Lower bounds for moments of L-functions

Zeév Rudnick, Tel Aviv University

Technion, December 2005

Plan:

$\S 1$ Moments of $\zeta\left(\frac{1}{2}+i t\right)$
§2 A lower bound on moments in families
§3 Application: Fluctuations around quantum ergodicity for the modular domain

- Joint work with K. Soundararajan
$\S 1$ Moments of $\zeta\left(\frac{1}{2}+i t\right)$

$$
I_{k}(T):=\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

old conjecture:

$$
I_{k}(T) \sim C_{k}(\log T)^{k^{2}}, \quad T \rightarrow \infty
$$

-implies Lindelöf Hypothesis: $\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll|t|^{\epsilon}$, $\forall \epsilon>0$.

Known:

- Hardy \& Littlewood (1918): second moment ($k=1$)
- Ingham (1926): fourth moment ($k=2$)
for $k>2$, no good UPPER bounds are known.
Lower bound: Titchmarsh (1928), Ramachandra (1980):

$$
I_{k}(T) \geq \text { const } \cdot(\log T)^{k^{2}}
$$

old conjecture for C_{k}

$I_{k}(T) \sim C_{k}(\log T)^{k^{2}}$ where

$$
\begin{gathered}
C_{k}=a(k) f(k), \\
a(k)=\prod_{p}\left\{\left(1-\frac{1}{p}\right)^{k^{2}} \sum_{m=0}^{\infty}\left(\frac{\Gamma(k+m)}{m!\Gamma(k)}\right)^{2} p^{-m}\right\} \\
\mathrm{f}(\mathrm{k})=? ?
\end{gathered}
$$

Known: H \& L: $f(1)=1$, Ingham $f(2)=\frac{1}{12}$.
Conjectures for $f(k)$:

- Conrey\& Ghosh (1992) $f(3)=\frac{42}{9!}$
- Conrey \& Gonek (2001): $f(4)=\frac{24024}{16!}$.

Keating-Snaith conjecture (2000):

$f(k)$ can be extracted from Random Matrix Theory!
$f(k)=\lim _{N \rightarrow \infty} \frac{1}{N^{k^{2}}} \int_{U(N)}\left|\operatorname{det}\left(I-e^{i \theta} A\right)\right|^{2 k} d \mu(A)$,
$d \mu=$ Haar measure on unitary group $U(N)$

- implies $f(k)=\prod_{j=0}^{k-1} \frac{j!}{(j+k)!}$

§2 Ensembles of L-functions

One can replace $\zeta(s)$ by any L-function with similar results.

Rather than studying value distribution of a fixed L-function up the critical line, it is useful to fix $s=1 / 2$ and vary the L-function over a "family" or "ensemble" \mathcal{F}.

We would then study say the moments $\left|L\left(\frac{1}{2}, f\right)\right|^{2 k}$ as f varies over the ensemble \mathcal{F} in the limit $\# \mathcal{F} \rightarrow \infty$.

Examples of ensembles of L-functions:

- Dirichlet L-functions modulo q (prime): Take $\chi: \mathbb{Z} / q \mathbb{Z} \rightarrow \mathbb{C}^{*}$ a (primitive) Dirichlet character $\bmod q$. Let $L(s, \chi)=\sum_{n} \chi(n) n^{-s}, \Re(s)>1$.

Here we look at all (primitive) characters mod $q, q \rightarrow \infty$. The ensemble average is

$$
\langle F(\chi)\rangle:=\frac{1}{q-2} \sum_{\chi}^{*} F(\chi)
$$

e..g the moments of the central values are:

$$
\left.\left.\langle | L\left(\frac{1}{2}, \chi\right)\right|^{2 k}\right\rangle=\frac{1}{q-2} \sum_{\chi}^{*}\left|L\left(\frac{1}{2}, \chi\right)\right|^{2 k}
$$

- Maass cusp forms: Take $\psi_{j} \in L^{2}\left(S L_{2}(\mathbb{Z}) \backslash \mathbb{H}\right)$, an eigenfunction of the Laplacian $-\Delta \psi_{j}=E_{j} \psi_{j}$, and eigenfunction of all Hecke operators:

$$
T(n) \psi_{j}=\lambda_{j}(n) \psi_{j}
$$

The (standard) L-function is

$$
L\left(s, \psi_{j}\right)=\sum_{n} \lambda_{j}(n) n^{-s}
$$

has analytic continuation \& FE $s \mapsto 1-s$.
Ensemble average - e.g. average $\left\langle L\left(\frac{1}{2}, \psi_{j}\right)^{k}\right\rangle_{E}$ over eigenvalues in a window $E<E_{j}<2 E$

Katz \& Sarnak: model the behaviour of Iowlying zeros of L-functions by random matrices drawn from suitable classical groups.

