The Condition of Moderate Growth

"Without the condition of moderate growth you can't do anything."

Harish-Chandra

G a real reductive group, $K \subset G$ a maximal compact subgroup. (σ, V) a finite dimensional representation of G with compact kernel.

 $\langle \dots, \dots \rangle$ a K-invariant Hilbert space structure on V. $\| \dots \|$ the corresponding operator nome on $End(V \bigoplus V)$. Write $\| g \|$ for $\| \begin{bmatrix} \sigma(g) & 0 \\ 0 & \sigma(g^{-1})^* \end{bmatrix} \|$. The function $g \mapsto \| g \|$ will be called a *norm* on G.

1.
$$\|\mathbf{1}\| = \mathbf{1}, \|k_1gk_2\| = \|g\|, k_1, k_2 \in K, g \in G.$$

- 2. $||xy|| \le ||x|| ||y||$.
- 3. $||x^{-1}|| = ||x||$.
- 4. If r > 0 the set $B_r = \{g \in G | ||g|| \le r\}$ is compact.

5.
$$||xy^{-1}|| \ge ||x|| / ||y||$$
.

6. If (π, W) is a representation of G on a Banach space then $\|\pi(g)\| \leq C \|g\|^k$ for some $C > 0, k \geq 0$. We will say that a smooth function $f : G \to \mathbb{C}$ is of *moderate growth* if there exits k such that

$$|R_x f(g)| \le C_x \, \|g\|^k$$

for all $x \in U(Lie(G))$ and all $g \in G$ and $R_x f$ is the usual action of U(Lie(G)) on $C^{\infty}(G)$ as left invariant differenctial operators.

Key Example:

 (π, W) a Banach representation of G. W^{∞} the space of C^{∞} vectors with the standard Fréchet space structure. If $\lambda \in (W^{\infty})'$ (continuous functionals) and $w \in W^{\infty}$ then the matrix coefficient

$$g \mapsto c_{\lambda,v}(g) = \lambda(\pi(g)v)$$

is of moderate growth. Indeed there exists k and a continuous seminorm ξ_λ on W^∞ such that

$$|c_{\lambda,v}(g)| \leq ||g||^k \xi_{\lambda}(v) (*)$$

for all, $g \in G$, $v \in W$.

A smooth Fréchet representation of G is a representation (μ, \mathcal{V}) of G on a Fréchet space \mathcal{V} such that the map

$$g
ightarrow \mu(g) \phi$$

is smooth for all $\phi \in \mathcal{V}$. We will say that it is of moderate growth if the functions $c_{\lambda,v}$ for $\lambda \in \mathcal{V}', v \in \mathcal{V}$ satisfy the condition (*) above with ξ_{λ} a continuous seminorm on \mathcal{V} .

We will say that \mathcal{V} is admissible if dim $Hom_K(F, \mathcal{V}) < \infty$ for all finite dimensional representations of K.

We will use the notation \mathcal{V}_K for the space of all K-finite vectors in \mathcal{V} .

We will say that \mathcal{V} is finitely generated and admissible if \mathcal{V}_K is finitely generated as a U(Lie(G))-module.

Theorem of Casselman and Wallach:

 $\mathfrak{g} = Lie(G) \otimes \mathbb{C}.$

 $\mathcal{HC}(\mathfrak{g}, K)$ the category of finitely generated admissible (\mathfrak{g}, K) -modules.

 $\mathcal{FHC}(G)$ the category of all finitely generated smooth, admissible, Fréchet representations of G with moderate growth and morphisms that are topologically split.

There exists an equivalence of categories $W \rightsquigarrow T(W)$ between $\mathcal{HC}(\mathfrak{g}, K)$ and $\mathcal{FHC}(G)$ such that if (π, W) is a Banach representation of G such that $(W^{\infty})_K$ is finitely generated and admissible then $T((W^{\infty})_K)$ is isomorphic with W^{∞} . In fact, the functor T is naturally the inverse functor to $W \rightsquigarrow W_K$.

Let $\mathcal{A}(G)$ denote the space of all functions on G of moderate growth. We set $\mathcal{A}_k(G)$ equal the space of all $f \in \mathcal{A}(G)$ such that

 $|R_x f(g)| \le C_x \, \|g\|^k$

for all $x \in U(Lie(G))$ and all $g \in G$.

