
PERIODS OF AUTOMORPHIC FORMS OVER A
COMPACT UNITARY GROUP

OMER OFFEN (JOINT WITH EREZ LAPID)

Let me start by stating our main result in ”adelic” language and
then discuss its interpretation in more classical terms.

We consider the following setting. Let F be a totally real field and
E a purely imaginary quadratic extension of F . In other words, E
is a CM-field and F its maximal totally real subfield. We make the
following technical assumption:

E/F is unramified at ALL finite places.

Denote by x 7→ x̄ the Galois action of E/F and by A the ring of adèles
of F . Set G′ = GLn regarded as an algebraic group defined over F and
let G be the restriction of scalars of G′ from E to F . The associated
groups of F -rational points are then

G′(F ) = GLn(F ) ; G(F ) = GLn(E).

Let K (resp. K ′) denote the standard maximal compact of G(A) (resp.
G′(A)). We denote by

bc : A(G′(A)) → A(G(A))

the transfer of automorphic forms from G′(A) to G(A) given by qua-
dratic base change. Let π′ be a cuspidal automorphic representation
of G′(A) which is everywhere unramified. We assume further that
π′ 6' π′ ⊗ η, where η = ηE/F is the quadratic idèle class character at-
tached to E/F by class field theory. In this case π = bc(π′) = bc(π′⊗η)
is a cuspidal automorphic representation of G(A). Clearly it is also ev-
erywhere unramified. Let φ0 be the K-invariant, L2-normalized cusp
form in π. Let α = tᾱ ∈ G(F ) be a hermitian matrix which is either
positive or negative definite at all real embeddings, let

Hα = {g ∈ G : gαtḡ = α}

be the anisotropic unitary group associated with α and set θ = (θv) ∈
G(A) with {

θv
tθ̄v = ±αv ∞ | v

θv = e v <∞.
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Theorem 1 ([LO]).∣∣∣∣∫
Hα(F )\Hα(A)

φ0(hθ)

∣∣∣∣2 = cE |Pα(π)|2 L(1, π′ × π̃′ ⊗ η)

Ress=1 L(s, π′ × π̃′)
.

The constant cE is explicit on the nose. The term Pα(π) is a finite
product of local terms that is also explicit, but dependent on π. In
particular for the unitary group determined by the identity matrix we
have

Pe(π) = 1.

The quotient is of the completed Rankin-Selberg L-functions. We ob-
tain a similar formula dropping our technical assumption on E/F in
the cost of the local terms Pα(π) remaining unknown at finitely many
places. For the case of n = 2, those local terms are known and we may
in this case, in particular, provide a formula for a general CM -field
over Q.

The unitary period of a cusp form has another interpretation as
a finite weighted sum of point evaluations. Recall that φ0 is an au-
tomorphic form on the locally symmetric space G(F )\G(A)/K. For
simplicity, assume that F = Q and that α = e and set H = He. The
locally symmetric space is then identified with an arithmetic quotient
of several copies, depending on the class number of E, of the symmetric
space GLn(C)/Un. Under the above interpretation, we can write∫

H(F )\H(A)

φ0(h)dh = vol(H(A) ∩K)
∑ 1∣∣K ∩ x−1

i H(F )xi
∣∣φ0(xi)

the sum being over the genus of the hermitian form defined by e, i.e.

H(A) =
⊔
i

H(F )xi(K ∩H(A)).

Thus we express a finite sum of point evaluations of a cusp form in
terms of special values of L-functions.

On the upper half plane there is a well known and extremely im-
portant formula of Waldspurger. Let φ be a cusp form on Γ\H – a
quotient of the upper half plane by a congruent subgroup and let d be
a negative integer. Then∣∣∣∣∣∑

z∈Λd

φ(z)

∣∣∣∣∣
2

∼ L(
1

2
, bc

Q(
√
d)

Q (πφ))

where, Λd is the set of Heegner points of discriminant d and πφ is the
automorphic representation emanating from φ.

Our formula is of a similar nature, except that it involves the special
value at s = 1 of a quotient of L-functions. The size of these L-values
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for standard automorphic L-functions is well understood. From Lang-
lands functoriality it would follow that Rankin-Selberg L-functions are
standard. We may therefore obtain information on the size of the pe-
riods on the left hand side of our formula.

