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Abstract. We give an explicit description of the action of the Wyel element on
smooth functions with compact support in the Kirillov model of complementary
series and non principal series irreducible representations of SL(2,C) and GL(2,C)
generalizing a result of Motohashi. An important ingredient in the proof of the
Kernel formula is a new “classical” formula for an integral involving Bessel functions.
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1. Introduction

The action of the Weyl element in the Kirillov model of representations of GL(2)
over a local field was first studied by Gelfand, Graev and Piatetski Shapiro ([7]).
The case of GL(2,R) was further considered by Vilenkin, ([12]) Cogdell and Piatetski
Shapiro ([4]) and Baruch and Mao ([2]). The kernel formula in the Kirillov model
of GL(2,C) was first studied by Motohashi ([11]). He obtained a kernel formula
for K-finite vectors in the principal series representations. In this paper we extend
the results of Motohashi to compactly supported functions in the Kirillov model of
non-principal series representations. In certain applications of our formula, such as
a recent Voronoi summation formula for Gaussian integers ([1]), it is crucial to use
compactly supported functions. We believe that our technique will allow us to prove
the kernel formula for compactly supported functions in the Kirillov model of principal
series representations of GL(2,C) and we will come back to it in a future publication.

The Kirillov model is a SL(2,C) representation space of functions on C with a
prescribed action of the Borel elements. To describe the representation it is enough
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to understand the action of the Weyl element w. We will prove that w acts as an
integral trasform in the following way:

(w · ψ)(b) =

∫
C
κp,µ(z, b)ψ(z)dz .

Here ψ is a smooth function with compact support in the Kirillov model, p is an
integer and µ is a complex number with 2 < Re(µ). p and µ are the parameters of
the irreducible representation we are considering.

The technique of the proof of the kernel formula that we use is similar to the one in
[2]. However, since our integrals are over C and not over R we encounter difficulties
which are not present in the real case. One difference is that our integrals are not
given by integral tables but have to be computed using analytic methods. Another
difference is a convergence issue which allows us to first treat only a partial set of
representations and later use analytic continuation to extend the results.

The paper is organized in the following way. In section 2 we introduce our notations,
give a brief explanation of the representations of SL(2,C) that we use and state the
main results. In section 3 we prove the existence of a kernel formula for a partial set
of the representations and we obtain an expression of the kernel function in terms of
an integral of a K-Bessel function. Section 4 deals with calculating these integrals and
obtaining an explicit expression of the kernel function. In section 5, having already
obtained an explicit kernel formula for a certain set of representations, we use its
analytic properties in order to extend the formula for all the representations we are
interested in and we give a similar formula for GL(2,C).

2. Preliminaries and main results.

We denote the group SL(2,C) by G and its Borel subgroup of upper triangular
matrices by B. (These notations will be slightly modified when we will consider the
case of GL(2,C)). The characters of B are denoted by χp,µ and are given by:

χp,µ

(
a b
0 a−1

)
= |a|µ

(
a

|a|

)p
µ ∈ C , p ∈ Z .

The Weyl element

(
0 −1
1 0

)
is denoted by w.

The representation space of the induced representation IndGBχp,µ is denoted by Vp,µ
and is given by:
(2.1)
Vp,µ =

{
F : G→ C|∀b ∈ B,∀g ∈ G, F (bg) = χp,µ(b)F (g), F |SU(2) ∈ L2(SU(2))

}
G acts on Vp,µ by right translations. For g, g1 ∈ G and F ∈ Vp,µ we define

(gF )(g1) = F (g1g) .

The invariant subspace of smooth vectors in Vp,µ is the set of smooth functions F ∈
Vp,µ and it is denoted by V ∞p,µ. By restricting the functions in V ∞p,µ to matrices of

the form w

(
1 x
0 1

)
we get an isomorphic representation ρp,µ whose representation

space is denoted by Ṽ ∞p,µ.
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Ṽ ∞p,µ =

{
f
F

: C→ C
∣∣∣∣fF (x) = F

(
w

(
1 x
0 1

))
, F ∈ V ∞p,µ

}
.

The Bruhat decomposition of G implies that the mapping F → f
F

is one to one.

If we take an element g =

(
a b
c d

)
in G then the corresponding action of g on

f
F
∈ Ṽ ∞p,µ is given by:

(2.2)

(
ρp,µ(g)

(
f
F

))
(x) = |a+ cx|−µ

(
a+ cx

|a+ cx|

)−p
f
F

(
b+ dx

a+ cx

)
.

It is easy to show that the functions in the space Ṽ ∞p,µ can be characterized by their
behaviour at ∞. In fact, the space is given by:

(2.3) Ṽ ∞p,µ =

{
φ : C→ C

∣∣∣∣φ ∈ C∞(C) , |x|−µ
(
x

|x|

)−p
φ

(
−1

x

)
∈ C∞(C)

}
.

For µ with 2 < Re(µ) we define a Whittaker functional L : V ∞p,µ → C by:

(2.4) L(F ) =

∫
C
F

(
w

(
1 x
0 1

))
e−2πiRe(x)dx

for F ∈ V ∞p,µ. (The convergence of this integral follows from (2.3)). Using this
Whittaker functional, we get from any function F ∈ V ∞p,µ a new function WF : G→ C
in the following way:

WF (g) = L(g · F ) .