Keating \& Snaith, Conrey \& Farmer: use these classical groups to model moments of central values of L-functions.

Moments of central values:

In many cases there are conjectures for the moments of central values

$$
\left.\left.\langle | L\left(\frac{1}{2}, f\right)\right|^{2 k}\right\rangle_{\mathcal{F}}
$$

(Conrey, Farmer, Keating, Rubinstein, Snaith).
e.g. for Dirichlet ensemble ("unitary")

$$
\left.\left.\langle | L\left(\frac{1}{2}, \chi\right)\right|^{2 k}\right\rangle \sim c_{k}(\log q)^{k^{2}}
$$

For Maass cusp forms (orthogonal):

$$
\left\langle L\left(\frac{1}{2}, \psi_{j}\right)^{k}\right\rangle_{E} \sim c_{k}(\log E)^{k(k-1) / 2}
$$

Known results - at best for small values of k (depending on family).

Upper bounds ??

Lower bound (ZR \& Soundararajan):

If we know how to compute first moment then we can get lower bound of right order of magnitude (with wrong constant) for all moments!

Lower bound for Dirichlet ensemble

Thm (ZR \& Sound.): $\left.\left.\langle | L\left(\frac{1}{2}, \chi\right)\right|^{2 k}\right\rangle \gg(\log q)^{k^{2}}$
Approximate Functional Equation: replace $L\left(\frac{1}{2}, \chi\right)$ by sum of length $q^{1 / 2}$:

$$
L\left(\frac{1}{2}, \chi\right) \approx \sum_{n<\sqrt{q}} \frac{\chi(n)}{\sqrt{n}}+\epsilon(\chi) \sum_{n<\sqrt{q}} \frac{\overline{\chi(n)}}{\sqrt{n}}
$$

where $\epsilon(\chi)=$ "sign" of Gauss sum: $|\epsilon(\chi)|=1$.

Thus

$$
\left|L\left(\frac{1}{2}, \chi\right)\right|^{2 k}=\sum_{n_{i}, m_{j}<\sqrt{q}} \frac{\chi\left(n_{1}\right) \ldots \chi\left(n_{k}\right) \overline{\chi\left(m_{1}\right) \ldots \chi\left(m_{k}\right)}}{\sqrt{n_{1} \ldots m_{k}}}
$$

+ similar terms

Problem: The sum contains too many terms ($\approx q^{k}$) to compute average.

Practice problem:

Replace $L(1 / 2, \chi)$ by "short" approximation

$$
\begin{aligned}
& A(\chi):=\sum_{n<x} \frac{\chi(n)}{\sqrt{n}}, \quad x=q^{\epsilon} \\
& \Rightarrow A(\chi)^{k}=\sum_{n<x^{k}} \frac{d_{k}(n, x)}{\sqrt{n}} \chi(n)
\end{aligned}
$$

where $d_{k}(n, x)=\#\left\{n=m_{1} \cdots m_{k}, \quad m_{i}<x\right\}$.

Therefore:

$\left.\left.\langle | A(\chi)\right|^{2 k}\right\rangle=\sum_{m<x^{k}} \sum_{n<x^{k}} \frac{d_{k}(n, x) d_{k}(m, x)}{\sqrt{m n}}\langle\chi(m) \overline{\chi(n)}\rangle$

Orthogonality: $\langle\chi(m) \overline{\chi(n)}\rangle \sim \begin{cases}1 & m \equiv n \bmod q \\ 0 & \text { otherwise }\end{cases}$

Therefore

$$
\left.\left.\langle | A(\chi)\right|^{2 k}\right\rangle=\sum_{m, n<x^{k}, m \equiv n} \frac{d_{k}(n, x) d_{k}(m, x)}{\sqrt{m n}}
$$

Reduction to sum over diagonal:
$m, n<x^{k}<q$ and $m \equiv n \bmod q \Rightarrow \mathrm{~m}=\mathrm{n}$!

Recall: $x=q^{\epsilon}$.

Conclusion:

$$
\left.\left.\langle | A(\chi)\right|^{2 k}\right\rangle=\sum_{n<x^{k}} \frac{d_{k}(n, x)^{2}}{n} \approx(\log q)^{k^{2}}
$$

Now use Hölder's inequality ($p=2 k, q=\frac{2 k}{2 k-1}$) :
$\left.\left.\left\langle L\left(\frac{1}{2}, \chi\right) A(\chi)^{2 k-1}\right\rangle \leq\left.\langle | L\left(\frac{1}{2}, \chi\right)\right|^{2 k}\right\rangle\left.^{\frac{1}{2 k}} \cdot\langle | A(\chi)\right|^{2 k}\right\rangle^{\frac{2 k-1}{2 k}}$
\Rightarrow lower bound

$$
\left.\left.\langle | L\left(\frac{1}{2}, \chi\right)\right|^{2 k}\right\rangle \geq \frac{\left\langle L\left(\frac{1}{2}, \chi\right) A(\chi)^{2 k-1}\right\rangle^{2 k}}{\left.\left.\langle | A(\chi)\right|^{2 k}\right\rangle^{2 k-1}}
$$