As an application of the formula, let me point out a connection to a
recent conjecture of Sarnak about the L∞-norm of automorphic forms.

In the case of an arithmetic co-compact quotient of the upper half
plane Iwaniec and Sarnak predict in [IS95] that

‖φ‖∞ < λε

for all ε > 0, where φ is an L2-normalized eigenfunction with Laplace
eigenvalue λ. Here the convexity bound is with ε = 1

4
. This was

improved by Sarnak-Iwaniec to ε = 5
24

.
In higher rank the situation is different. Let φ be a cusp form on

Γ\GLn(C)/Un where Γ is arithmetic. Assume that φ is L2-normalized
and an eigenfunction of the ring of invariant differential operators as
well as the Hecke operators. One expects bounds on the L∞-norm, of
the form

‖φ‖∞ < λδφ.

Here λφ is given by

λφ =
∏
i<j

(1 + |λi − λj|)

where (λ1, . . . , λn) are the eigen-values of a minimal set of generators of
the ring of invariant differential operators. In other words (λ1, . . . , λn)
is the infinitesimal character in Harish-Chandra’s parameterization of
the corresponding representation of GLn(C).

From purely differential geometric considerations on the symmetric
space, Sarnak showed in this case that one can take δ = 1 ([Sar04]). In
a recent work, in a more general setting Sarnak and Venkatesh show
that one can take δ < 1.

On the other hand, there are precise conjectures regarding the size of
the quotient of L-functions that appears in the formula. From estimates
obtained by Molteni ([Mol]), granted that Rankin-Selberg L-functions
are standard, the finite part of the L-functions should be bounded
above and below by a term of size λεφ for every ε > 0. The archimedean
factors can be estimated using Stirling’s formula. They are roughly of
size λφ. So the formula gives

‖φ‖∞ >> λ
1
2
+ε

φ

for cusp forms in the image of base change. In particular we see that
one cannot expect δ < 1

2
. In fact this was already known. Let me give
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a heuristic argument for the case n = 2. For any cusp form φ which
is not a base change, by a result of Harder-Langlands-Rappoport its
unitary period vanishes ([HLR86]). By a local Weyl Low type formula
(which is known at least for compact quotients) if {yi}mi=1 is any finite
set of points then ∑

µφ<R2

∣∣∣∣∣∑
i

φ(yi)

∣∣∣∣∣
2

∼ cR3.

Here the sum of point evaluations (absolute value squared) is averaged
over an orthonormal basis of eigenfunctions with Laplace eigenvalue
µφ < R2. There are roughly R3 forms in the sum. If we now apply this
to the points {xi} of the genus of the hermitian form, then only those
forms which are base change will contribute. There are roughly R2 of
them. We therefore obtain that on average the weighted sum satisfies∣∣∣∑ ′φ(xi)

∣∣∣ ∼ R
1
2 .

This is an argument of Rudnick-Sarnak([RS94]). However, even in this
case, our formula gives a sharper result, since it says that every single
cusp form which is base change has a large L∞-norm.

I remark that Molteni’s bounds for the L-values do apply in the
n = 2 case. Thanks to the Gelbart-Jacquet lifting ([GJ78]) we know in
this case that the Rankin-Selberg L-functions are automorphic.

This example shows the connection between large L∞-norms and
functoriality. In general Sarnak conjectures that cusp forms with large
L∞-norms are all lifts from smaller subgroups. This is somewhat similar
to the situation with the Ramanujan conjecture. But as we have seen,
in this case, exceptional automorphic forms already exist for GL2.

In the rest of the talk I will discuss the proof. Let me first list the
main ingredients that we use to compute the periods.

(1) The fundamental-Lemma of Jacquet – [Jac04], [Jac05].
(2) The fine spectral expansion of the Reltaive Trace Formula (RTF)

– [Lap]
(3) Local identities of Bessel distributions for principal series – [Off]
(4) Explicit formulas for spherical functions on Hermitian matrices

(p-adic case) – [Hir88a], [Hir89], [Hir88b], [Hir90], [Hir99].