The space of all of these functions is the representation space of the Whittaker model
and we denote it by:

Wp,µ =

{
WF

∣∣∣∣F ∈ V ∞p,µ}.
From each function WF ∈ Wp,µ, we get a new function, ψ

F
: C∗ → C by restricting

WF to

(
a 0
0 a−1

)
:

ψ
F

(a) = WF

(
a 0
0 a−1

)
.

The representation space of the Kirillov model which we denote by Up,µ , is the set
of all such functions:

Up,µ =

{
ψ
F

∣∣∣∣F ∈ V ∞p,µ}.
We have a simple connection between functions in Up,µ and functions in Ṽ ∞p,µ which is
given by:

(2.5) ψ
F

(a) = χp,µ

(
a−1 0
0 a

)
|a|4f̂

F
(a2) .

It will be convenient to work also with a representation that is slightly different from

the Kirillov model. We denote by V̂ ∞p,µ the following representation space:

(2.6) V̂ ∞p,µ =

{
f̂
F

∣∣∣∣F ∈ V ∞p,µ}.
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The corresponding representation which we denote ρ̂p,µ is given by:

ρ̂p,µ(g)(f̂
F

) = f̂
gF
.

The main results that we prove in this paper are the following. We give an explicit

description of the action of w on compactly supported smooth functions in V̂ ∞p,µ as a
kernel formula. The kernel formula with the explicit kernel function (which is given
in terms of Bessel functions Jν) is given by the following theorem:

Theorem 2.1. Let µ ∈ C be such that 2 < Re(µ). Let f̂ ∈ V̂ ∞p,µ be a smooth function

with compact support in C− {0}. Then the action of w on f̂ is given by:

(w · f̂)(b) =

∫
C
f̂(z)kp,µ(z, b)dz

where:

kp,µ(z, b) =
π

2

l+p,µ(z, b)− l−p,µ(z, b)

sin π(2− µ)

and:

l+p,µ(z, b) = 4πe
ipπ
2

[
cos

(
π

2
(p−(µ−2))

)]∣∣∣∣zb
∣∣∣∣−µ−2

2
( z
|z|
b
|b|

)− p
2

Jµ−2−p
2

(2π
√
zb)Jµ−2+p

2
(2π
√
zb)

l−p,4−µ(b, z) = l+p,µ(z, b) .

Remark 2.2. The Bessel function Jν(z) can be defined by the power series Jν(z) =∑∞
k=0

(−1)k(z/2)ν+2k

Γ(k+1)Γ(k+ν+1)
. Therefore it can be thought of as zνJν(z) where Jν(z) is an

entire function. Moreover, all the powers in the power series that define Jν(z) are
even and hence Jν(

√
z) has a natural extension to an entire function. It can easily

be verified this way that the function kp,µ(z, b) in the theorem is naturally defined for
any z, b ∈ C.

Using 2.5 this theorem immediately implies an analog theorem for the Kirrilov
model. The formula for the Kirrilov model is given by:

Theorem 2.3. Let µ ∈ C be such that 2 < Re(µ). Let ψF ∈ Up,µ be a smooth function
with compact support in C− {0}. Then the action of w on ψF is given by:

(w · ψF )(b) = WF

((
b 0
0 b−1

)
w

)
=

∫
C
κp,µ(z, b)WF

((
z 0
0 z−1

))
dz

|z|2

where:

κp,µ(z, b) = 2π2|zb|2
(−i)pJµ−2−p

2
(2πzb)Jµ−2+p

2
(2πzb)− (i)pJ−(µ−2)−p

2

(2πzb)J−(µ−2)+p
2

(2πzb)

sin(π
2
(2− µ+ p))

.

Note that κp,µ(z, b) is defined for any z, b ∈ C in the way explained in remark 2.2.
A key step in the proof of these kernel formulas is a calculation of a classical integral

of Bessel functions. This is done in section 4 where we prove:
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Theorem 2.4. For any µ ∈ C with 1 < Re(µ) and for any p ∈ Z we have the
following equality:∫ 2π

0

2(eiθ)−p
(β(z, θ))−

µ−2
2

(γ(b, θ))−
µ−2

2

Iµ−2(2(β(z, θ))
1
2 (γ(b, θ))

1
2 )dθ =

= 4πe
ipπ
2

[
cos

(
π

2
(p− (µ− 2))

)]∣∣∣∣zb
∣∣∣∣−µ−2

2
( z
|z|
b
|b|

)− p
2

Jµ−2−p
2

(2π
√
zb)Jµ−2+p

2
(2π
√
zb)

where z = z1 + iz2 , b = b1 + ib2 and

β(z, θ) = 2πi(z1 cos θ + z2 sin θ)

γ(b, θ) = 2πi(b1 cos θ − b2 sin θ)

Remark 2.5. In the last theorem we define zµ to be eµ log z for z ∈ C \ (−∞, 0] and
any µ ∈ C, where log z is defined by log z = log |z|+ i arg(z) with | arg z| < π.