We saw $\left.\left.\langle | A(\chi)\right|^{2 k}\right\rangle \approx(\log q)^{k^{2}}\left(\right.$ for $\left.x=q^{\epsilon}\right)$, so all we need is a fuzzy first moment

$$
\left\langle L\left(\frac{1}{2}, \chi\right) A(\chi)^{2 k-1}\right\rangle \approx(\log q)^{k^{2}}
$$

Here range of summation is relatively short (about $q^{1 / 2+\epsilon}$), so reduces to diagonal contribution, in contrast to that of $\left.\left.\langle | L\left(\frac{1}{2}, \chi\right)\right|^{2 k}\right\rangle$ where sum is of length q^{k}.

Conclusion: Method yields lower bounds on moments of several families of L-functions, provided we know " $1+\epsilon$ " moments.

Other examples:

- quadratic characters $L\left(1 / 2, \chi_{d}\right)$,
- standard L-function attached to holomorphic forms of large weight and.....
§3 Fluctuations around quantum ergodicity for the modular domain

Let $M=S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$ be the modular domain, with constant negative curvature metric.

Consider eigenfunctions of Laplacian

$$
-\Delta \psi_{j}=E_{j} \psi_{j}
$$

Weyl's law (Selberg, 1950's):
Let ψ_{j} be an orthonormal basis of the discrete spectrum (there is also a continuous part).
Then:
$N(T):=\#\left\{\sqrt{E_{j}}<T\right\} \sim \frac{\operatorname{area}(M)}{4 \pi} T^{2}, \quad T \rightarrow \infty$
Hecke operators: There is a commuting set of self-adjoint operators $T_{n}, n=1,2, \ldots$ which commute with Δ.

We take ψ_{j} to be joint eigenfunctions of these (Hecke-Maass forms).

Let $a \in C_{0}^{\infty}(M)$ be an "observable", and consider "matrix coefficients"

$$
\left\langle\mathrm{Op}(a) \psi_{j}, \psi_{j}\right\rangle:=\int_{M} a(x)\left|\psi_{j}(x)\right|^{2} d x
$$

Mean value of matrix elts $=$ classical average:

$$
\frac{1}{N(T)} \sum_{\sqrt{E_{j} \sim T}}\left\langle\operatorname{Op}(a) \psi_{j}, \psi_{j}\right\rangle \sim \int_{S^{*} M} a
$$

Quantum ergodicity (Schnirelman, Zelditch, Colin de Verdiere):
the variance of the matrix elements vanishes:

$$
\begin{aligned}
\operatorname{Var}(T) & :=\frac{1}{N(T)} \sum_{\sqrt{E_{j} \sim T}}\left|\left\langle\operatorname{Op}(a) \psi_{j}, \psi_{j}\right\rangle-\int_{S^{*} M} a\right|^{2} \\
& \rightarrow 0, \quad T \rightarrow \infty
\end{aligned}
$$

Problem: understand the approach to the classical average

Quantum fluctuation Conjectures (generic M)

Feingold and Peres (1986), Eckhart, Fishman, Keating, Agam, Main and Müller (1995):

Normalize $\int_{S^{*} M} a=0$. If the geodesic flow $\Phi: S^{*} M \rightarrow S^{*} M$ is chaotic then

1) $\operatorname{Var}(T) \sim V_{c l}(a) / T^{\operatorname{dim}(M)-1}$, where

$$
\begin{aligned}
V_{c l}(a) & :=\int_{-\infty}^{\infty}\left\langle a \circ \Phi^{t}, a\right\rangle_{S^{*} M} d t \\
& =\int_{-\infty}^{\infty} d t \int_{S^{*} M} a\left(\Phi^{t}(x, \xi)\right) \overline{a(x, \xi)} d x d \xi
\end{aligned}
$$

is the average auto-correlation of classical observable a.
2) The normalized matrix coefficients

$$
F_{j}(a):=E_{j}^{\frac{\operatorname{dim}(M)-1}{4}}\left\langle\mathrm{Op}(a) \psi_{j}, \psi_{j}\right\rangle
$$

have a Gaussian distribution with mean zero and variance $V_{c l}(a)$.

