) → Lκ the corresponding projection.

Let (π, L, V ) be an irreducible unitary representation of G, and the corresponding space
of smooth vectors. We assume that π is realized in some “explicit” model (e.g., in the
space of sections of a vector bundle over a G-manifold).

We call a tuple (π, L, νκ, π
aut
κ , Laut

κ ) of the corresponding representations together with
a G-equivariant isometry νκ : L → Lκ an automorphic representation. Note that νκ is
determined by κ up to a constant of the absolute value one, and that νκ : V → C∞(X).
Where it does not cause a confusion, we will denote (πaut

κ , Laut
κ , V aut

κ ) by (π, L, V ). We
have

∑
κ ν−1

κ ◦ prκ = Id ∈ End(L2(X)).

1.1.2. Gelfand pairs. We will call a pair (A,B), of a group A and a subgroup B, a strong
Gelfand pair if for any smooth irreducible representations V of A and W of B, the
condition dim MorB(V, W ) ≤ 1 is satisfied. We always will work with the spaces of
smooth vectors in unitary representations.

We will use the notion of (strong) Gelfand pairs repeatedly in the following standard
situation. Let XA = ΓA \A be an automorphic space of A and XB ⊂ XA a closed B-orbit.
We choose invariant measures on XA and on XB. Let V aut ⊂ L2(XA) and W aut ⊂ L2(XB)
be spaces of smooth vectors in two automorphic unitary irreducible representations. De-
note by νV and νW the corresponding isometric imbeddings. The restriction to XB and
then projection to W aut of functions in V aut, together with identifications νV and νW ,
define B-equivariant map T aut

XB
: V → W . Assuming that (A,B) is a strong Gelfand pair,

the space of such maps is at most one-dimensional. This implies that if we choose in the
models of abstract representations V and W (which are unrelated to their automorphic
realizations) a model equivariant map Tmod : V → W then there exists the constant of
proportionality aXB ,νV ,νW

such that T aut
XB

= aXB ,νV ,νW
·Tmod. We would like to study these

constants. Of course, these constants depend, among other things, on the choice of model
maps. Eventually, we hope to find a way to canonically normalize norms of these maps
in the adelic setting. We now explain how in certain situations one can obtain spectral
identities for the coefficients aXB ,νV ,νW

.
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1.2. The construction. Our main observation is that we can write a Rankin-Selberg
type formula once we have two different triples of strong Gelfand pairs inside the ambient
group, and the corresponding arrangement of closed automorphic orbits.

Let G be a (real reductive) group and F ⊂ Hi ⊂ G, i = 1, 2 be a collection of subgroups
such that in the following commutative diagram each imbedding is a strong Gelfand pair
(i.e., (G,Hi) and (Hi,F) are strong Gelfand pairs)

H1

F

G

H2

...........
...........

...............................
.......................i1

...........
...........
...................
............

..................
.....

i2

...........
...........
...................
............

..................
.....
j1

...........
...........

...............................
.......................

j2

(1.1)

We call such a collection (G,H1,H2,F) a strong Gelfand formation (or a strong Gelfand
pattern).

Let Γ ⊂ G be a lattice and denote by XG = Γ \ G the corresponding automorphic space.
Let Oi ⊂ XG and OF ⊂ XG be closed orbits of Hi and F respectively, satisfying the
following commutative diagram of imbeddings

O1

OF

XG

O2

...........
...........

...............................
.......................i′1

...........
...........
...................
............

..................
.....

i′2

...........
...........
...................
............

..................
.....
j′1

...........
...........

...............................
.......................

j′2

(1.2)

assumed to be compatible with the diagram (1.1). We endow each orbit (as well as XG)
with a measure invariant under the corresponding subgroup (for simplicity, we assume
that all orbits are compact, and hence, these measures could be normalized to have mass
one).

Let V ⊂ C∞(XG) be the space of smooth vectors in an irreducible automorphic repre-
sentation of G. The integration over the orbit OF ⊂ XG defines an F -invariant functional
IOF : V → C. This is our main object of study.

In general, an F -invariant functional on V does not satisfy the uniqueness property, as
(G,F) is not a Gelfand pair. Instead, we will write two different spectral expansions for
IOF using two intermediate groups H1 and H2.

Namely, for any v ∈ V , we have two different ways to compute the value of the functional
IOF by restricting the function v ∈ C∞(XG) to the orbit O1 and then integrating over OF
or, alternatively, to restricting v to O2 and then integrating over OF . Hence we have the
identity

∫

OF
resO1(v)dµOF = IOF (v) =

∫

OF
resO2(v)dµOF .
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The restriction resO1 has the spectral expansion resO1 =
∑

Wj⊂L2(O1)

prWj
(resO1) induced

by the decomposition of L2(O1) into irreducible representations of H1 (and similarly
resO2 =

∑
Uk⊂L2(O2)

prUk
(resO2) for the group H2).