The proof of these results is done in several steps which we begin in the next section.

3. Existence of a kernel formula for 2 < Re(µ) < 3.

While our final goal is to obtain a kernel formula for all the representations ρ̂p,µ
with 2 < Re(µ), we do it first only for 2 < Re(µ) < 3. The reason for working
only with such µ’s is that this condition guarantees the convergence of some of the
integrals involved and thus allows us to do explicit calculations. Later on, we will use
analytic continuation to extend this kernel formula to any µ with 2 < Re(µ). In this
section we will prove:

Theorem 3.1. Let µ ∈ C be such that 2 < Re(µ) < 3. Let f̂ ∈ V̂ ∞p,µ be a smooth

function with compact support in C− {0}. Then the action of w on f̂ is given by

(w · f̂)(b) =

∫
C
f̂(z)kp,µ(z, b)dz

where kp,µ(z, b) is defined by:

kp,µ(z, b) =

∫ 2π

0

2(eiθ)−p
(β(z, θ))

µ−2
2

(γ(b, θ))
µ−2

2

Kµ−2(2(β(z, θ))
1
2 (γ(b, θ))

1
2 )dθ

with
β(z, θ) = 2πi(z1 cos θ + z2 sin θ)

γ(b, θ) = 2πi(b1 cos θ − b2 sin θ)

and Kν(z) is a modified Bessel function.

To prove theorem 3.1 we consider the following. Let f̂(z) ∈ V̂ ∞p,µ be a smooth

function with compact support and let M ⊆ C − {0} denote the support of f̂(z).

Let f be the corresponding function in Ṽ ∞p,µ. By 2.2 we get that
(
w · f

)
(y) =

|y|−µ( y
|y|)
−pf(−1

y
). We will calculate (|y|−µ( y

|y|)
−pf(−1

y
)) (̂b). To do this, we first

observe that |y|−µ( y
|y|)
−pf(−1

y
) is in L1(C). This is true since f ∈ Ṽ ∞p,µ and hence

by 2.3 we know that |y|−µ( y
|y|)
−pf(−1

y
) is smooth. When y → ∞ the absolute value

behaves like |y|−µ (or smaller if f(0) = 0) so indeed this function is in L1(C). We note
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that, in fact, we do not need to use 2.3 to see that
(
w · f

)
(y) ∈ L1(C). It is enough

to observe that f is a Schwartz function (since f̂ is smooth with compact support
and hence a Schwartz function) in order to see that

(
w · f

)
(y) decays rapidly when

y → 0. Therefore we have:
(3.1)

(w · f̂)(b) =

(
|y|−µ

(
y

|y|

)−p
f

(
−1

y

))
(̂b) =

∫
C
e−2πi(b·y)|y|−µ

(
y

|y|

)−p
f

(
−1

y

)
dy

(We use here the notation b · y = Re(by)). We proceed by calculating f(− 1
y
) in terms

of f̂ . Using inverse Fourier transform of f̂(z) we get:

(3.2) f

(
− 1

y

)
=

∫
C
e2πi(z·(− 1

y
))f̂(z)dz .

Here we have no problems of convergence since f̂(z) has compact support. Using
(3.2) in (3.1) we get:

(3.3) (w · f̂)(b) =

∫
C
e−2πi(b·y)|y|−µ

(
y

|y|

)−p(∫
C
e2πi(z·(− 1

y
))f̂(z)dz

)
dy .

We would like to switch the order of integration in (3.3) To do that we insert a con-

vergence factor of the form e−δ(|y|+|y|
−1) into our integral. By dominated convergence

we have:

(w · f̂)(b) =

∫
C
e−2πi(b·y)|y|−µ

(
y

|y|

)−p(∫
C
e2πi(z·(− 1

y
))f̂(z)dz

)
dy =

(3.4) = lim
δ→0+

∫
C
e−2πi(b·y)−δ(|y|+|y|−1)|y|−µ

(
y

|y|

)−p(∫
C
e2πi(z·(− 1

y
))f̂(z)dz

)
dy .

Now we can use Fubini’s theorem and switch the order of integration. We get:

(w · f̂)(b) = lim
δ→0+

∫
C

(
f̂(z)

∫
C
e−2πi((b·y)−(z·(− 1

y
)))−δ(|y|+|y|−1)|y|−µ

(
y

|y|

)−p
dy

)
dz .

Defining kp,µ,δ(z, b) to be:

(3.5) kp,µ,δ(z, b) =

∫
C
e−2πi((b·y)−(z·(− 1

y
)))−δ(|y|+|y|−1)|y|−µ

(
y

|y|

)−p
dy

we can write the above equality as:

(w · f̂)(b) = lim
δ→0+

∫
C
f̂(z)kp,µ,δ(z, b)dz .