The last ingredient for general n is only available if E/F is an un-
ramified quadratic extension of p-adic fields. This is the reason for
our technical assumption on E/F . For n = 2 Hironaka computed the
spherical functions for a general quadratic extension, and we can then
provide a formula for any CM-field.
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The point of departure of our computation is a global identity of
distributions that comes from the Relative trace formula of Jacquet.
It is a consequence of the first two ingredients (1) and (2) above. The
RTF is a tool developed by Jacquet to study periods of automorphic
forms. I wish to make a short retreat and roughly explain, in a few
words, the general setting for periods in this context. For now let G
be a connected reductive algebraic group defined over F and let H be
the group of fixed points of an involution on G. For a cusp form φ on
G(F )\G(A) we consider the period

PH(φ) =

∫
H(F )\H(A)

φ(h)dh.

Definition 1. A cuspidal representation π of G(A) is distinguished by
H if there exists a cusp form φ in the space of π, so that PH(φ) 6= 0.

In many known examples, as in the example we have seen, these
periods are related to special values of L-functions. In general to the
symmetric spaceH\G there is attached another groupG′ and a transfer
of automorphic forms from G′(A) to G(A). It is expected that being
distinguished characterizes the image of the transfer of automorphic
forms. This project was recently completed by Jacquet in the case of
unitary periods.

Going back to the more specific notation where G′ = GLn over F
and G = ResE/F (G′), the transfer of automorphic forms is quadratic
base change.

Theorem 2 ([Jac05]). A cuspidal representation π of G(A) is a base
change from G′(A) if and only if it is distinguished by some unitary
group.

The result of Jacquet follows from the RTF. Jacquet had to consider
all unitary groups. Since we compute a specific unitary period, we use a
slightly simpler version of the RTF that I now wish to describe. Recall
that H = He is the unitary group determined by the identity matrix.
We add some more notation. Let ψ be an additive character of F\A.
Let U (resp. U ′) be the group of upper triangular unipotent matrices
in G (resp. G’) and set

ψU(u) = ψ(TrE/F (u1,2) + · · ·+ TrE/F (un−1,n))

and

ψU ′(u) = ψ(u1,2 + · · ·+ un−1,n).
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We compare between distributions on G and on G′ that are defined as
follows. For f = ⊗vfv ∈ C∞

c (G(A)) we consider

RTF (f) =

∫
U(F )\U(A)

∫
H(F )\H(A)

Kf (h, u)dhψU(u)du

and for f ′ = ⊗vf
′
v ∈ C∞

c (G′(A)) we consider the Kuznetsov trace
formula

KTF (f ′) =

∫ ∫
(U ′(F )\U ′(A))2

Kf ′(u1, u2)ψU ′(u1u2)du1 du2

where Kf and Kf ′ are the standart kernel functions associated with
the test functions f and f ′ respectively. As in the case of the Arthur-
Selberg trace formula, both distributions have an expansion as a sum
of distributions parameterized by geometric data and an expansion in
terms of spectral data. There is a certain geometric correspondence
between the relevant double cosets in

U ′\G′/U ′ ” ↪→ ” H\G/U
and the geometric expansions are in terms of orbital integrals, the orbits
being the double cosets. We get an identity

RTF (f) = KTF (f ′)

whenever
f↔ f ′

have matching orbital integrals. The matching reduces to a local con-
dition. Locally, we say that f and f ′ match if∫

U ′

∫
U ′
f ′(u1wau2)ψU ′(u1u2) du1 du2 ={

γ(a)
∫
U

∫
H
f(hξu)ψU(u) dh du if a = tξ̄ξ,

0 if a 6∈ {tḡg : g ∈ G}

where the transfer factor γ(a) is defined in terms of η. A standard
strategy in the business of trace formula identities is to try to compare
between the corresponding distributions coming from the geometric
side and to apply this comparison in order to obtain identities in the
spectral side. This, in general, turned out to be more difficult then
people first thought. The main obstacle is the so called fundamental
lemma. At the case at hand, the fundamental lemma is now available
thanks to a recent work of Jacquet. Recall that locally base change
defines a homomorphism from the bi-K-invariant Hecke algebra of G
to the bi-K ′-invariant Hecke algebra of G′

bc : HG → HG′ .
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Jacquet showed that

f↔ bc(f), f ∈ HG

in particular, he showed that the identity elements of the Hecke algebras
match

1K↔1K′ .