The integration over the orbit OF ⊂ O1 defines an F -invariant functional IOF ,j : Wj →
C on the smooth part Wj of each irreducible unitary representation of H1 appearing in the
decomposition of L2(O1) (and correspondingly an F -invariant functional JOF ,k : Uk →
C on representations Uk of H2). This time such functionals do satisfy the uniqueness
property due to the assumption that pairs (Hi,F) are strong Gelfand pairs.

Hence we obtain two spectral decompositions for the functional IOF :
∑

Wj⊂L2(O1)

IOF ,j

(
prWj

(resO1(v))
)

= IOF (v) =
∑

Uk⊂L2(O2)

JOF ,k (prUk
(resO2(v))) (1.3)

for any v ∈ V . Note that the summation on the left is over the set of irreducible repre-
sentations of H1 occurring in L2(O1) and the summation on the right is over the set of
irreducible representations of H2 occurring in L2(O2). As groups H1 and H2 might be
quite different, the identity (1.3) is nontrivial.

The identity (1.3) is the origin of our Rankin-Selberg type identities. We show how one
can transform it to a more familiar form. To this end we use the standard device of model
invariant functionals. Our main observation is that the functionals IOF ,j, JOF ,k and the
maps prWj

(resO1) : V → Wj and prUk
(resO2) : V → Uk satisfy the uniqueness property

due to the assumption that the pairs (Hi,F) and (G,Hi) are strong Gelfand pairs (in
fact, it is enough for (Hi,F) to be the usual Gelfand pairs).

Hence, by choosing explicit “models” Vmod, Wmod
j , Umod

k for the corresponding automor-

phic representations, we can construct model invariant functionals Imod
j = Imod

Wj
, Jmod

k =

Jmod
Uk

and the model equivariant maps Tmod
j : Vmod → Wmod

j and Smod
k : Vmod → Umod

k .
The model functionals and maps could be constructed regardless of the automorphic pic-
ture and we define them for any irreducible representations of G and Hi. The uniqueness
principle then implies the existence of coefficients of proportionality aj, bj, ck, dk such
that

IOF ,j = aj · Imod
j , prWj

(resO1) = bj · Tmod
j for any j,

and similarly

JOF ,k = ck · Jmod
k , prUk

(resO2) = dk · Smod
k for any k.

This allows us to rewrite the relation (1.3) in the form
∑

{Wj}
αj · hj(v) =

∑

{Uk}
βk · gk(v) (1.4)
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for any v ∈ Vmod. Where we denoted by αj = ajbj, βk = ckdk, hj(v) = Imod
j (Tmod

j (v)) and

gk(v) = Jmod
k (Smod

k (v)).

This is what we call Rankin-Selberg type spectral identity associated to the diagram
(1.2).

Remark. We note that one can associate a non-trivial spectral identity of a kind we
described above to a pair of different filtrations of a group by subgroups forming strong
Gelfand pairs. Namely, we associate a spectral identity to two filtrations F = G0 ⊂ G1 ⊂
· · · ⊂ Gn = G and F = H0 ⊂ H1 ⊂ · · · ⊂ Hm = G of subgroups in the same group G
such that all pairs (Gi+1, Gi) and (Hj+1, Hj) are strong Gelfand pairs having the same
intersection F . One also can “twist” such an identity by a nontrivial character or an
irreducible representation of the group F .

1.2.1. Bounds for coefficients. The Rankin-Selberg type formulas can be used in order to
obtain bounds for coefficients αj or βk. To this end one has to study properties of the inte-

gral transforms hW = Imod(Tmod
W ) : Vmodel → C(Ĥ1), v 7→ hW (v) = Imod

W (Tmod
W (v)) induced

by the corresponding model functionals and maps (here Ĥ1 is the unitary dual of H1 and
Vmod an explicit model of the representation V); similarly for the triple (G,H2,F). This
is a problem in harmonic analysis which has nothing to do with the automorphic picture.
We study the corresponding transforms, in the particular cases under the consideration
in [R], and prove some instance of what might be called an “uncertainty principle” for
the pair of such transforms is established. The idea behind the proof of the corresponding
bounds for the coefficients αi or βk is quite standard (and in this context was learned by
us from papers of A. Good), once we have the appropriate Rankin-Selberg type identity
and the necessary information about corresponding integral transforms. Namely, we find
a family of test vectors vT ∈ V , T ≥ 1 such that when substituted in the Rankin-Selberg
type identity (1.4) it will pick up the (weighted) sum of coefficients αj for j in certain

“short” interval around T (i.e., the transform hj(v) has essentially small support in Ĥ1).
We show then that the integral transform gk(v) of such a vector is a slowly changing func-

tion on Ĥ2. This allows us to bound the right hand side in (1.4) using Cauchy-Schwartz
inequality and the mean value bound for the coefficients βk. The simple way to obtain
these mean value bounds was explained by us in [BR2].

We note that in order to obtain bounds for the coefficients in (1.4) one needs to have
a kind of positivity which is not always easy to achieve. In our examples we consider
representations of the type V = V ⊗ V̄ for the group G = G × G and V an irreducible
representation of G. For such representations the necessary positivity is automatic.