In order to obtain a kernel formula, it is now sufficient to show that there exists a
function kp,µ(z, b) such that:

lim
δ→0+

kp,µ,δ(z, b) = kp,µ(z, b)

and that:

lim
δ→0+

∫
C
f̂(z)kp,µ,δ(z, b)dz =

∫
C
f̂(z)( lim

δ→0+
kp,µ,δ(z, b))dz =

∫
C
f̂(z)kp,µ(z, b)dz .
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We begin by showing the existence of kp,µ(z, b). Writing: b = b1 + ib2 , y = y1 + iy2 ,
z = z1 + iz2 , b · y = Re(by) and z · −1

y
= Re(−z

y
), we can write (3.5) as:

kp,µ,δ(z, b) =

∫
C
e
−2πi
(

(b1y1−b2y2)−(
−z1y1−z2y2
(y1)2+(y2)2

)
)
−δ(|y|+|y|−1)|y|−µ

(
y

|y|

)−p
dy .

Switching to polar coordinates by setting y = reiθ the integral becomes:

(3.6)

∫ 2π

0

(
(eiθ)−p

∫ ∞
0

e−r(2πi(b1 cos θ−b2 sin θ)+δ)− 1
r

(2πi(z1 cos θ+z2 sin θ)+δ)r−µ+1dr

)
dθ .

Next, we use the following formula ([6] ch.3.47 p.340):

(3.7)

∫ ∞
0

xν−1e−
β
x
−γxdx = 2

(
β

γ

) ν
2

Kν(2
√
βγ)

for Re(β) > 0 and Re(γ) > 0. Here Kν is a Bessel function of imaginary argument
called Macdonald’s function and defined by (see [10] p.108):

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin νπ
, |arg(z)| < π, ν 6= 0,±1,±2, . . .

where Iν is:

Iν(z) =
∞∑
k=0

(z/2)ν+2k

Γ(k + 1)Γ(k + ν + 1)
, |z| <∞, |arg(z)| < π .

Using (3.7) and (3.6) we get that:

(3.8) kp,µ,δ(z, b) =

∫ 2π

0

2(eiθ)−p
(
βδ(z, θ)

γδ(b, θ)

) 2−µ
2

K2−µ(2
√
βδ(z, θ)γδ(b, θ) )dθ

Where:

βδ(z, θ) = (2πi(z1 cos θ + z2 sin θ) + δ)

γδ(b, θ) = (2πi(b1 cos θ − b2 sin θ) + δ) .(3.9)

We now want to use dominated convergence to define kp,µ(z, b) as the limit of kp,µ,δ(z, b)
when δ → 0. In order to do this, we need to bound the integrand in 3.8 by some
function that is in L1([0, 2π]). For this purpose, it is useful to notice (as in remark
2.2) that by the definition of the function Iν(z) it can be written as Iν(z) = ( z

2
)νIν(z)

where Iν(z) is an entire function. Moreover Iν(
√
z) is entire since all the powers in

the power series of Iν(z) are even. Thus the integrand in (3.8) is:
(3.10)

πe−iθp

sin (2− µ)π

[
(γδ(b, θ))

µ−2Iµ−2

(
2
√
βδ(z, θ)γδ(b, θ)

)
−(βδ(z, θ))

2−µI2−µ
(
2
√
βδ(z, θ)γδ(b, θ)

)]
Now, since Iµ−2(

√
z), I2−µ(

√
z) are entire functions, there exists constants C1, C2 such

that for any θ ∈ [0, 2π], δ ∈ [0, 1] and z in M (the support of f̂) we have:

|Iµ−2

(
2
√
βδ(z, θ)γδ(b, θ)

)
| ≤ C1 and |I2−µ

(
2
√
βδ(z, θ)γδ(b, θ)

)
| ≤ C2



8 EHUD MOSHE BARUCH AND ORR BEIT-AHARON

Denoting the integrand in (3.8) by hδ(z, b, θ) we can see that for any θ ∈ [0, 2π] such
that βδ(z, θ) 6= 0 any δ ∈ [0, 1] and any z in M we have:

|hδ(z, b, θ)| ≤
π

sin (2− µ)π

[
|γδ(b, θ)|Re(µ)−2C1 +

C2

|βδ(z, θ)|Re(µ)−2

]
.

Our choice of 2 < Re(µ) implies that |γδ(b, θ)|Re(µ)−2 is a continuous function of the
variables δ and θ and since both are in compact sets, it is bounded there. Hence we
can change the constant C1 to get that for z ∈M and δ ∈ [0, 1] we have:

|hδ(z, b, θ)| ≤ C1 +
C2

|βδ(z, θ)|Re(µ)−2
.

(3.11) ≤ C1 +
C2

|2π(z1 cos θ + z2 sin θ)|Re(µ)−2
= C1 +

C2

(2πr sin (θ + α))Re(µ)−2

where α = π
2
− ω and z = reiω (Notice that z ∈ M implies that z 6= 0). Since

Re(µ) < 3, (3.11) implies that the integrand hδ(z, b, θ) is dominated by an L1([0, 2π])
function. Fixing z 6= 0 and θ such that z1 cos θ + z2 sin θ 6= 0 we have:

2(eiθ)−p
(
βδ(z, θ)

γδ(b, θ)

) 2−µ
2

K2−µ(2
√
βδ(z, θ)γδ(b, θ) ) −→

−→ 2(eiθ)−p
(β(z, θ))

2−µ
2

(γ(b, θ))
2−µ

2

K2−µ(2(β(z, θ))
1
2 (γ(b, θ))

1
2 )

as δ → 0+ and thus we can use dominated convergence to obtain that :

lim
δ→0+

kp,µ,δ(z, b) =

∫ 2π

0

2(eiθ)−p
(β(z, θ))

2−µ
2

(γ(b, θ))
2−µ

2

K2−µ(2(β(z, θ))
1
2 (γ(b, θ))

1
2 )dθ.