In addition Jacquet proved smooth matching ([Jac03]), i.e. that every
f ′ ∈ C∞

c (G′) matches a function f ∈ C∞
c (G) and vice versa. He then

obtains the identity of distributions for enough test functions.
In order to study periods of cusp forms, one has to isolate the dis-

crete part of the identity, i.e. the contribution of the discrete spectrum.
This can be done thanks to the result of Lapid (2). The discrete contri-
bution to the KTF consists of the so called Bessel distributions. They
involve the Fourier (Whittaker) coefficients of automorphic forms. For
the RTF the discrete part consists of relative analogues that involve
a combination of Fourier coefficients and unitary periods. We refer to
those as relative Bessel distributions. From (1) and (2) we then obtain
that if π = bc(π′) then for f↔ f ′ we have

B̃π(f) = Bπ′(f
′).

The Bessel distribution is defined by

Bπ′(f
′) =

∑
ob(π′)

Wψ(π′(f ′)φ′)Wψ(φ)

where the Fourier coefficient is defined by

Wψ(φ′) =

∫
U ′(F )\U ′(A)

φ′(u)ψU(u)du.

The relative Bessel distribution is

B̃π(f) =
∑
ob(π)

PH(π(f)φ)Wψ(φ).

For our computation we now pick specific matching functions. Let S
be a large enough finite set of places of F containing the real places the
even places and the places where ψ ramifies. We fix a bi-K-invariant
function f and a matching f ′ of the following form

f =
∏
v∈S

fv
∏
v 6∈S

1Kv ↔ f ′ =
∏
v∈S

f ′v
∏
v 6∈S

1K′
v

where fv ∈ HGv for all v. That such matching functions exist is a
consequence of the local results of Jacquet. We stress, however, that
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the functions f ′v, v ∈ S are not necessarily Hecke functions. Since the
function f is bi-K-invariant, it follows from our definition that

B̃π(f) = f̂S(πS)P
H(φ0)W(φ0)

where f̂S(πS) is the spherical Fourier transform of f . The Fourier
coefficient can also be computed up to finitely many terms. In what
follows (∗) will always stand for explicitly known constants. We have

|W(φ0)|2 = (∗) 1

Ress=1 LS(s, π × π̃)

∏
v∈S

|Wv(e)|2 .

Here the local terms involve the value at the identity of the L2-normalized
spherical Whittaker function Wv. The invariant inner product we use
on the local Whittaker models

(W1,W2) =

∫
Un−1\Gn−1

W1(diag(g, 1))W 2(diag(g, 1))dg

is due to Bernstein at the finite places and due to Baruch at the in-
finite places. The formula for the Fourier coefficient follows from a
formula for the inner product of cusp forms, based on the unfolding of
Rankin-Selberg integrals and the local computations of Jacquet-Shalika
([JS81]). On the other side, based on the same technique, the Bessel
distribution is explicitly factorizable. We have

Bπ′(f
′) = (∗) 1

Ress=1 LS(s, π′ × π̃′)

∏
v∈S

Bπ′v(f
′
v)

where the local bessel distributions are defined with respect to the
above inner product on the Whittaker model. It is left to compute the
local Bessel distribution Bπ′v(f

′
v). Since the function f ′v is not necessar-

ily bi-K ′
v-invariant, directly this may be difficult. But we do know that

the matching function fv is a Hecke function. This is where (3) comes
into play. Since our representations are assumed everywhere unrami-
fied, it is enough to consider principal series representations. I obtain
an identity

B̃πv(fv) = γ(π′v)Bπ′v(f
′
v)

where γ is a certain gamma factor and B̃πv(fv) is a local analogue of
the relative Bessel distribution. As in the global case, the local relative
Bessel distribution involves a combination of a Whittaker functional
and a certain unitary period. We interpret the unitary period as the
spherical functions of Hironaka and we can therefore apply her explicit
formulas (4). We obtain that∣∣Bπ′v(f

′
v)

∣∣2 = (∗) L(1, πv × π̃v)

L(1, π′v × π̃′v)
2

∣∣∣f̂v(πv)Wv(e)
∣∣∣2 .
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Combining all this we obtain∣∣PH(φ0)
∣∣2 = (∗) Ress=1 L(s, π × π̃)

Ress=1 L(s, π′ × π̃′)2
.

Our formula follows since

L(s, π × π̃) = L(s, π′ × π̃′)L(s, π′ × π̃′ ⊗ η).
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