On $\mathcal{A}_k(G)$ we define the seminorms

$$\xi_{k,x}(f) = \sup_{g \in G} \|g\|^{-k} |R_x f(g)|$$

This defines a Fréchet topology on $\mathcal{A}_k(G)$. We give $\mathcal{A}(G)$ the direct limit topology.

Let W be a closed G-invariant subspace (under the right action G) of $\mathcal{A}(G)$ with the following property:

If $Z(\mathfrak{g})$ is the center of $U(\mathfrak{g})$ then if $\phi \in W$ then dim $Z(\mathfrak{g})\phi < \infty$ and W_K is finitely generated (i.e. an object in $\mathcal{HC}(\mathfrak{g}, K)$).

Theorem. There exists $k \ge 0$ such that $W \subset \mathcal{A}_k(G)$ and with the induced topology W is isomorphic with $T(W_K)$ as a smooth Fréchet module.

We also note

Theorem. If $M \subset \mathcal{A}(G)$ is a g and K-invariant subspace that is in $\mathcal{HC}(\mathfrak{g}, K)$ then the closure of M in $\mathcal{A}(G)$ is isomorphic with T(M) as a smooth Fréchet module. Let $H \subset G$ be a closed sugroup.

Let $\mathcal{A}(H \setminus G) = \{ f \in \mathcal{A}(G) | f(hg) = f(g) \text{ for all } h \in H, g \in G \}.$

Then $\mathcal{A}(H \setminus G)$ is closed in $\mathcal{A}(G)$.

Let W be a subspace of $\mathcal{A}(H \setminus G)$ that is \mathfrak{g} and K-invariant and in $\mathcal{HC}(\mathfrak{g}, K)$.

Then there is an isomorphism, B, of T(W) onto the closure, \overline{W} , of W as smooth Fréchet modules.

Let $\delta(f) = f(1)$ for any function on G. Then δ defines a continuous functional on $\mathcal{A}(G)$ and $f \in \mathcal{A}(G)$ is tautologically $c_{\delta,f}$.

Thus if we set $\lambda = B^* \delta \in (T(W)')^H$ then if $f \in W$ and if $B(\phi) = f$ then $f = c_{\lambda,\phi}$. This implies that there is a canonical isomorphism

$$Hom_{\mathfrak{g},K}(W,\mathcal{A}(H\backslash G))\cong (T(W)')^{H}.$$

A variant of Frobenius reciprocity

A variant of this is:

Let P be a minimal parabolic subgroup of G, P = MNa Levi decomposition and (σ, H_{σ}) an irreducible representation of M extended to N trivially.

Let $I_{P,\sigma}^{\infty}$ (resp. $I_{P,\sigma}$) be the smooth (resp. K-finite) induced representation of σ from P to G.

On $I_{P,\sigma}^{\infty}$ we put the usual Fréchet topology as smooth functions from K to H_{σ} .

Casselman's subrepresentation theorem implies that there exists σ and $B: I_{P,\sigma} \to W$ a surjective (\mathfrak{g}, K) . homomorphism.

We note that $T(I_{P,\sigma}) \cong I_{P,\sigma}^{\infty}$ Thus the CW-theorem implies that B extends to a homomorphism of $I_{P,\sigma}^{\infty}$ onto \overline{W} as smooth Fréchet representations.

Let $\delta(f) = f(1)$ for any function on G. Then δ defines a continuous functional on $\mathcal{A}(G)$ and $f \in \mathcal{A}(G)$ is tautologically $c_{\delta,f}$. Thus if we set $\lambda = B^* \delta \in (I_{P,\sigma}^{\infty})'$ and let $B(\phi) = f$ then $f = c_{\lambda,\phi}$.

Let $\chi : U(\mathfrak{g})^K \to \mathbb{C}$ be an algebra homomorphism and let $\mathcal{A}(K \setminus G)_{\chi}$ be the space of $f \in \mathcal{A}(K \setminus G)$ such that $L_x f = \chi(x) f$ for $x \in U(\mathfrak{g})^K$ (here L is the left regular representation). Let ν be the Harish-Chandra parameter of χ in the Langlands chamber. Then the result we just described specializes to the assertion that if $p_{\nu}(x, y)$ is the Poisson kernel with $x \in K \cap P \setminus K$ and $y \in K \setminus G$ then if $f \in \mathcal{A}(K \setminus G)_{\chi}$ there exists a unique $T \in C^{\infty}(K \cap P \setminus K)'$ such that $f(g) = T(p_{\nu}(\cdot, Kg))$ for all $g \in G$.