Defining :

(3.12) kp,µ(z, b) =

∫ 2π

0

2(eiθ)−p
(β(z, θ))

2−µ
2

(γ(b, θ))
2−µ

2

K2−µ(2(β(z, θ))
1
2 (γ(b, θ))

1
2 )dθ

we have shown that for 2 < Re(µ) < 3

lim
δ→0+

kp,µ,δ(z, b) = kp,µ(z, b)

Next, we need to show that:

lim
δ→0+

∫
C
f̂(z)kp,µ,δ(z, b)dz =

∫
C
f̂(z)kp,µ(z, b)dz .

To justify this we want to use dominated convergence again. Remembering that f̂(z)

is continuous and supported on the compact set M it follows that |f̂(z)| is bounded.

Therefore we only need to deal with kp,µ,δ(z, b). Since kp,µ,δ(z, b) =
∫ 2π

0
hδ(z, b, θ)dθ

it is enough to bound
∫ 2π

0
|hδ(z, b, θ)|dθ. Since f̂ is supported away from zero we can

find r0 > 0 such that r0 ≤ |z| for every z in M . Hence by (3.11) we have:

(3.13) |kp,µ,δ(z, b)| ≤
∫ 2π

0

|hδ(z, b, θ)|dθ ≤
∫ 2π

0

C1 +
C2

(2πr0 sin (θ + α))Re(µ)−2
dθ.
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Since the last integral is independent of α we have that |kp,µ,δ(z, b)| is bounded by a
constant which is independent of δ ∈ [0, 1] and z ∈M hence we can use the dominated
convergence to obtain the limit above. This proves theorem 3.1.

4. An explicit expression for kp,µ(z, b).

In theorem 3.1 the kernel function kp,µ(z, b) is expressed as an integral of a K-
Bessel function. In this part we will compute kp,µ(z, b) explicitly. By the definition
of kp,µ(z, b) (3.12) and the definition of Kν(z) it is enough to calculate the following
two integrals:

l+p,µ(z, b) =

∫ 2π

0

2(eiθ)−p
(β(z, θ))

2−µ
2

(γ(b, θ))
2−µ

2

Iµ−2(2(β(z, θ))
1
2 (γ(b, θ))

1
2 )dθ

and

l−p,µ(z, b) =

∫ 2π

0

2(eiθ)−p
(β(z, θ))

2−µ
2

(γ(b, θ))
2−µ

2

I2−µ(2(β(z, θ))
1
2 (γ(b, θ))

1
2 )dθ

It is clear that under the restriction 2 < Re(µ) < 3 both of these integrals con-
verge. More accurately, l+p,µ(z, b) converges for 1 < Re(µ) and l−p,µ(z, b) converges for
Re(µ) < 3. It is easy to see that when both integrals converge we have the following
connection between l+p,µ(z, b) and l−p,µ(z, b):

(4.1) l−p,4−µ(b, z) = l+p,µ(z, b) for 1 < Re(µ) < 3

and thus it is enough to calculate l+p,µ(z, b) for 1 < Re(µ) since if µ′ = 4 − µ and

1 < Re(µ) then Re(µ′) = Re(4− µ) < 3 and (4.1) gives us l−p,µ′ . Theorem 2.4 which
we will prove in this section, together with (4.1), clearly give us an explicit expression
for kp,µ(z, b) (for 2 < Re(µ) < 3).

The proof of theorem 2.4 will follow from a few lemmas that we will prove and
it will involve a definition of some entire function related to l+p,µ(z, b). We begin
with the first lemma which allows us to calculate l+p,µ(z, b) in points (z, b) that satisfy
arg(z) = − arg(b).

Lemma 4.1. Let z, b ∈ C − {0} be such that arg(z) = − arg(b). For any µ with
1 < Re(µ) and any p ∈ Z we have:

l+p,µ(z, b) = 4πeipα
[

cos

(
π

2
(p−(µ−2))

)](
|z|
|b|

) 2−µ
2

Jµ−2−p
2

(2π
√
|z||b|)Jµ−2+p

2
(2π
√
|z||b|)

where α = π
2
− arg(z).

Proof. We denote z = r1e
iω and b = r2e

−iω. By definition we have:

β(z, θ) = 2πir1(cosω cos θ + sinω sin θ)

γ(b, θ) = 2πir2(cos (−ω) cos θ − sin (−ω) sin θ) = 2πir2(cosω cos θ + sinω sin θ).