1.3. Examples. In [R] we implement the above strategy in two cases: for the unipotent
subgroup N of G = PGL2(R) and a compact connected subgroup K ⊂ G (i.e., the
identity connected component of PO(2)). The first case corresponds to the classical
unipotent Fourier coefficients and the second one corresponds to the spherical Fourier
coefficients.
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1. Let G = G×G and V = V ⊗ V̄ , where V is an irreducible automorphic representation

of G. We set H2 = ∆G
j2
↪→ G × G and H1 = N × N , F = ∆N

i1
↪→ N × N

j1
↪→ G × G for

the case of unipotent Fourier coefficients. Let φ be a Maass form and V ⊂ C∞(X) the
space of smooth vectors for the corresponding automorphic representations. Let an(φ)
be the Fourier coefficients of the cusp form φ. We assume, for simplicity, that the so-
called residual spectrum is trivial (i.e., the Eisenstein series E(s, z) are holomorphic for
s ∈ (0, 1)). The identity (1.4) then amounts to the classical Rankin-Selberg formula

∑
n

|an(φ)|2α̂(n) = α(0) +
1

2πi

∫

Re(s)= 1
2

D(s, φ, φ̄)M(α)(s)ds , (1.5)

where α ∈ C∞(R) is an appropriate test function with the Fourier transform α̂ and the
Mellin transform M(α)(s) ,

D(s, φ, φ̄) = Γ(s, τ) · < φφ̄, E(s) >L2(Y ) , (1.6)

where E(z, s) is an appropriate non-holomorphic Eisenstein series and Γ(s, τ) is explicitly
given in terms of the Euler Γ-function and depends on a choice of model functionals (this
is routine an is explained in detail in [R]). Strictly speaking, for the subgroup N the
uniqueness principle is not satisfied, but the theory of the constant term of the Eisenstein
series provides necessary remedy in the automorphic setting.

2. In the second example we consider let G, V , H2 be as before and H1 = K × K,
F = ∆K ↪→ K × K ↪→ G × G. This leads to an identity involving spherical Fourier
coefficients bn(φ) of Maass forms (e.g., periods with grossencharacters at a CM point).
We assume for simplicity that Γ is co-compact. Let x0 ∈ X = Γ \ G be a point and
K = x0 ·K ' S1 the corresponding orbit. One have the Fourier expansion along the orbit
K defined in the same way as the classical Fourier expansion of cusp forms (where one
considers the expansion along the N -orbit Γ ∩ N \ N ⊂ X). This leads to the spherical
Fourier coefficients bn(φ) for a Maass form φ (or for a holomorphic form; these were
introduced by H. Petersson long time ago). We have then the following

Theorem 1.1. Let {φλi
} be an orthonormal basis of L2(Y ) consisting of Maass forms.

Let φτ be a fixed Maass form.

There exists an explicit integral transform ] : C∞(S1) → C∞(C), u(θ) 7→ u]
τ (λ), such

that for all u ∈ C∞(S1), the following relation holds
∑

n

|bn(φτ )|2û(n) = u(1) +
∑

λi 6=1

Lx0(φλi
) · u]

τ (λi) , (1.7)

with some explicit coefficients Lx0(φλi
) ∈ C which are independent of u.

Here û(n) = 1
2π

∫
S1

u(θ)e−inθdθ and u(1) is the value at 1 ∈ S1.

To us, it looks very similar to the classical Rankin-Selberg formula (1.5).
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The definition of the integral transform ] is based on the uniqueness of invariant trilinear
functionals on irreducible unitary representations of G. The main point of the relation
(1.7) is that the transform u]

τ (λi) depends only on the parameters λi and τ , but not on
the choice of Maass forms φλi

and φτ .

The coefficients Lx0(φλi
) are essentially given by the product of the triple product co-

efficients < φ2
τ , φλi

>L2(Y ) times the values of the Maass form φλi
at the point x0. In the

special cases (squares of) both types of these coefficients are related to L-functions via re-
sults of Waldspurger, Jacquet and T. Watson. Coefficients |bn(φτ )|2 are related to special
values of the L-function for the base change, twisted by a grossencharacter (Waldspurger,
Jacquet).

3. We would like to note that the method described above also lies behind the proof
of the subconvexity for the triple L-function given in [BR1] (but not understood at the
time). In that case, G = G × G × G × G, F = ∆G and Hi = G × G with two different
imbeddings for i = 1 and 2. This is related to the triple L-function via the formula of T.
Watson .

Yet another intriguing example exists in the Hilbert-Blumenthal case for a quadratic
extension E/F : one considers the period with respect to GL2(F ) ⊂ GL2(E). This leads
to two Gelfand pair flirtations inside of GL2(E) × GL2(E) by H1 = ∆GL2(E) and by
H2 = GL2(F ) × GL2(F ) having common intersection F = ∆GL2(F ). This is related to
the Gross-Prasad period. In fact, there are many other strong Gelfand formations related
to the Gross-Prasad period, including ones satisfying the positivity condition. It is not
yet clear what analytic information would be possible to extract from the corresponding
spectral identities.
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