This is a theorem proved almost simultaneously by Oshima-Sekiguchi and me (1980, announced by me in the 1980 Park City meeting). We now look at the situation when G is the group of real points in a reductive algebraic group, \mathbf{G} , defined over \mathbb{Q} . Let Γ be subgroup of $\mathbf{G}_{\mathbb{Q}}$.

Let P be the real points of a parabolic subgroup, \mathbf{P} , of \mathbf{G} defined over \mathbb{Q} . We will say that P is cuspical.

Let \mathbf{N} be the nilradical of \mathbf{P} and N the real points of \mathbf{N} .

Let M be the group of real points of \mathbf{P}/\mathbf{N} . Finally set $\Gamma_M = \Gamma \cap P/\Gamma \cap N$.

If $f \in \mathcal{A}(\Gamma \setminus G)$ then we define

$$\Lambda_P(f)(m) = \int_{\Gamma \setminus N} f(\overline{n}m) d\overline{n}$$

with $d\overline{n}$ a choice of invariant measure on $\Gamma \setminus N$.

$$\Lambda_P: \mathcal{A}(\Gamma \backslash G) \to \mathcal{A}(\Gamma_M \backslash M)$$

is continous in the induced topologies.

Furthermore, if W is a closed invariant subspace that is an object in $\mathcal{FHC}(G)$ then $\Lambda_P(W) \in \mathcal{FHC}(M)$. There is a partial inverse to this map. Let ${}^{o}P = \cap Ker|\chi|$ the intersection is over all $\chi : P \to \mathbb{C}^{\times}$ a continuous homomorphism Let W be a closed subrepresentation of $\mathcal{A}(\Gamma_M \setminus M)$ that is in $\mathcal{FHC}(G)$. Let $\nu : P/{}^{o}P \to \mathbb{C}^{\times}$ be a continuous homomorphism. We form

$$I^{\infty}_{P,W,\nu}$$

the corresponding induced representation. We note that G = PK so we note that as a Fréchet space it is isomorphic with $I_{P\cap K,W}^{\infty}$ with W thought of as just a $P \cap K$ representation on a Fréchet space. If $f \in I_{P\cap K,W}^{\infty}$ then define $f_{\nu}(pk) = \nu(p) \det(Ad(p)|_{Lie(N)})^{\frac{1}{2}}L_pf(k)$.

Consider $\delta: W \to \mathbb{C}$ as above. Set for $f \in I^{\infty}_{P \cap K, W}$

$$E(P,W,\nu)(f)(g) = \sum_{\gamma \in \Gamma \cap P \setminus \Gamma \cap G} \delta(L_g f_{\nu}(\gamma)).$$

Unfortuately the series rarely converges.

However, if we start with V a closed invariant subspace of $\mathcal{A}(\Gamma \setminus G)$ that is an object in $\mathcal{FHC}(G)$ then if $f \in V_K$ is such that $\Lambda_P(f) = 0$ for all cuspical P as above with $P \neq G$ then Langlands showed using the condition of moderate growth that f is rapidly decreasing in a neighborhood of each cusp.

This implies that if we start with V a closed, invariant and in $\mathcal{FHC}(G)$ and if P is minimal among the cuspidal parabolic subgroups such that $\Lambda_P(V) \neq 0$ then there is an open tube of ν such that the series defining $E(P, \Lambda_P(V), \nu)$ coverges uniformly and absolutely defining a (\mathfrak{g}, K) -homomorphism

$$E_{\nu}: I_{P\cap K,,\Lambda_P(V)_{K_M}} \to \mathcal{A}(\Gamma \backslash G)_K.$$

Langlands proved that this family of (\mathfrak{g}, K) -homomorphisms has a meromorphic continuation to all ν .

The CW theorem implies that at a point of holomorphy E_{ν} extends to a continuous homomorphism

$$E_{\nu}: I_{P\cap K, \Lambda_P(V)}^{\infty} \to \mathcal{A}(\Gamma \backslash G).$$

We can replace $\Lambda_P(V)$ with W a closed subrepresentation of $\mathcal{A}(\Gamma_M \setminus M)$ that is in $\mathcal{FHC}(G)$. That has the property that $\Lambda_Q(W) = 0$ for all Q proper and cuspidal. The same meromorphic continuation therem is true.

Open question: The meromorphic continuation can be done in the context of

$$E_{\nu}: I_{P\cap K,W}^{\infty} \to \mathcal{A}(\Gamma \backslash G).$$