Substituting this into the definition of l+p,µ(z, b) we get:

l+p,µ(z, b) =

∫ 2π

0

2(eiθ)−p
(
r1

r2

) 2−µ
2

Iµ−2(4πi
√
r1r2(cosω cos θ + sinω sin θ))dθ.
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Since:
(cosω cos θ + sinω sin θ) = cos(ω − θ) = sin(θ + α)

where α = π
2
− ω, we need to calculate:

(4.2)

∫ 2π

0

2(eiθ)−pIµ−2(4πi
√
r1r2 sin(θ + α))dθ

some simple changes of variables will now give us that (4.2) equals:

(−1)peipα
[ ∫ π

0

2 cos(pθ)Iµ−2(−4πi
√
r1r2 sin θ)dθ +

∫ π

0

2 cos(pθ)Iµ−2(4πi
√
r1r2 sin θ)dθ

−i
∫ π

0

2 sin(pθ)Iµ−2(−4πi
√
r1r2 sin θ)dθ + i

∫ π

0

2 sin(pθ)Iµ−2(4πi
√
r1r2 sin θ)dθ

]
(4.3)

Using the following identities ([10]):

Iµ(z) = e
−µπi

2 Jµ(iz) − π < arg(z) <
π

2

Iµ(z) = e
µπi
2 Jµ(−iz)

−π
2

< arg(z) < π

we get that this equals:
(−1)peipα×[

e
−(µ−2)πi

2

∫ π

0

2 cos(pθ)Jµ−2(4π
√
r1r2 sin θ)dθ + e

(µ−2)πi
2

∫ π

0

2 cos(pθ)Jµ−2(4π
√
r1r2 sin θ)dθ

−ie
−(µ−2)πi

2

∫ π

0

2 sin(pθ)Jµ−2(4π
√
r1r2 sin θ)dθ + ie

(µ−2)πi
2

∫ π

0

2 sin(pθ)Jµ−2(4π
√
r1r2 sin θ)dθ

]
(4.4)

Finally, in order to finish the proof of the lemma, we use the following identities ([6]
ch.6.68 p.739):∫ π

0

sin(2ηx)J2λ(2a sinx)dx = π sin(ηπ)Jλ−η(a)Jλ+η(a) Re(λ) > −1∫ π

0

cos(2ηx)J2λ(2a sinx)dx = π cos(ηπ)Jλ−η(a)Jλ+η(a) Re(λ) > −1

2

(We can use them since we took 1 < Re(µ)). By applying these identities to (4.4) and
some simple trigonometric identities, we get exactly what we stated in the lemma. �

In the last lemma, our choice to calculate l+p,µ(z, b) in z and b such that Arg(z) =
−Arg(b) allowed us to reduce the calculation to known integrals and thus to get an
explicit expression. From this reason, we want to think of z as r1e

i(Ω+ω) and of b as
r2e
−iΩ. We can then write:

β(z, θ) = 2πi(r1 cos(Ω + ω) cos θ + r1 sin(Ω + ω) sin θ)

and
γ(b, θ) = 2πi(r2 cos(−Ω) cos θ − r2 sin(−Ω) sin θ)

and thus:

β(z, θ) = 2πir1 cos((Ω + ω)− θ) and γ(b, θ) = 2πir2 cos(−Ω + θ)
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Using these notations in l+p,µ(z, b), motivates us to define the function s+
µ,p,r1,r2,Ω

(ω) in
the following way:

Definition 4.2. For 0 < r1, r2, Ω ∈ R, p ∈ Z and µ ∈ C with 1 < Re(µ) we define a
function s+

µ,p,r1,r2,Ω
(ω) of complex variable by:

s+
µ,p,r1,r2,Ω

(ω) =∫ 2π

0

2e−ipθ
(2πir1 cos(Ω + ω − θ)) 2−µ

2

(2πir2 cos(−Ω + θ))
2−µ

2

Iµ−2(2(2πir1 cos(Ω + ω − θ))
1
2 (2πir2 cos(−Ω + θ))

1
2 )dθ.

Notice that when ω ∈ R the integral defining s+
µ,p,r1,r2,Ω

(ω) is given by the integral
defining l+p,µ(z, b) and we have:

(4.5) s+
µ,p,r1,r2,Ω

(ω) = l+p,µ(r1e
i(Ω+ω) , r2e

−iΩ)

Our main trick in this section is to think of ω as a complex variable. Notice that
for ω 6∈ R the integrand defining s+

µ,p,r1,r2,Ω
(ω) can not be realized as the integrand of

l+p,µ(z, b). We are only interested in evaluating s+
µ,p,r1,r2,Ω

(ω) for real ω but it will be

more convenient to evaluate s+
µ,p,r1,r2,Ω

(ω) for any ω ∈ C and thus to get our formula

for real ω. Our first step is to show that s+
µ,p,r1,r2,Ω

(ω) is defined for any ω ∈ C.

Lemma 4.3. For 0 < r1, r2, Ω ∈ R, p ∈ Z, µ ∈ C with 1 < Re(µ) and any ω ∈ C
the integral defining s+

µ,p,r1,r2,Ω
(ω) converges.