Numerical tests ("generic" cases):

- Bäcker 1998
- Barnett 2004 deformed Sinai billiard

Theoretical results (non-generic cases):

- cat maps: Kurlberg \& Z.R. (2002), Kelmer (2005)
- modular domain: Luo \& Sarnak, Z.R. \& Soundararajan

Luo \& Sarnak: For the modular domain and Hecke-Maass forms ψ_{j}, the variance of normalized coefficients

$$
F_{j}(a):=E_{j}^{1 / 4}\left(\left\langle\operatorname{Op}(a) \psi_{j}, \psi_{j}\right\rangle-\int_{S^{*} M} a\right)
$$

exists:

$$
\left.\left.\langle | F_{j}(a)\right|^{2}\right\rangle_{T}<\infty
$$

(so predicted rate of decay is valid here).

- related (but not identical) to classical variance $V_{c l}(a)$ predicted by Feingold \& Peres.
- If in addition a is a Hecke-Maass form then

$$
\left.\left.\langle | F_{j}(a)\right|^{2}\right\rangle_{T} \sim V_{c l}(a) \cdot L\left(\frac{1}{2}, a\right)
$$

Fluctuations (Z.R. \& Soundararajan)

study higher moments of the normalized matrix elements

$$
F_{j}(a):=E_{j}^{1 / 4}\left(\left\langle\operatorname{Op}(a) \psi_{j}, \psi_{j}\right\rangle-\int_{S^{*} M} a\right)
$$

- Generically expect Gaussian moments with variance $V_{c l}(a)$.
- Instead we find the higher moments blow up:

Thm: If a is a joint eigenfunction of Δ and all T_{n} then for even $k \geq 2$

$$
\left.\left.\langle | F_{j}(a)\right|^{2 k}\right\rangle_{T} \gg(\log T)^{k(k-1) / 2}
$$

Main tool is Watson's formula, connecting matrix element to the value of an L-function at the center of the critical strip $s=1 / 2$:

If a, ψ_{j} are eigenfunctions of Δ and of all Hecke operators then:

$$
\left|F_{j}(a)\right|^{2}=\frac{L\left(\frac{1}{2}, a \otimes \operatorname{Sym}^{2} \psi_{j}\right)}{L\left(1, \operatorname{Sym}^{2} \psi_{j}\right)^{2}} \cdot c(a)
$$

Thus moments of matrix elts \leftrightarrow moments of central values of L-functions in a suitable ensemble

$$
\left.\left.\langle | F_{j}(a)\right|^{2 k}\right\rangle_{T} \leftrightarrow\left\langle\left(\frac{L\left(\frac{1}{2}, a \otimes \operatorname{Sym}^{2} \psi_{j}\right)}{L\left(1, \operatorname{Sym}^{2} \psi_{j}\right)^{2}}\right)^{k}\right\rangle_{T}
$$

The L-function $L\left(s, a \times \operatorname{Sym}^{2} \psi_{j}\right)$: If

$$
\Delta \psi_{j}=\left(\frac{1}{4}+t_{j}^{2}\right) \psi_{j}, \quad T_{n} \psi_{j}=\lambda_{j}(n) \psi_{j}
$$

then

$$
\begin{gathered}
L\left(s, a \times \operatorname{Sym}^{2} \psi_{j}\right)=\sum_{n=1}^{\infty} \frac{A_{j}(n)}{n^{s}}, \quad \Re(s) \gg 1 \\
A_{j}(n):=\sum_{n=d^{3} t_{1} s_{1}^{2}\left(t_{2} s_{2}^{2}\right)^{2}} \mu(d) \lambda_{a}\left(d t_{1} s_{1}^{2}\right) \lambda_{j}\left(t_{1}^{2}\right) \lambda_{j}\left(t_{2}^{2}\right)
\end{gathered}
$$

- Euler product:

$$
\sum \frac{A_{j}(n)}{n^{s}}=\prod_{p}\left(1+\cdots+p^{-6 s}\right)^{-1}
$$

- analytic continuation \& functional equation

$$
\begin{gathered}
L^{*}(s):=G(s) L(s)=L^{*}(1-s) \\
G(s)=\pi^{-3 s^{\prime}} \Gamma\left(\frac{s+i t_{a}}{2}\right) \Gamma\left(\frac{s-i t_{a}}{2}\right) \Gamma\left(\frac{s+i t_{a}+2 i t_{j}}{2}\right) \times \\
\Gamma\left(\frac{s+i t_{a}-2 i t_{j}}{2}\right) \Gamma\left(\frac{s-i t_{a}+2 i t_{j}}{2}\right) \Gamma\left(\frac{s-i t_{a}-2 i t_{j}}{2}\right)
\end{gathered}
$$

Summary

- Z.R. \& Sound: general method for getting lower bound for moments of L-functions if we know how to compute first $+\epsilon$ moment.
- Application: for the modular domain, fluctuations of matrix elements about ergodic average are non-Gaussian