Proof. Since Iν(z) equals
(
z
2

)νIν(z) where Iν(z) is an entire function (as explained in
the previous section) the integrand in definition 4.2 is:

2e−ipθ(2πir2 cos(−Ω + θ))µ−2Iµ−2(2(2πir1 cos(Ω + ω − θ))
1
2 (2πir2 cos(−Ω + θ))

1
2 )

Since Iµ−2(
√
z) is also entire and Re(µ) > 1 the convergence of the integral is obvious.

�

Lemma 4.4. we have:

s+
µ,p,r1,r2,Ω

(0) = 4πeip(
π
2
−Ω)

[
cos

(
π

2
(p−(µ−2))

)](
r1

r2

) 2−µ
2

Jµ−2−p
2

(2π
√
r1r2)Jµ−2+p

2
(2π
√
r1r2)

Proof. This is immediate from lemma 4.1. �

Lemma 4.5. For any µ with 1 < Re(µ) the function s+
µ,p,r1,r2,Ω

(ω) is an entire func-
tion of ω which satisfies:

(4.6)
d

dω
s+
µ,p,r1,r2,Ω

(ω) = −πr1e
i(Ω+ω)s+

µ+1,p+1,r1,r2,Ω
(ω) +πr1e

−i(Ω+ω)s+
µ+1,p−1,r1,r2,Ω

(ω)

Proof. The lemma will follow from the differentiation theorem in ([3] p.224 theorem
17.9). In order to apply this theorem to s+

µ,p,r1,r2,Ω
(ω) we need to show that the

integrand in definition 4.2 of s+
µ,p,r1,r2,Ω

(ω) is continuous with respect to θ and analytic
(entire) with respect to ω. To do so, we write the integrand as in the proof of lemma
4.3:

(4.7) 2e−ipθ(2πir2 cos(−Ω+θ))µ−2Iµ−2(2(2πir1 cos(Ω+ω−θ))
1
2 (2πir2 cos(−Ω+θ))

1
2 )

Since Iµ−2(
√
z) is entire, it is obvious that the integrand in (4.7) is entire with respect

to ω. If we consider µ’s such that 2 < Re(µ) then it is obvious that the integrand in
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(4.7) is continuous with respect to θ and therefore, we can use the theorem to get that
s+
µ,p,r1,r2,Ω

(ω) is an entire function of ω for 2 < Re(µ). In order to deal with 1 < Re(µ)
we need to consider the continuity of the integrand. The problem is that there are
θ’s in which (2πir2 cos(−Ω + θ)) = 0. Fixing the continuity problem of the integrand
in (4.7), is a matter of subtracting an expression of the form (2πir2 cos(−Ω + θ))µ−2.
More accurately, if we denote the integrand in (4.7) by hµ,p,r1,r2,Ω(θ, ω) then we can
write (4.7) as: [

hµ,p,r1,r2,Ω(θ, ω)− Iµ−2(0)(2πir2 cos(−Ω + θ))µ−2
]
+

(4.8) +Iµ−2(0)(2πir2 cos(−Ω + θ))µ−2

Now it is clear that the first part of 4.8 is continuous with respect to θ (when ω is fixed)
and the integral of the second part converges. Hence, by the theorem, s+

µ,p,r1,r2,Ω
(ω)

is an analytic function of ω for 1 < Re(µ). Verifying the recursive formula (4.6)
for d

dω
s+
µ,p,r1,r2,Ω

(ω), that is stated in the lemma is simply a matter of differentiating
under the integral sign. It is done using the following formulas for derivatives of
Bessel functions (see [10]):

(4.9)
d

dz
(z−νIν(z)) = z−νIν+1(z)

�

Having proved these lemmas, we are now ready to compute s+
µ,p,r1,r2,Ω

(ω).

Theorem 4.6. For any 0 < r1, r2, Ω ∈ R, p ∈ Z and µ ∈ C with 1 < Re(µ), we
have:
s+
µ,p,r1,r2,Ω

(ω) =

4πe
ip(π−ω−2Ω)

2

[
cos

(
π

2
(p−(µ−2))

)](√
r1

r2

)(2−µ)

Jµ−2−p
2

(2π
√
r1r2e

− iω
2 )Jµ−2+p

2
(2π
√
r1r2e

iω
2 )

Proof. If we denote the right hand side of the equation in theorem 4.6 by s̃+
µ,p,r1,r2,Ω

(ω),

then one can verify that s̃+
µ,p,r1,r2,Ω

(ω) is an entire function of ω (for any µ). Using
the formulas ([10] p.103):

(4.10)
d

dz
(zνJν(z)) = zνJν−1(z) ,

d

dz
(z−νJν(z)) = −z−νJν+1(z)

one can verify that the derivative d
dω
s̃+
µ,p,r1,r2,Ω

(ω) satisfies a recursive formula that is

identical to the recursive formula (4.6) that we proved for d
dω
s+
µ,p,r1,r2,Ω

(ω). For ω = 0,
the equality in theorem 4.6 is an immediate result of lemma 4.4. It follows that for
any n ∈ N we have (s+

µ,p,r1,r2,Ω
)(n)(0) = (s̃+

µ,p,r1,r2,Ω
)(n)(0). This proves the theorem

since by lemma (4.5), we know that s+
µ,p,r1,r2,Ω

(ω) is entire for 1 < Re(µ)). �

Having computed s+
µ,p,r1,r2,Ω

(ω) we can now easily prove Theorem 2.4 using equation 4.5.

Proof. (of theorem 2.4) To recover l+p,µ(z, b) from s+
µ,p,r1,r2,Ω

(ω) and get the expression
in theorem (2.4) we recall that by (4.5) we have for ω ∈ R:

s+
µ,p,r1,r2,Ω

(ω) = l+p,µ(r1e
i(Ω+ω) , r2e

−iΩ)
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which gives us l+p,µ(z, b) by choosing appropriate r1, r2,Ω, ω.
�

5. Kernel formula for 3 ≤ Re(µ).

So far we proved that for 2 < Re(µ) < 3 and f̂ ∈ V̂ ∞p,µ with compact support we
have:

(5.1) (w · f̂)(b) =

∫
C
f̂(z)kp,µ(z, b)dz.

Since:

kp,µ(z, b) =
π

2

l+p,µ(z, b)− l−p,µ(z, b)

sin π(2− µ)

where:
(5.2)

l+p,µ(z, b) = 4πe
ipπ
2

[
cos

(
π

2
(p−(µ−2))

)]∣∣∣∣zb
∣∣∣∣−µ−2

2
( z
|z|
b
|b|

)− p
2

Jµ−2−p
2

(2π
√
zb)Jµ−2+p

2
(2π
√
zb)

(and the connection between l+p,µ(z, b) and l−p,µ(z, b) is given by (4.1)) we can extend
the definition of kp,µ(z, b) to 3 ≤ Re(µ) in a natural way.

In this part we will prove theorem 2.1, which extends the kernel formula (5.1) to
any µ with 2 < Re(µ).

Proof. We would like to use analytic continuation to extend 5.1 to 3 ≤ Re(µ). To do
this we write equation 5.1 in the form:

(5.3)

(
|y|−µ

(
y

|y|

)−p
f

(
−1

y

))̂(b) =

∫
C
f̂(z)kp,µ(z, b)dz.

This formula is valid for 2 < Re(µ) < 3 for any smooth function f̂ with compact sup-

port. Fix such f̂ and b then both sides of (5.3) are analytic in µ by the differentiation
lemma ([9] p.409). �

We recall that so far, we have been working in a representation that is slightly
different from the Kirillov model. However, it is now very easy to get a kernel formula
in the Kirillov model. This is Theorem 2.3 which we now prove.

Proof. Let ψF be as in theorem 2.3. By definition we have w ·ψF (b) = ψw·F (b). Using

(2.5) we get that ψ
w·F (b) = χp,µ

(
b−1 0
0 b

)
|b|4f̂

w·F (b2). Now we can use the kernel

formula which we already proved to calculate f̂
w·F (b2). Using (2.5) again and a simple

change of variables now gives us a kernel formula with a kernel function κp,µ(z, b) that
equals:

(5.4) κp,µ(z, b) = 2|b|4χp,µ(

(
b−1 0
0 b

)
)χp,µ(

(
z−1 0
0 z

)
)kp,µ(z2, b2)

From (5.4) it is easy to get the explicit expression for κp,µ(z, b) that is stated in the
theorem. �



14 EHUD MOSHE BARUCH AND ORR BEIT-AHARON

In order to get an analog formula for GL(2,C) we first introduce some notations.
We will now use G to denote GL(2,C) and B its Borel subgroup. We denote by
χp1,p2,µ1,µ2 the following character of B:

(5.5) χp1,p2,µ1,µ2

(
a b
0 d

)
= |a|µ1

(
a

|a|

)p1

|d|µ2

(
d

|d|

)p2

The induced space is now:
(5.6)
Vp1,p2,µ1,µ2 =

{
F : G→ C|∀b ∈ B,∀g ∈ G, F (bg) = χp1,p2,µ1,µ2(b)F (g), F |SU(2) ∈ L2(SU(2))

}
Clearly our method of proof, of the kernel formula for SL(2,C) is valid also for
GL(2,C) and we get the same kernel formula kp,µ(z, b) with p = p1 − p2 and µ =
µ1 − µ2. In the Kirillov model we will have an analog formula to the one in theorem
2.3:

Theorem 5.1. Let F be a smooth function in Vp1,p2,µ1,µ2 such that WF

(
z 0
0 1

)
has

compact support and assume that µ1, µ2 are such that 2 < Re(µ1 − µ2). Then:

WF

((
b 0
0 1

)
w

)
=

∫
C
κp1,p2,µ1,µ2(z, b)WF

((
z 0
0 1

))
dz

|z|2

with:

κp1,p2,µ1,µ2(z, b) = π2

∣∣∣∣ bz ∣∣∣∣
µ1+µ2

2
(

b
|b|
z
|z|

) p1+p2
2

|zb|×

×
(−i)pJµ−2−p

2
(2π
√
zb)Jµ−2+p

2
(2π
√
zb)− (i)pJ−(µ−2)−p

2

(2π
√
zb)J−(µ−2)+p

2

(2π
√
zb)

sin(π
2
(2− µ+ p))
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